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ABSTRACT 

This article presents a general Bayesian analysis of incomplete categorical 

data considered as generated by a statistical model involving the categorical 

sampling process and the observable censoring process. The novelty is that 

we allow dependence of the censoring process paramenters on the sampling 
categories; i.e., an informative censoring process. In this way, we relax the 

assumptions under which both classical and Bayesian solutions have been de- 

veloped. The proposed solution is outlined for the relevant case of the censoring 

Copyright O 1992 by Marcel Dekker, Inc. 
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pattern based on partitions. It is completely developed for a simple but typi- 

cal example. Several possible extensions of our procedure are discussed in the 

final remarks. 

1. INTRODUCTION 

In order to better illustrate and clarify the problem of analysing cate- 

garical data informatively censored. we decided to use the following practical 

example (Paulino 1990) tl~roughout the paper: 

Example:  To evaluate the influence of physical exercise on the pulmonary 

function of asthmatic children. IZ = 167 of such children were studied. The 

experimental protocol specified that each cl:ilcl should Ile submitted to cycloer- 

gometric exercises for two fixed periods of five and seven minutes. after which 

the status of the cllild with respect to bronchial spasm (positive or negative) 

should be recorded. 

For reasons related to the condition of each child, observations for both 

sessions (absence of censoring) were obtained for only 23 children while 24 chil- 

dren did not present any report (total censoring). The remaining 120 children 

were only reported at  a single session (partial censoring), S1 a t  five minutes 

and 39 a t  seven minutes. Denoting presence and absence of bronchial spasm 

by "f" and "-", respectively, Table I presents the results relative to the  23 

uncensored children. Among the S1 children reported only a t  five minutes, 

.50 responded positively (and 31 negatively). Among the 39 children reported 

only at seven minutes. 27 responded positively (and 12 negatively). 

Note that each sampling unit is classified into one of the following cat- 

egories. defined by the possible results of the two sessions: (+, +), (+. -1, 
(-, +) and (-, -). To these possible results we associate respectively the vec- 

tors e l  = ( l ?  0,0,0), e:, = (0,1.0.0), e:, = (0 .0 , l .  0)  and e4 = (0,010, 1) that 

form the canonical basis of IR4. As usual. this sampling process is modelled by 

the Bernoulli multivariate distribuition. That is, W1,  Wz,  . . . , W, ( n  = 167) 

are (conditionally) independent (given 8) random vectors associate to the sam- 

pling units such that. for all b = 1,2, .  . . , n and j = 1,2,3,4,  
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TABLE I 
0 bserved frequencies related to 

bronchial spasm induced by exercise 

(BIE) at 5 and 7 minutes 

Total 

BIE 

where 9 = (el, 02: g3.O4) belongs to the tridimensional simplex 

s4 = ( ( s ~ .  S2! $3. $4) : > 0 . $1 $ $2 + sr, $ $4 = 1) 

Questions of interest include the distributional evaiution of 8 in order 

to investigate whether the frequency of bronchial spasm changes or not with 

exercise time; that is, whether e2 is near to e3. 

Unlike the standard situation, in the present example not all Wk1s are 

observed completely. For the interpretation of what is in fact observed, the 

sampling process defined above is insufficient. While our interest is directed 

to the elements of B (sampling process paramenters), it is necessary to include 

a report (or censoring) process which indicates the type of censorship each 

sampling unit may suffer. 

The structure of the example (cross-classified categorical data) permits 

us to define the report process by the vectors R k ,  which indicate the kind 

of censoring suffered by unit k. Hence, if unit I; suffers no censoring, Rk = 
(1,0,0,0), indicating that the response reported for the k-th unit is an element 

of the set {(+, +), (+, -), (-, +), (-, -)). If there is no report in the session 

of 7 minutes for the k-th unit, Rk = (0,1,0,0), indicating that the response 
reported for the k-th unit is an element of the set {(+,.), (-, .)I. If there 

is no report in the session of 5 minutes for the k-th unit, Rk = (0,0,1, O), 
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indicating that the response reported for the k-th unit is an element of the set 

{(., t), (., -)). Finally. R,: = (0,O. 0 . 1 )  indicates that for the k-th unit there 
are no results of either sessions. 

