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summary 
This paper shows how a result of Zyskind (1%7) on characterization of best linear estimators for 
general linear models may be applied to generalize and unify the results of the theory of linear 
prediction in survey sampling. The robust linear predictor is characterized in a general situation. By 
using indicators of sample elements it is shown that the natural order of the population quantities 
may be maintained throughout the analysis. 

Key words: Balanced sample; Extended-balanced sample; Extended-overbalanced sample: Linear 
prediction; Overbalanced sample; Robustness; Superparameter; Superpopulation model; (-(xi-) 
optimality; 5-(xi-)model; <-(xi-)unbiasedness. 

1 Introduction 

A great deal of attention has been dedicated lately to the problem of robustness of linear 
predictions in survey sampling under the superpopulation approach. See, for example, 
Royall & Herson (1973a,b), Scott, Brewer & Ho (1978), Tallis (1978), and Rodrigues 
(1983). However, some of the properties studied in those papers are restricted to 
particular cases or are not completely explored. Tallis (1978) proves a necessary and 
sufficient condition for robustness of the expansion predictor. Royall & Herson (1973a) 
introduce a sufficient condition for robustness when the alternative is a polynomial model. 
Scott, Brewer & Ho (1978) extend Royall & Herson's results (1973a) by using a general 
variance function in the primary model and prove a sufficient condition for robustness. 

In the present paper it is shown how the works of Zyskind (1967) and Kruskal (1968) 
for the general theory of linear models may be applied to the theory of linear prediction in 
survey sampling. First it is noticed that by using indicator functions of the sample elements 
one does not need, as usual, to restrict oneself to a particular sample and re-order the 
vector of population quantities. Then, some known results are restated with the new 
notation and the sufficient condition given by Scott, Brewer & Ho (1978) is shown to be 
necessary even in the general case. 

Section 2 introduces some notation and emphasizes the point of view of the authors. 
Section 3 presents a small survey on linear predictors. Finally, § 4 is dedicated to the main 
contribution of this work. Some known examples are used to illustrate the notation and 
the results discussed. 

2 Preliminaries 

In this section we introduce the notation and review some of the concepts used in the 
sequel. 
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The finite population of identifiable units is represented by B={1,2,. . . ,N), where N, 
the population size, is known. Associated with each unit (or label) k of 9 ,  there is an 
unknown quantity yk. The populational vector of these unknown quantities is represented 
by y' = (y,, . . . ,y,). Here, y is a column vector and y' is its transpose. In addition to the 
quantity yk of the unit k, it is supposed that a vector X;  = (x,,, . . . ,xkM) of M well- 
defined known quantities is associated with k (k = 1,. . . ,N). That is, for every unit k of 
9,there are associated M +  1quantities, yk, xkl, . . . ,xkM, where all but yk are known. We 
represent by X the matrix of order ( N x  M )  whose row k (k = 1, . . . ,N )  is the row vector 
x;. 

In order to gain information about a linear function l'y, where 1' = (I,, . . . , I,) is known, 
the statistician selects a sample S (S c 9 )  of n units from 9 and obtains the data 
D ={(k; yk); k E S). To represent the elements of S we denote by ik (k = 1 , .  . . ,N )  the 
indicator function that indicates whether k belongs to S. That is, ik = 1if k E S and ik =0 
if k E 9-S. It is worth emphasizing that S is a subset of n (<N )  elements of 9 and D is 
the set of elements of S together with their associated quantities yk's. In addition we 
notice that the quantity of interest may be partitioned as l'y = l1ISy +]'(I- Is)y, where Is is 
a diagonal matrix of order N with its kth diagonal element being ik (k = 1,. . . ,N) and I 
is the identity matrix of order N. It is clear that after D has been observed, l1ISy is known 
and the part of l'y that remains unknown is 11(1- Is)y. 

We use in this paper the superpopulation approach to survey sampling; see, for 
example, Cassel, Sarndal & Wretman (1977). Under this perspective, y' is considered to 
be a realization of a random vector Y' = (Y,, . . . , YN) whose joint distribution depends on 
a 'superparameter' h which is unknown. Usually, the introduction of h in the context 
(note that the quantity of interest is I'y not A) is to pin-point the 'information' that is 
contained in all Yk7s. That is, when h is fixed, Y,, Y,, . . . ,YNare mutually independent. 
However, in this paper the meaning of h may be considered in more general terms; for 
example, when h is fixed the correlation among any two different components of Y is 
zero. 

