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Abstract

Using the capture/recapture urn model described in Leit &
Pereira (1987) several interesting properties of Stirling num-
bers of second kind are easily obtained. We follow the same
lines of Yamato (1990) that described an urn model for the
Stirling numbers of first kind
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1. Introduction

The present article is the natural sequel of Yamato (1990)
that describes an urn scheme to obtain properties of the Stirling
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numbers of first kind. Here we concentrate on the Stirling num-
bers of second kind that is related with the capture/recapture
urn model described by Leite & Pereira (1987). The connection
of Stirling numbers with statistical models are described and
studied by Charalambides & Singh (1988). The use of prob-
abilistic urn models to obtain algebraic numbers is not new.
For instance, an elementary case is the combinatorial number
presented in Chapter 10 of Blackwell (1969).

Stirling numbers of second kind are the numbers S(n;k)
such that, forn =0,1,...,

(1.1) = 2,,: 5:(”; k)-(t)x,
P :

where (t), = t(t—1)...(t—k+1)for k > 0 and (t)o = 1. It is not
difficult to prove that, using the definition, $(0;0) = S(1;1) =1
and, for n > 0, 5(n; O) 0. By convention, we take S(n; k) =0
for all £ > n.

Section 2 describes the urn scheme considered, its proba-
bility distribution and its connection with the numbers S(n; k).
Using probability properties of this urn model, various results
of Stirling numbers are obtained in Section 3. Section 4 intro-
duces an interesting expression for the Stirling numbers. Most
of the properties are well known and may be found in the liter-
ature. See for instance Comtet (1974) and Knuth (1973). All
the quantities used in this paper are non-negative integers.

-2. The Urn Scheme

Consider an urn with N white balls. A ball is randomly
selected from the urn and it is replaced by a black ball. A
second random selection from this new urn (1 black and N —1
white balls) is performed and if the ball selected is black it
returns to the urn but if it is white, a black one would replace it.
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This procedure is repeated sequentially until the n-th selection
(n < N). That is, n independent selections are performed and
in any of the selections whenever a white ball is selected a black
ball would replace it and whenever a black ball is selected it is
returned back to the urn.

For the i-th selection (i = 1,2,...,n) we define the random
quantity U; that takes value 0 if the ball selected is black and
1 if it is white. Hence, the total number of black (white) balls
in the urn after k(k < n) selections can be represented by Ti =
Uy + ... + Uy(N — Ti). The probability distribution for the
process is given by Leite & Pereira 1987.

P(U] —= 1) = l,P(Ul B 11U2=u2)= (N -].Vl)uz and for n > 2,
(21) P(U1=1,U2=u2,...,Un=u,,)

_ (N)t-n—-l tk

- N~ IcI.-:I2 I—Uk.;..] '

wheret, =1 4 us+...+urand t = t¢,.
The following result shows the relationship between this
probability model and Stirling numbers of the second kind.

Lemma 2.1
The probability function of the random variable T), is

(22) P, =) = X5 (n),

for i, By vee IV God £ 12, . B
Proof. Note that P(T,=t)=)_P(Ur=1,Ua =uy,...,Un =

u,), where the sum is over the set & = {(uj,ua,.-- yUn ) U =
l;up =0or1and ¢t = u; + ... + u,}. Using now (2.1) we can
write -~

P(T,=1)= P(Uy=1) = 1, P(Ty = t) = L —a ;{”ﬁ

and for n > 2,
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(23) P(T,=t) (N)‘Z"ﬁ(l__um) L) )‘p(n,t)

or equivalently N*P(T, = t) = (N):p(n, t). Taking t]ie sum
over the possible values of ¢ in both sides of this expression we
have

N" }fj P(T,=t)=N"= Z p(n, )(N)e.

t=1" t=1

This last expression shows that by definition p(n,t) is the Stir-
ling number of the second kmd S(n;t). Using it in (2.3) we
obtain (2.2). ’ "

Corollary 2.2

i) S(n;1) =1 forn > 1;
ii) S(n;n) =1forn 2 0;
iii) S(n;2)=2""1—-1forn=>2;
iv) S(nsn—1) = ( ) for n > 2.
Proof. For all items we consider that n < N. However since N

is an arbitrary integer, this is not a restriction.