Using standard statistical terminology, as a first assumption on the model. 

we consider that the vectors (Rk. Wk) , k = I . .  . . . n, form a sequence of 

independent and identically clistributecl random quantities. In adition. each 

of the conditional distributions of (RkIWk) is lnultivariate Bernoulli. More 

precisely, we define for every i: j = 1.2 ,3 ,4 ,  

where. for every j = 1.2.3.4. 

is an element of the simplex S4. Xlso note that ci is an element of the set 

{(l,O, O,O), (0,1,0, O), (0,0? 1, O ) ,  (0,0,0, I)}. This definition of report process 

parameters imply coherence of the reporting with the sampling process in the 

sense that the reported data that do not contradict the missing information. 

For example, for any unit 8 ,  XI2  is the conditional probability that the k-th unit 

is reported in both sessions given that Wk = e2 (representing the sample point 

(+, -)); A22 is the conditional probability that the k-th unit is reported only 

in the session of 5 minutes (with result (+, .)) given that Wk = e 2 ;  A32 is the 

probability that the k-th unit is reported only in the session of 7 minutes (with 

result (., -)) given that Wk = e2; and X42 is the probability that the k-unit is 

not reported in any of the sessions (with result (., .)) given that Wk = e2. 

Note that, in the example, Rk and Wk have equal dimension, which does 

not hold in general. Also, this censoring pattern, common in medical cases, is 

very special and, as we will discuss later, simplifies considerably the analysis 

from an interpretational viewpoint. 

To complete the notation, the vector of observation is denoted by N = 
(N1, N2, Ns, n4) where in a lexicografic ordering N1 = (rill, 7212, n13, 1214) is 

for uncensored data, Nz = (n2+, iz2-)  is for the data do not report the session 

of 7 minutes, N3 = (n3+, A T 3 - )  is for the data that do not report the session 
of 5 minutes. and finally. 724 is the number of units that do report neither of 

the two sessions. The censoring parameter Iwtor is represented by 
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and the parameters that we will use to describe the likelihood are represented 

by 
pij = B jX i ,  . 

The probabilities of a unit being reported. respectivel~~. in both sessions. only 

in the first. only in the second. and in none of t.hem. are all obtained by making 

i equal to 1.2.3. and 4 in the following espression 

From the joint distribution of {(Wk, Rk) ; k = 1,. . . , n), the likelihood is 

This form of the likelihood reveals that not only the probabilistic model 

but also the parameters of interest, Oj = p.j = plj + p2j + p3j + p .~ j  ( j  = 
l,2,3,4), are not identifiable. 

The problem of non-identifiability - in general, a characteristic of incom- 

plete categorical data - is in fact the true root of the inferential probIems and 

justifies the procedures described in the non Bayesian literature. 

The main purpose of this article is to develop a solution for the general 

problem of incomplete categorical data based on Dirichlet prior distributions 

and which is also tractable in several ways. In Section 2, for sake of simplicity, 

this solution is derived in general for censoring by partitions of the original 

category set. In Section 3, this solution is developed in detail for the example 

described above. The corresponding solution for a general censoring pattern is 

completely described by Paulino (1988) and follows the same line of thought. 

2. BAYESIAN I\/IODEL WITH INFORMATIVE REPORT 
PROCESS 

From a population partioned in m categories a random sample of size n 

is to be selected. Let 0 = ( H I , .  . . . O m )  be a vector for which the element B i ,  
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i = 1.. . . , m, represents t.he positive probability that a sample unit belangs to 

the i-th category. Hence. 6 assumes values on the ( m  - 1)-dimensional simplex 

Let us represent by {el  : I = 1.. . . . in) the set of vectors of the canonical 

basis of IR" and define the random vectors W1 I W2, .  . . . W, in such a way 

that WI: = cr; indicates that the b-th sample unit belongs to the i-th cate- 

gory. Hence. the vectors Wk are (conditionally) independent (given 6) and 
identically distributed as a Bernoulli multivariate probability ditribution with 
paramenter 6. 