After looking at y as a realization of a random vector, the objective of the study is to 
predict the value of ]'(I-Is)y, the unobserved factor of l'y, using all the auxiliary 
quantities that form the matrix X. For this, it is desirable to consider models that relate y 
to X. The relation among y and X is considered when some characteristics of the 
distribution of Y have been specified. In the next section the models studied are 
completely described. 

We end this section with some relevant remarks. 

Remark 1. The indicators ik (k = 1, . . . ,N) emphasize the role of the sample design in 
this kind of approach. Since D is a minimal sufficient statistic (Basu, 1969) we may define 
as sample design the joint distribution of i,, i2, . . . , iN With this notation, we do not have, 
as other authors do, to re-order the elements of Y in such a way that the elements of S 
have their correspondent y,'s in the first n positions of Y; see, for example Tallis (1978). 

Remark 2. Since the sample design is the same for every value of A, the vector 
(il, . . . , i,) is an ancillary statistic and by the conditionality principle (Basu, 1975) we 
consider the matrix Is as known at the inference time. 

Remark 3. The quantities yk that are associated with the units in 9 - S  are not 
observed and hence they are in a sense indistinguishable of their respective random 
quantities Yk. Consequently, we shall use lower case letters for both random variables and 
their realizations. 
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3 	 Linear predictors 

The general background model 'is described in this section. Some well-known results are 
stated in terms of our notation, where we use the indicators il, i2, . . . , iN and the matrices 
Is. 

The model that relates X to y is described by the following constraints. 

(i) Linear: 	y =XP+e, where e' = (el, e,, . . . ,e,) is a random vector and lY= 
(PI , .  . . ,PM) is an unknown vector of constants. 

(ii) First moment: E[e] =0, where E[e] is the mean vector of e and 0' = (0, . . . ,0 )  is 
the null vector of order N. 

(iii) Covariance structure: 	var [el =u2V, where var [el represents the covariance 
matrix of e, u2 is an unknown positive constant, and V is a diagonal matrix of 
order N whose kth (k = 1, . . . ,N )  diagonal element is a known nonnegative 
constant that depends on X; the kth row of X. This is equivalent to considering 
a nonnegative real-valued function f such that 

V =diag Lf(X1) . . . f (X,)]. 

Scott et al. (1978) describe some real-life situations where special cases of f 
intuitively appear. 

We notice now that, since any symmetric nonnegative-definite matrix may be 
diagonalized, there is no loss of generality in considering V as diagonal. In fact, when V is 
not diagonal, the diagonalization suggested here is to be done on the matrix IsVIs, the 
covariance matrix of the sample data. On the other hand, if an element of its diagonal is 
zero, say f(X,)=O, then y,, the corresponding element in y, is considered to be 
completely known a priori and so it could be put aside for the inference. In that way, 
again without loss of generality, V may be considered as a positive-definite diagonal 
matrix. 

We must point out that the superparameter A, described in § 2, corresponds here to the 
vector (PI, P2, . . . ,PM, u2) of M +  1unknown quantities. On the other hand, the data D is 
here represented by Isy. This permits us to define a linear function of the data as a linear 
combination of elements of Isy, say h1ISy, where h' = (h,, . . . ,h,). This function h1ISy is 
said to be a linear predictor if it is used to predict any unknown quantity that is a function 
of y. The reader must note that, although the components hi of h are considered for the 
whole population, the product h1IS actually depends only on the components which 
correspond to the sample units. Consequently, our concern must be addressed only to 
these sample units of h and the remaining may be taken arbitrarily. Still relevant is the 
fact that the rules to choose hrIS discussed in this paper have a strong sample dependence. 
For example, by using these rules, one may conclude that h, must take different values for 
the samples S and S' even when unit 1belongs to both samples. 

For simplicity, in the sequel the model described by constraints (i), (ii) and (iii) is called 
the (-model. In that way, when we say (-property we mean a property of this (-model. 

As described before, our statistical problem is to predict 11(1- Is)y using the data Isy. 
This is equivalent to predicting l'y since llIsy is completely known after the data have 
been observed. The reason for the choice of I'y, in the place of 11(1 -Is)y, as the objective 
of our inference is because we want to relate this work with previous ones. 