) P(T, = 1) = P(Uy = 1,U =0,..., U, = 0) = (1/N)*.

Hence, S(n;1) = P(T, = 1)-(—5,-5—- == 1.
1

ii) S(0;0) = 1 by definition. From (2.2) we can write

P(T,.::n) =P(U1 -"-l UQ"-—"I,...,U"—‘:I)

_ (M _ ()
Nn

—S(n;n).
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iii) Using now (2.2) and (2.3) we have

PT,=2) = (—]-15-23 (2"‘2+2"‘3+...+2+1)
(N)z - (V)2
(2n" -1) = {5 2).
iv) As above we have
P(T,=n-1) = (N)"“(1+2+3+ +(n—1))

. sl )

- R

_(N)na () _ (V)

= ( 9 ) N 22 _S(nyn —1).

We end this section with a simple and useful result that we
have not seen elsewhere.

Corollary 2.3
For n > 3 and t < n we have
1
3 t) = — % D ey A
(24) S(n’ ) (t_l)'2(23 1)

where, tk=1+u2+...+uk(k=2,3,...,n-—1) and the sum
is over the set {1,

Q = {(u1,u2,-- u,,)lul=l'uk=00r1andt=u1+...+u,,}.

Proof. The proof is straightforward since it is not difficult to
see that

P(T —t)._(N)z 11)'2(,t3 tn-1)
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3. Properties

In this section standard properties of the Stirling numbers
of the second kind are obtained. In all the properties presented
we are considering as initial conditions S(0;0) = 1,S5(n;0) =0
for n > 0, and S(0;t) =0 for t > 0.

Proposition 3.1.
Forn>0and 1 <t<n+1 we have

(3.1) S(n+1;t) = S(n;t — 1) + t5(n;t)
Proof. From probability properties
(3. 2) P(Toaa =1)-*
"P(T =t,Uppr —0)+P(T —t—l i = 1)
= P(Unt1 = 0|T, = t)P(Tn = 1)
+ P(Ups1 = IIT t—1D)P(T,=1-1)
( )P(T _t)+(1——N—)P(T g 1)

Using Lemma 2.1

S(n+1;t) = 1(\;;: (( 5) PTa=1)

+(1- %) PT. =t-1)

Using again Lemma 2.1, to write P as function of S, and after
simple algebraic simplifications we obtain the result.

The following result is a probabilistic result that is proved
simply by writing the event {Tn.41 = t + 1} as the following
union of disjoint events:

{Tn+l = t+1,Tn =t}U{Tn+1 = Tn=t+1,Tn_1 =t}U
U{Tn+1 =Tn=Tn-1 =t+1,Tn__2=t}U...
..U{Tn+1=Tn=Tn_1=...=n+l=t+1,n=t}

h
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Lemma 3.2

The probability function of the random variable T, is recur-
sively written as

N—t\ X (t+1\"*

5 Pl =141 = (Y= 5 (1) b=,
33) Pl=t+1)=("5-) X () PO=0
where 1 <t <n < N.

Using this probabilistic result we obtain the following inter-
esting property of the Stirling numbers:

Proposition 3.3
Forn > 0 and 0 < ¢ < n we have

(3.4) S(n+ Lt 4+1) = 3 (t 4+ 1)+ S(ks 1)
k=t

Proof. Using Lemma 2.1 we write S(n+ 1;1+ 1) as a function
of P(To4; =t + 1) and then using Lemma 3.2 we conclude the
result.

The following result is standard and presents S(n;t) as a
function of the S(n + 1;&)'s for & > 1.

Proposition 3.4.
For n > 0 and 0 <1 < n we have

(35)  S(m;t) =3 (1) (k)eS(n + 13k + 1)
k=t

Proof. Using expression (3.2) we obtain

k+1

AJ
i¥

(36) P(Tn+1 =k+ 1) e (

-

)P(Tn=k+1)

k -
+ (1 S N) P(T, = ¥),
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for t < k < n. From (2.2) we write S(n + 1;k+ 1) as a function

of P(Tay1 = k + 1) and them using (3.6) in the right side of
(3.5) we conclude the result.