To obtain the medical" censoring process. we consider Jd distinct parti- 

tions, PI, F2,. . . . 'P,r,, of the set of categories. { I . .  . . . i . .  . . , ~ J Z ) ,  in such a way 

that  there is no common element between an!; two of such partitions. The re- 

port process is then defined from these partitions. Each sample unit is reported 

as being an element of one (and only one) of these partitions. Hence, the re- 

port process is a process that. for a unit b .  identifies a partition (the censoring 

type suffered by k) a.nd its element that corresponds to the result effectively 

obtained by k. In the example of Section I .  if the partition associated to the k- 
t h  unit is {(+, .), (-. . ) }  -= {{(+. +), (+, -)), {(-? +),(-.-)I), then this unit 

was not reported in the seven minutes session. Identifying the element of this 

partition corresponds to identifying the effective result obtained for the five 

minutes session. Note that the report process is necessarily coherent with the 

vector Wk. For instance, in the example, the result (+, -) could never produce 

a report (., +). No attention is devoted here to the missclassification problem 

but only to the problem of missing data. However. it would not be difficult t o  

adjust the present case to a more general and larger model that  would cover 

the problem of missclassification. Also. the restriction on censoring defined by 

partitions can be relased but would bring some difficulties to our development 

of the solution. The derivation presented I~elow pinpoints the main idea of 

the general argument which can be used for an arbitrary reporting pattern as 

shown by Paulino (1988). Here we do not have to use explicitely generalized 

Dirichlet distributions. 

To build the report process. associate to each selected unit b the vector 

Rk taking d u e s  on {ci ; i = 1.. . . ..\I), the canonical Imis  of IRM. Hence. 
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{Rk = 6;) means t11a.t the kind of ceilsoriilg suffered I)y the k-th unit is defined 

by partition 'P;. For partition '%'i(';(i = 1 . . . . . .  \I) , C;l,Ci;.z ,.... C,,, denote 

its mi elements (each such element is a set of categories). If 73 is the partition 

representing the absence of censoring, then inl = m. If PM is the partition 

representing the absence of report (total censoring), then n w  = 1. In the sam- 

ple observation process. besides the censoring kind defined by Pi. an element 

Cij of Pi is also observed. Returning to the example, from the 39 children 

reported only in the seven minutes session. 27 reported positively and 12 neg- 

atively. The reported censoring for these children is defined by the partition 

{{(+. +), (-, +)}, {(+, -), (-.-))) and the reported observations (., +) and 
(., -) correspond to the two subsets that form the partition. 

The vector of observations is denoted by N = (Ni , .  . . , Ni,. . . , NM) 
where, in a lexicografic ordering, Ni = ( n i l , .  . . , TZ;,~) for every i = 1 , 2 , .  . . , M. 
In situations where there esists units with complete censoring, the correspond- 

ing vector. Nbl, of these units has only one element denoted by t z ~ .  On the 

other hand. in situations where there esist units with absence of censoring, the 

corresponding vector. N1, of such units has TIZ elements. 

Given that Wk = ej, to say that Rk = L;, is equivalent to saying that 

the k-th unit is classified in the only element of Pi that contains category 

j .  To define the probabilistic model we consider that ((Wk, Rk)}llkln is a 

sequence of independent and identically distributed vectors. Also, for every 

j = I*. .  . , m, the conditional distribution of Rk given Wk = e j  is multivariate 

Bernoulli with parameter 

X j  = (Xlj,. . . ? X M ~ )  , where, for i = 1,. . . , A4 , 

X i j  = h { R k  = E;  I Wk = e j )  . 

Using the parametrization 

for the joint probabilities of (Wk.Rk), the likelihood can he written as 
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where p represents the vector whose elements are the paramenters pij, i.e.. 

p = (p1,p2,.  . . , p,) where, for j = 1,. . . .m,  p j  = (pl j , .  . . , p . ~ ~ ) .  

Now we specify the prior clistribution in terms of the vector p of the 

Mm joint probabilities of (Rkr Wk).  For this. we adopt the Dirichlet distri- 

bution with parameter a = ( a l . a l . .  . . . a m ) .  where. for j = 1.. . . . nz. a j  = 

(aj,, . . . , a:+[,). This statement is clenotetl by pla - D,tlm(a). where the scalar 

Mm in this espression indicates the dimension of a. In order to avoid technical 

problems. here we consider that (for all possible i and j) the aij's are positive 

real numbers, although in Section 3 we consider a case where some of the aij's 

are zero. 