The concept of unbiasedness in prediction theory is as follows. 

Definition 1. A linear predictor h1ISy of l'y is said to be (-unbiased if Ec[h'Isy-l'y] =0, 
where Ec[.] is the expectation operator under the (-model. 
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We end this section with the following version of a well-known result in linear 
prediction (Royall, 1976). As usual, if A is a square matrix, A-  denotes its generalized 
inverse and A-' its ordinary inverse when A is nonsingular. The class of all linear 
(-unbiased predictors of l'y is denoted by %,. Finally we write 

THEOREM is1. Among all elements of a,, htISy has the property that E , ~ ~ ~ y - - l ' y ] ~  
minimized by choosing h according to 

where f i  =BIsy=By. 

This result may be proved by recalling that Isy = (IsX)p + Ise, by taking (IsV)- = IsV-', 
and by using the results of the general theory of linear models; see, for example, Rao 
(1971, p. 301). 

Note that the predictor h'Isy satisfying equation (1) relates itself to  the (-model only 
through the matrix X and the function f. Accordingly, we shall write T(X, f )  for the linear 
function hrISy that satisfies the conditions of Theorem 1;  that is, T(X, f )  is a linear 
(-unbiased predictor of minimum (-mean squared error. 

4 Robust linear prediction 

In this section general results of the theory of linear models are used to obtain a 
characterization of robustness in linear prediction. We start by restating the robustness 
problem. 

Let us denote by X* a matrix of order N x (M+ J) ,  where the first M columns are the 
columns of X and the last J columns are Z,, . . . ,Z, which form a matrix Z of order 
(Nx J).  As usual we write X* = [X, Z] to indicate this construction. Analogously we write 

to indicate that the first M components of p*  are those of 0 and the last J are the 
components of another column vector y. In order to state the robustness problem we 
consider an alternative (*-model which is defined as the (-model having X* (known) 
replacing X, P* (unknown) replacing p, and a function f *  (known) replacing f. It is clear: 
(a) that f*  is a function of M + J arguments, and note that it is evaluated in each row (Xz)' 
of X*;  (b) that V must be replaced by V*, a diagonal matrix whose kth (k = 1,. . . ,N)  
diagonal element is f*(Xz); and (c) that e must be replaced by e*, another column 
random vector of N elements. By recalling the '(-best' linear predictor T(X, f )  defined at 
the end of 5 3, and using the above notation, we introduce the following definition which 
describes the problem of robustness in our context. 

Definition 2. The (-best predictor T(X, f)  of Fy is said to be robust for the (*-model if 
it is (*-best; that is, T(X, f) = T(X*, f*). 

It is clear that if T(X, f )  satisfies Definition 2, then besides being (-unbiased it is 
4"-unbiased. The following result introduces a necessary and sufficient condition to have 
both kinds of unbiasedness for T(X, f).  

THEOREM2. The linear predictor T(X, f )  is (*-unbiased if and only if the following 
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equation holds: 

11(1-IS)xBZ= l'(I- IS)Z. 

Proof. By the definition of T(X, f )  we have 


T(X, f )  -l'y =11(1- IS)xb-l t ( I- Is)y, 


where 6 is defined in Theorem 1. That is, 

T(X, f )  -l'y = l t ( I- Is)[XB -I b .  

Since T(X, f )  is (-unbiased, 

l'(1- Is)[XB-I-=O. 

It is clear now that T(X, f )  is (*-unbiased if and only if 

l t ( I-Is)[XB - I-* =0. 

The proof is completed by using X* = [X, Z] in this last equation. 

The following example shows how condition (2) may be considered as a generalization 
of the concept of balanced sample. 

Example 1. With the above notation, consider X as being IN, the column vector of N 
elements equal to unity. Suppose that V =I and that Z is a column vector of order N 
whose elements are x,, . . . ,x,; that is, 

If condition (2) holds, then 

If I = IN, then we finally have 

which is the balanced-sample (of first-order) property; see Royal1 & Herson (1973a). 

The following Lemma is Theorem 3 of Zyskind (1967) for which Kruskal (1968) states 
an equivalent version. It is strongly used to prove the next theorem. 

