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Summary

This paper shows how a result of Zyskind (1967) on characterization of best linear estimators for
general linear models may be applied to generalize and unify the results of the theory of linear
prediction in survey sampling. The robust linear predictor is characterized in a general situation. By
using indicators of sample elements it is shown that the natural order of the population quantities
may be maintained throughout the analysis.
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optimality; £-(xi-)model; £-(xi-)unbiasedness.

1 Introduction

A great deal of attention has been dedicated lately to the problem of robustness of linear
predictions in survey sampling under the superpopulation approach. See, for example,
Royall & Herson (1973a,b), Scott, Brewer & Ho (1978), Tallis (1978), and Rodrigues
(1983). However, some of the properties studied in those papers are restricted to
particular cases or are not completely explored. Tallis (1978) proves a necessary and
sufficient condition for robustness of the expansion predictor. Royall & Herson (1973a)
introduce a sufficient condition for robustness when the alternative is a polynomial model.
Scott, Brewer & Ho (1978) extend Royall & Herson’s results (1973a) by using a general
variance function in the primary model and prove a sufficient condition for robustness.

In the present paper it is shown how the works of Zyskind (1967) and Kruskal (1968)
for the general theory of linear models may be applied to the theory of linear prediction in
survey sampling. First it is noticed that by using indicator functions of the sample elements
one does not need, as usual, to restrict oneself to a particular sample and re-order the
vector of population quantities. Then, some known results are restated with the new
notation and the sufficient condition given by Scott, Brewer & Ho (1978) is shown to be
necessary even in the general case.

Section 2 introduces some notation and emphasizes the point of view of the authors.
Section 3 presents a small survey on linear predictors. Finally, § 4 is dedicated to the main
contribution of this work. Some known examples are used to illustrate the notation and
the results discussed.

2 Preliminaries

In this section we introduce the notation and review some of the concepts used in the
sequel.
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The finite population of identifiable units is represented by # ={1,2, ..., N}, where N,
the population size, is known. Associated with each unit (or label) k of P, there is an
unknown quantity y,. The populational vector of these unknown quantities is represented
by ¥ =(y1,...,¥n). Here, y is a column vector and y' is its transpose. In addition to the
quantity y, of the unit k, it is supposed that a vector Xj = (X1, ..., %) of M well-
defined known quantities is associated with k (k =1, ..., N). That is, for every unit k of
P, there are associated M + 1 quantities, yi, X1, - - . , Xkar, Where all but y, are known. We
represent by X the matrix of order (N X M) whose row k (k=1,..., N) is the row vector
X.

In order to gain information about a linear function 'y, where I'=(l;, . . ., ly) is known,
the statistician selects a sample S (S<®) of n units from % and obtains the data
D ={(k; y); k € S}. To represent the elements of S we denote by i, (k=1,...,N) the
indicator function that indicates whether k belongs to S. That is, i, =1 if ke S and i, =0
if ke P —S. It is worth emphasizing that S is a subset of n (<N) elements of ? and D is
the set of elements of S together with their associated quantities y,’s. In addition we
notice that the quantity of interest may be partitioned as 'y =VI;y+1'(I — L)y, where I is
a diagonal matrix of order N with its kth diagonal element being i (k=1,...,N) and I
is the identity matrix of order N. It is clear that after D has been observed, I'Igy is known
and the part of I'y that remains unknown is I'(I - Iy)y.

We use in this paper the superpopulation approach to survey sampling; see, for
example, Cassel, Sarndal & Wretman (1977). Under this perspective, y' is considered to
be a realization of a random vector Y’ = (Y3, ..., Yn) whose joint distribution depends on
a ‘superparameter’ A which is unknown. Usually, the introduction of A in the context
(note that the quantity of interest is I'y not A) is to pin-point the ‘information’ that is
contained in all Y, ’s. That is, when A is fixed, Y,, Y5, ..., Yy are mutually independent.
However, in this paper the meaning of A may be considered in more general terms; for
example, when A is fixed the correlation among any two different components of Y is
Zero.

After looking at y as a realization of a random vector, the objective of the study is to
predict the value of I'(I-I)y, the unobserved factor of l'y, using all the auxiliary
quantities that form the matrix X. For this, it is desirable to consider models that relate y
to X. The relation among y and X is considered when some characteristics of the
distribution of Y have been specified. In the next section the models studied are
completely described.