Using the strong properties of the Dirichlet distribution we can write a 

convenient description of the prior in terms of the original parameters 0 and 

Ajl  j = 1,. . . , m. That isl to say that pla - D,tlm(a) is equivalent to saying 

where a, = a*, + n2, + . . . a ~ j  and the last expression denotes the fact that, 

for each fixed a, the vectors 8, A l l . .  . ,A, are mutually independent. In the 

remaining part of the paper, will be used for independence. Note that. with 

this distribution. the variances of 0 are necessarily smaller than the ones of A. 
which is not unrealistic. 

Expression (2.1) shows that the likelihood depends on p only through the 

vector 

P(PI, p2, .. . , TM) = ( P ( P I ) ~  p(P2)!... 7 P ( ~ M ) )  i (2.3) 
where 

corresponding to a linear tranformation of p. Again from properties of the 
Dirichlet distribution. we conclude that vector p(P1. T$,  . . . . 'Phi) is distributed 

as Dirichlet, both a priori and a posteriori. The prior and posterior parameters 

are, respectively? ( a ( R ) , a ( P 2 ) , .  . . , a ( P , ~ r ) )  and ( A ( R ) , A ( P z ) : .  . . , A ( ~ M ) ) ,  
where to obtain a ( P i ) ,  it is enough to replace ui, for pij in the right side of 

equation (2.4) and A ( F , )  = a ( P i )  + Ni. for elrery i = 1.. . . . M. 
The sample obser\ations are fully used to update the parametric func- 

tion p(P1, 73,.  . . .'P,\f), i.e.. there is no further information in the sample to 
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calibrate the parametric colnplement which. together with ,u(Pl. P2,. . . . P,.I), 

form a parametrization equivalent to p. This fact is shown by the posterior 

distribuition of p, which is a member of the family of generalized Dirichlet 

distributions (Dickey. 19S3). This distributions can be viewed as a mixture 

of Dirichlet distributions obtained by considering all possible hypothetical fre- 

quencies of the missing portions of the data. the mising distribution being the 

distribution of that set of frequencies given N. We notice in addition that the 

posterior moments in this case are not difficult to obtain (Paulino 1988). 

It is possible to define a parametrization that produces a very nice form 

of the posterior (independent Dirichlet distributions) having the particularity 

of identifying the parameters that are updated and the ones that are not. 

However, we would need a heavier notation to define it. To avoid this we 

restrict ourselves to the esample. In the nest section, the Bayesian analysis of 

the example is described in detail. which allows 11s to foresee the way of defining 

that parametrization and computing the posterior moments of interest in more 

general cases. 

3. USING AN EXAMPLE TO DEVELOP THE BAYESIAN 
SOLUTION 

In this section we use the esample described in Section 1 to develop the 

Bayesian solution outlined in Section 2. In this esanlple we have 

where 

Let's us also consider 

that represent the marginal probabilities or reporting in Pl .  7'2 and P3,  respec- 

tively. 
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Now let us define a new parametrization that brings a great deal of sim- 

plification to the a.nalysis: 

The meaning of these parameters is apparent. For instance. (n4) is 
the vector of conditional probabilities of each category given classification into 

PI (P , ) ;  112 (113) is the vector of conditional   rob abilities of each element of 

P2 (P3)  given classification into P2 ((p); nzl (n3 i )  is the conditional probability 

of the first category given classification in the first element of Pz (P3 ) .  Recall 

that 
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Note that the pasameter 

is an one-to-one transformation of the original parameter p and is a 16- 

dimensional vector composed by the independent vectors M, I l l ,  II2, 113, 114 
and A. Writing the likelihood in terms of this new parameter yields the fol- 

lowing expression: 

Note that 112+ = I - 112- and IT3+ = 1 - IT3- and the observed frequency 

vector is N = (Nl,Na, N3,124) = ( ~ I I , ~ I z ,  n13,n14, n2+, nz-, n3+, n3-, n4) = 
(12,4,5,2,50,31,27,12,24). Clearly the lidelihood depends neither on r nor 

on &. Another interesting aspect of this representation is the fact that the 

likehood can be factored out as a product of four functions. The first depends 

only on Ill, the second only on 112, the third only on 113, and finally, the fourth 

only on M. 