To obtain the final results of this section, we consider the
random variable V that is the number of times that the first
ball selected appears in the n trials. The sample space of V is
then {1,2,...,n} and

P(T. —-t)—-nflP(T =tV =k).

k=1

Observe that the occurrence of the event {T. = t,V = k} is

equivalent to “the first ball is selected exactly k timesand t — 1

white balls are selected in the remaining n — k trials.” Since
there are N ( :: i ) ways of selecting the first ball k times

and, from (2.2), there are (N — 1);-1S(n — k;t — 1) ways of
selecting t — 1 white balls in the remaining n — k trials, we have
that

N("::i )S(n-»k;t—l)(N—-l)t_l
Nn

(’;“‘ )S’(n kit = 1)(N)s
=

P(T, =tV =k)

and consequently
n—t—1

3.7) P(To=t)= Y. P(T.=t,V =k)

k=1

-1
n—t—1 ( Z—-l )S(n-—k;t—— )(N):
= L
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n-—1
n—t ( E—1 )S(n-—-k—l;t—l)(N),

Nn

Proposition 3.5.
For 1 <t < n we have

n—t ’

(3.8) S(n;t):Z(n_‘:l)S(n-——k—l;t—-l).
k=0

Proof. Using (2.2) in (3.7) the result follows.

Corollary 3.6
For n > 0 and 0 <t < n we have

(3.9) S(n+1;t+1)= fj ( ;: ) S(k;t).

=t

Proof. The proof is straightforward if we use (3.8) properly.

4. An Useful Expression

This section presents an alternative expression for the Stir-
ling number. It may be used to simplify some calculations. Be-
fore we present the result we introduce an important probabilis-
tic result. Denote by Pi(n,N) the probability that exactly ¢

different balls are not observed in the n trials.

Lemma 4.1

For N—n <t < N —1 we have

4

n
k=0

- (n)N-—t _
(4.1) Pt(n,N)=——]-‘-,t—-—-Z(—l)"( Nk t)(N—t—-Ic)".

SR

l
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Proof. Consider the event “exactly ¢ (fixed) balls are not ob-
served during the selection process (N —n <t < N —1)". The
occurrence of this event implies that N — t distinct balls are
selected in the n trials. Hence, the number of possible cases for
this event is (N — t)*Po(n, N — t) since (N — t)* is the number
of ways we may select (with replacement) n balls among N —¢.
Recall that N —t < n. Also,

()

is the number of ways we can choose ¢ balls to be fixed. Hence
we can write

(N —t)*Py(n, N — t)

()
; s

(4.2) Pi(n,N) = ) A . ‘
To conclude the result we need to calculate Py(n, N —t). Con-
sider the selection of n balls from an urn containing IV —¢ balls.
Consider, for k = 1,2,..., N —t, the event A, that corresponds

to “the k-th ball is not selected at all in the n trials”. The prob-
ability that at least one of the N —¢ balls is not selected in the
process is given by

P (I:gAk) .—_"EP(T,.—_-t,V:k)

k=1

N-t
= Y (-1 T P(A, N A, N0 Au),
k=1 i

where ¥; is the sum over the set {(ky,k2,...,k) : 1 < ki < 1
ky < k; < N —t}. Since

—t—3)"

E;P(Ak,ﬂAk,n...ﬂAk;)—"- fﬁ ﬂ" (N"l:) /Y

o

10
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with some simplification we obtain

A ~1)*? ( ) N—t—k)"

(U k) = t)":‘_:,( ) ( >
N—t

Noting that 1 — P (U Ak) = Py(n, N — 1) and applying this

result in (4.2) we obtain the result.
Finally, an analytical expression for S(n;t) can be presented.
For computational purposes it may be very useful.

Proposition 4.2.
For n > 0 and 0 < ¢t < n we have

(4.3) S(n;t) = Z(D”( )"
rd
Proof. It is not difficult to rewrite (4.1) as

(4.4) mn=ﬂ=m4nm
(N)t t—- k"
thn Z( 1) > ( )

Applying (2.2) in (4.4) we obtain the final result.

We conclude this article by saying that the results presented
here for Stirlings numbers are not new. However the use of the
urn scheme simplifies the obtaintion of these results.
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