We end this section with some relevant remarks.

Remark 1. The indicators i, (k =1, ..., N) emphasize the role of the sample design in
this kind of approach. Since D is a minimal sufficient statistic (Basu, 1969) we may define
as sample design the joint distribution of iy, i, . . ., ix. With this notation, we do not have,
as other authors do, to re-order the elements of Y in such a way that the elements of S
have their correspondent y,’s in the first n positions of Y; see, for example Tallis (1978).

Remark 2. Since the sample design is the same for every value of A, the vector
(i1, ..., in) is an ancillary statistic and by the conditionality principle (Basu, 1975) we
consider the matrix I as known at the inference time.

Remark 3. The quantities y, that are associated with the units in #—S are not
observed and hence they are in a sense indistinguishable of their respective random
quantities Y). Consequently, we shall use lower case letters for both random variables and
their realizations.
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3 Linear predictors

The general background model is described in this section. Some well-known results are
stated in terms of our notation, where we use the indicators iy, iy, . . . , iy and the matrices
L.
The model that relates X to y is described by the following constraints.

(i) Linear: y=XB+e, where € =(ej, e,,...,ey) is a random vector and B'=
(Bi1, - - ., Bm) is an unknown vector of constants.

(ii) First moment: E[e]=0, where E[e] is the mean vector of € and 0'=(0,...,0) is
the null vector of order N.

(iii) Covariance structure: var [e]= o2V, where var[e] represents the covariance
matrix of e, o2 is an unknown positive constant, and V is a diagonal matrix of
order N whose kth(k=1,...,N) diagonal element is a known nonnegative
constant that depends on X, the kth row of X. This is equivalent to considering
a nonnegative real-valued function f such that

V=diag [f(Xy) . .. f(Xn)].

Scott et al. (1978) describe some real-life situations where special cases of f
intuitively appear.

We notice now that, since any symmetric nonnegative-definite matrix may be
diagonalized, there is no loss of generality in considering V as diagonal. In fact, when V is
not diagonal, the diagonalization suggested here is to be done on the matrix IgVIg, the
covariance matrix of the sample data. On the other hand, if an element of its diagonal is
zero, say f(X,)=0, then y,, the corresponding element in y, is considered to be
completely known a priori and so it could be put aside for the inference. In that way,
again without loss of generality, V may be considered as a positive-definite diagonal
matrix.

We must point out that the superparameter A, described in § 2, corresponds here to the
vector (B1, Ba, - . - , Bm, 0°) of M+ 1 unknown quantities. On the other hand, the data D is
here represented by Igy. This permits us to define a linear function of the data as a linear
combination of elements of Iyy, say h'Igy, where W = (h,, ..., hy). This function h'Igy is
said to be a linear predictor if it is used to predict any unknown quantity that is a function
of y. The reader must note that, although the components h; of h are considered for the
whole population, the product WIg actually depends only on the components which
correspond to the sample units. Consequently, our concern must be addressed only to
these sample units of h and the remaining may be taken arbitrarily. Still relevant is the
fact that the rules to choose h'Is discussed in this paper have a strong sample dependence.
For example, by using these rules, one may conclude that h, must take different values for
the samples S and S’ even when unit 1 belongs to both samples.

For simplicity, in the sequel the model described by constraints (i), (ii) and (iii) is called
the £&-model. In that way, when we say &€-property we mean a property of this £-model.

As described before, our statistical problem is to predict I'(I — I5)y using the data Igy.
This is equivalent to predicting 'y since I'Isy is completely known after the data have
been observed. The reason for the choice of Iy, in the place of I'(I — L)y, as the objective
of our inference is because we want to relate this work with previous ones.

The concept of unbiasedness in prediction theory is as follows.