.According to Section 2, we have a priori pla - D16(a) where a is a vector 

which elements, represented by a,,, i. j = 1.. . . .4, are positive real numbers 

(there are cases where. in a more general singular representation. some of 
these elements can be taken as null). .As a result. taking uz+ = a21 + azz, 

a2- = a23 + 024, u3+ = (131 + a33 and a3- = u3, + (134, the distributions of the 
new parameters are as follows: 
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M U I I ~  u ~ ~ u D [ ~ u H ~ u T ~ ~ u ~ ~ ~ u ~ ~ ~ u ~ ~ ~ ~ ~ .  (3.12) 

These distributions are obtained by using the mentioned properties of the 

Dirichlet distribution. 

As the likelihood is adequately factorized, the independence structure 

indicated above is invariant under Bayesian operations. On the other hand, 

given the noninformativeness of the likelihood about 114 and X ,  the distribu- 

tions of these paramenters are also immutable und'er such operations. The full 

posterior description is as follows: 

Recall that nl. = rill + n12 + nl3 + nl4 = 23, 722 .  = n2+ + n2- = 81, 
n3. = n3+ + n3- = 39 and 7x4. = n4 = 24. 

The above parametrization clearly illustrates the parametric part that 

is updated by the sample and the one that is not. Furthermore, it sugests 

more general solutions than those generated by Dirichlet priors. For example, 

with respect to (3.12), the parameters of the prior distributions of Il2, 113 
and M do not have necessarily to reflect the linear relations required by the 
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Dirichlet adopted for p. The use of (3.12) with such parameters replaced by 

other adequate positive real numbers implies that the distribution of p will no 

longer be Dirichlet but a mixture of Dirichlet distributions. Thus, in the place 

of a21 +a22, a23 +a249  a31 +a33,  a32 +a34, al . ,  UZ. ,  a3, and a(., we could have any 
other positive real numbers without destroying the prior-to-posterior structure 

[the passage of (3.12) to (3.13)]. This shows the general aspect of the solution 

presented here. In many practical examples, the vector M is considered to 

have a degenerate distribution (as in case of deterministic report process that 

include the complete data standard situation), which can be handled within 

the setting described. 

The parameters of interest are defined b?; 61, = p . j  = / L l j  + / l z j  + p 3 j  +p4j ,  

j = I t .  . . .4. which in terms of the new parmnetrization are written as follows: 

Since each element of the sums of the right-hand side of the equalities (3.14) 

is a product of independent random variables, the posterior mean of 6 is easily 
obtained. We only derive the posterior mean of and by analogy, we present 

the respective means of 02!  O3 and 9., . 
(111 + ~ I I  n ~ .  + nl. az. + nz. 

E{BIIa, N) = ( ) (-) + 
(('?+ + n2+)  (-) 

al .  f 1 2 1 .  a,. + 12.. nz.  + 122. a.. + 72..  

An interesting interpretation of this result is the following: the term inside 

brackets is obtained by adding to the prior parameter the observed frequency 

of the first category plus a franctioa of each of the frequencies pertaining to 

the sets of confounded categories that include the first one; the fractions are 

defined by the expected values of nzl,  ~ 3 1  and n41, the category conditional 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 D
e 

S
ao

 P
au

lo
] A

t: 
02

:1
7 

27
 J

an
ua

ry
 2

00
8 2702 PAULINO AND PEREIRA 

probabilities given the reports. Equivalently, the posterior mean is a weighted 

mean of the prior mean and the sum of the sampling proportions allocated to 

the respective category; each term of this sum defines the conditional mean of 

the corresponding unobserved frequencies given the data. 

If for the posterior parameters, distinct from the corresponding prior ones, 

we write A for a. the following expressions follow: 

A thorough Bayesian study would allow for the influence of the data on a 

range of distributions expressing various expert opinions. To illustrate.aspects 
of such study, we will consider 3 prior distributions. The first is a uniform 

distribution for p,  which corresponds to take u;j = 1 for all Z. j = 1,2,3,4. 