LEMMA.A linear function w'y is a best linear unbiased estimator of its expectation if and 
only if Vw belongs to the space generated by the columns of X. 

The result below is the main contribution of this paper. It introduces a necessary and 
sufficient condition for linear robustness. 

THEOREM3. The (-best linear predictor of I'y, T(X, f), is robust for the (*-model, that is 
T(X, f )  = T(X*, f*), if and only if T is (*-unbiased and there exists a vector C'= 
(c0, c l , .  . . ,Ch4+j-l) of scalars such that 



298 C.A. DE BRAGANCAPEREIRAand J. RODRIGUES 

Proof. Note first that to say that T(X, f )  is a (*-best predictor of I'y is equivalent to 
saying that T(X, f)-l1ISy is a best linear unbiased estimator for its expectation under the 
(*-model. By the above Lemma this holds if and only if ISV*IsB1X'(I- Is)I belongs to 
the subspace generated by the columns of IsX*. By the definition of B, IsB'simplifies to 
B' and then ISV*IsBf = ISV*B1 which completes the necessity part of the proof. To obtain 
the sufficiency we use Theorem 2 to conclude that T(X, f )  is (*-unbiased and again the 
above Lemma to guarantee that T(X, f)-ltISy is a best linear unbiased estimator of its 
expectation under the (*-model. 

In order to illustrate the above results we present the following examples. 

Example 2 (Tallis, 1978). Here, the elements of the models are 

Note that B = (l/n)lhIs and if equation (2) holds then 

for every j = 1, . . . ,J. This system of equations is the balanced-sample property (Royal1 & 
Herson, 1973a). It follows then that 

which is known as the expansion predictor, is the (-best predictor of T =1yk, where the 
sum is over k = 1 , .  . . ,N, and with a balanced sample it becomes [*-unbiased. By 
applying Theorem 3, it follows that Nn-l 1 ikyk, where the sum is over k = 1, . . . ,N, is the 
(*-best predictor of T if and only if the sample is balanced and 

for a vector (c,, c,, . . . ,c,) and for every k such that ik = 1 (sample element). 

Example 3 (Rodrigues, 1983). Suppose that the elements of the model are now 

X =1= l,, V =diag Cf(x,) . . .f(x,)), Z = 

This implies that 

and if equation (2) holds we have, in the place of the balanced sample, that 

ikx; 1(1- ik)xi 
(j=O, 1,.. . ,J ) ,( = N-n 

where the sums are over k = 1,. . . ,N. This is named, here, the extended-balanced-sample 
property since when f(x) = 1it reduces to the balanced-sample case. By Theorem 2, this 
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extended-balanced-sample property is necessary and sufficient to make the (-best 
predictor 

a (*-unbiased predictor. By Theorem 3 it becomes (*-best for predicting T if and only if 
the sample is extended balanced and 

for a vector (c,, cl, . . . ,cJ) and for every k such that ik = 1. 

Example 4 (Scott, Brewer & Ho, 1978). In Example 3 consider the first column of Z as 
1, and 

in the place of 1,. 
Now we have 

and if equation (2) holds, then 

for j =0,1 ,  . . . ,J. This system of equations defines a generalization of the overbalanced- 
sample property If(x) =x2] of Scott, Brewer & Ho (1978). Here this general property is 
named extended overbalanced. Note that if f is the identity function, then this property 
reduces to the balanced-sample case. With the extended-overbalanced property, the linear 
predictor 

besides being (-unbiased is (*-unbiased in predicting T. By Theorem 1, it is (-best for T 
and, by applying Theorem 3, it becomes (*-best if and only if the sample is extended 
overbalanced and 

for a vector (c,, c,, . . . ,c,) and for every k such that ik = 1. 
As a final remark we would like to emphasize that the existence of C = (c,, c,, . . . ,cJ) 

that appears in the above examples is needed for the sample only, not for the whole 
population. We did not use a notation showing this because, as we have suggested in § 1, 
the sample may be considered as fixed at the time of the inference. On the other hand, the 
properties of balanced sample, overbalanced sample, extended-balanced sample and 
extended-overbalanced sample introduce a way of qualifying a sample and suggest that 
intentional sampling may be the procedure to be followed when auxiliary information (here 
the matrices X and X*) has been used. 
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