Definition 1. A linear predictor h'Igy of I'y is said to be £-unbiased if E.[h'Isy—1'y]=0,
where E,[.] is the expectation operator under the £&-model.
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We end this section with the following version of a well-known result in linear
prediction (Royall, 1976). As usual, if A is a square matrix, A~ denotes its generalized
inverse and A™! its ordinary inverse when A is nonsingular. The class of all linear
&-unbiased predictors of 1'y is denoted by ;. Finally we write

B=[XLV'LX] XLV

THEOREM 1. Among all elements of U,, WIgy has the property that E.[WIgy—-1'y]* is
minimized by choosing h according to

b Iy =V Ly +1'(I- I)X5, (1)
where 3 =BIgy = By.

This result may be proved by recalling that Igy = (IgX)B + Ise, by taking (V)" =Ig V™',
and by using the results of the general theory of linear models; see, for example, Rao
(1971, p. 301).

Note that the predictor h'Lgy satisfying equation (1) relates itself to the £&-model only
through the matrix X and the function f. Accordingly, we shall write T(X, f) for the linear
function h'Igy that satisfies the conditions of Theorem 1; that is, T(X,f) is a linear
&-unbiased predictor of minimum £-mean squared error.

4 Robust linear prediction

In this section general results of the theory of linear models are used to obtain a
characterization of robustness in linear prediction. We start by restating the robustness
problem.

Let us denote by X* a matrix of order N X(M+J), where the first M columns are the
columns of X and the last J columns are Z,, ..., Z; which form a matrix Z of order
(N xJ). As usual we write X*=[X, Z] to indicate this construction. Analogously we write

o]

to indicate that the first M components of B* are those of B and the last J are the
components of another column vector y. In order to state the robustness problem we
consider an alternative £*-model which is defined as the &-model having X* (known)
replacing X, B* (unknown) replacing B, and a function f* (known) replacing f. It is clear:
(a) that f* is a function of M +J arguments, and note that it is evaluated in each row (X7%)’
of X*; (b) that V must be replaced by V*, a diagonal matrix whose kth(k=1,...,N)
diagonal element is f*(XF¥); and (c) that e must be replaced by e*, another column
random vector of N elements. By recalling the ‘¢-best’ linear predictor T(X, f) defined at
the end of § 3, and using the above notation, we introduce the following definition which
describes the problem of robustness in our context.

Definition 2. The &-best predictor T(X, f) of Iy is said to be robust for the £*-model if
it is £*-best; that is, T(X, f) = T(X*, f*).

It is clear that if T(X, f) satisfies Definition 2, then besides being &-unbiased it is
£*-unbiased. The following result introduces a necessary and sufficient condition to have
both kinds of unbiasedness for T(X, f).

THEOREM 2. The linear predictor T(X, f) is &*-unbiased if and only if the following
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equation holds:
1I'(I-L)XBZ=1(I-I5)Z. 2
Proof. By the definition of T(X, f) we have
TX, ) -1y=1I-I)XB-1(I- Ly,
where 8 is defined in Theorem 1. That is,
TX, f)-1y=V{I-I)[XB-Ily.
Since T(X, f) is £-unbiased,
I'I-L)XB-IX=0.
It is clear now that T(X, f) is £*-unbiased if and only if
1'(I - I)[XB-I]X*=0.
The proof is completed by using X* =[X, Z] in this last equation.
The following example shows how condition (2) may be considered as a generalization
of the concept of balanced sample.

Example 1. With the above notation, consider X as being 1y, the column vector of N
elements equal to unity. Suppose that V=1 and that Z is a column vector of order N
whose elements are x;, ..., Xy; that is,

X* =

If condition (2) holds, then

1 &
l,(I— IS)]-N[]-;\IIS 1N]—1;\]Isz = lI(I_ Is)1N<'r_l z lkxk) = lI(I_ Is)z
k=1
If 1=14, then we finally have

(N—-n) ¢ . - .
Z X = Z (1—i)x,
LR | k=1

which is the balanced-sample (of first-order) property; see Royall & Herson (1973a).

The following Lemma is Theorem 3 of Zyskind (1967) for which Kruskal (1968) states
an equivalent version. It is strongly used to prove the next theorem.

LEMMA. A linear function 'y is a best linear unbiased estimator of its expectation if and
only if Vw belongs to the space generated by the columns of X.

The result below is the main contribution of this paper. It introduces a necessary and
sufficient condition for linear robustness.