This is equivalent to consider 

6la - D4(4; 4; 4; 4) ; 
a - D l ;  1; 1 ; for all j = 1; 2; 3; 4 and (3.16) 
eux1 L I A ~ L I A ~ L I A ~ I ~  

The second prior distribution is intended to stand for the opinion of a concep- 

tual expert familiar with medical studies of this kind. It is defined in terms of 

(2.2) as 

I 81a - D4(10: 5; 5; 10) ; 
Alla - D4(1;3;2;4) 
A21a - D4(l;  0.5; 2; 1.5) (3.17) 
A3Ja - D4(1.5; 2; 0.5; 1) 
A41a-D4(4;2;3;1) ; and 
~ L I A I  u h U k i U & l a  

which corresponds to consider for p a Dirichlet with parameter 

(1,3,2,4,1,0.5,2,1.5,1.5,2,0.5,1,4,2,3,1).  The third distribution considered 

here consists of a uniform distribution for 8 and a distribution for A,, that 
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BAYESIAN ANALYSIS OF CATEGORICAL DATA 

TABLE I1 
Posterior means and (posterior standard deviations) 

Prior 

.331(.100) 

.246(.093) 
03 .240(.080) 

.006(.126) 

is, for all j ,  degenerate at point (1,0,0, 0) (this is equivalent to an analysis 

conditioned on the fully categorized subsample): ie., 

- D4(1; 1; 1; 1) ; 
Aj(a N D4(l; 0; 0; 0) ; for a11 j = 1; 2; 3; 4 (3.18) 

Table I1 displays the mean and the stantla.rd deviation of elements of 8 
and the parametric function 6 = 82 - h13. To compute the standard deviations 

we have used the expression 

v{eila, N) = EV {{Bila, N ,  M)la ,  N)) + VE {{0i(a, N ,  M) la, N) . (3.19) 

The results in Table 2 shows that posterior means and standard deviations are 

sensitive to choice of the prior. 

Although tedious these calculations are mere algebraic exercises. Note 

that the elements of the sum that defines Bi are conditionally independent 

given M, which simplifies significantly the calculations. The interest on 6 
here is purely illustrative. Nevertheless, we could imagine that 6 is a variable 

indicating the influence of the exercise time on the presence of bronchial spasm. 

The magnitude of the values of E(d(a, N) and V(G(a, N) for any of the 

priors used suggest the equality of B2 and d3, even without further consider- 

ations about the esact or approximate distribution of 6. We must refer to 

the fact that this analysis yields absolute values for the posterior means and 
standard deviations different than the ones obtained from the solution based 

on a non-informative report mechanism of Dickey et al. (1987). 
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4. FINAL REMARKS 

The example used in this paper reveals a simple widely applicable report 

pattern. Following the same arguments, solutions for more complex patterns 

can be obtained as described by Paulino (1988). 

The Bayesian solution developed here leant on the prior distribution (2.2), 

a Dirichlet for p,  producing a posteriori a generalized Dirichlet distribution 

(Dickey, 1983, Dickey et al.. 1987 and Paulino. 1988). This distribution has a 

simple representation described by (:3.13). This representation enlightens the 

independence structure implied by the Bayesian model adopted. 

The linear relations among the prior parameters in expression (2.2) can 

be avoided in such a way that the distribution of p is generalized Dirichlet. 

Using results of Dickey (1983) and Paulino (19SS), it is not difficult to verify 

that the posterior is also generalized Dirichlet. The computation of the poste- 

rior moments, though made more difficult. is possible by means of numerical 

methods. 

Another main restriction of the prior used is its independence structure. 

Paulino (1988) analyses special cases of dependence and obtains solutions that 

are analytically difficult to be handled, as expected. The computation of the 

posterior moments of 8. for large samples, can eventually be simplified by using 

approximate methods as the ones suggested by Kadane (1985) and Dickey et 

al. (1987). However, in some cases, the option for the posterior mode as Bayes 

estimator greatly simplifies the analyses due to the applicability of the EM 
algorithm (Paulino, 1988). 
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