THEOREM 3. The &-best linear predictor of I'y, T(X, f), is robust for the £*-model, that is
T(X, f)=TX*, f*), if and only if T is &*-unbiased and there exists a vector C' =
(€o» €15 - - - » Craeg—1) Of scalars such that

LV¥BX(I-I) = X*C




298 C.A. pE Bracanca PereIRA and J. RODRIGUES

Proof. Note first that to say that T(X, f) is a ¢*-best predictor of 'y is equivalent to
saying that T(X, f)—1'Lgy is a best linear unbiased estimator for its expectation under the
£*-model. By the above Lemma this holds if and only if IgV*IB'X'(I— I5)I belongs to
the subspace generated by the columns of IgX*. By the definition of B, I;B’ simplifies to
B’ and then I V*IB' = Iy V*B’ which completes the necessity part of the proof. To obtain
the sufficiency we use Theorem 2 to conclude that T(X, f) is £€*-unbiased and again the
above Lemma to guarantee that T(X, f)—V'Igy is a best linear unbiased estimator of its
expectation under the ¢*-model.

In order to illustrate the above results we present the following examples.
Example 2 (Tallis, 1978). Here, the elements of the models are
x, x3 ... x]
1=1,, X=1,, V=1 Z=
Xn XN ... XN
Note that B=(1/n)14 I and if equation (2) holds then

N

liikx% LY (1-ix
ng= N—-n, =

for every j=1, ..., J. This system of equations is the balanced-sample property (Royall &
Herson, 1973a). It follows then that

NI
TX, f)=— Z U Yis
ng=1
which is known as the expansion predictor, is the &-best predictor of T =} y,, where the
sum is over k=1,..., N, and with a balanced sample it becomes &*-unbiased. By
applying Theorem 3, it follows that Nn~' Y i, y,, where the sum is over k =1, ..., N, is the

&*-best predictor of T if and only if the sample is balanced and
J
f*0a) = 2 ek
i=0

for a vector (co, ¢4, ..., ¢;) and for every k such that i, =1 (sample element).

Example 3 (Rodrigues, 1983). Suppose that the elements of the model are now

x, x2 ... xI
X :l = 1N, V= diag (f(xl) PN f(xN)), Z = :
Xn X% ... XX

This implies that

N . -1 o .
B:(Z ke ) ( U — )
=1 () f(x,) flxn)
and if equation (2) holds we have, in the place of the balanced sample, that
i )—1 i Xk =Z (1= )x} 0.1 7)
(Trg) 5= =010,

where the sums are over k =1, ..., N. This is named, here, the extended-balanced-sample
property since when f(x) =1 it reduces to the balanced-sample case. By Theorem 2, this
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extended-balanced-sample property is necessary and sufficient to make the &-best
predictor

N ~ & i VY B
TX, f)= kgl iy +(N n)(kg'l f(xk)) (kzl f(xk))

a &£*-unbiased predictor. By Theorem 3 it becomes £*-best for predicting T if and only if
the sample is extended balanced and

F*(x0) = fu) 2, eix

for a vector (co, ¢y, . .., ¢;) and for every k such that i, = 1.

Example 4 (Scott, Brewer & Ho, 1978). In Example 3 consider the first column of Z as
15 and

X1

in the place of 1.
Now we have

o[ 2 ] G i)

and if equation (2) holds, then

[ ] (255 ) (2 -] [ 0-wx]

for j=0,1,...,J. This system of equations defines a generalization of the overbalanced-
sample property [f(x) = x?] of Scott, Brewer & Ho (1978). Here this general property is
named extended overbalanced. Note that if f is the identity function, then this property
reduces to the balanced-sample case. With the extended-overbalanced property, the linear
predictor

i i ix2 1! i i- i X

T(X, f) = iy+[ ] [ (1—i)x][ ]

f k=1 Kk k=1 fx) k=1 kI k=1 f(x) Y

besides being £-unbiased is £é*-unbiased in predicting T. By Theorem 1, it is &-best for T

and, by applying Theorem 3, it becomes £*-best if and only if the sample is extended
overbalanced and

f*(xa) = f(x) Z C;XL_I

for a vector (cy, ¢;, . .., ¢;) and for every k such that i, =1.

As a final remark we would like to emphasize that the existence of C=(cy, ¢y,...,¢;)
that appears in the above examples is needed for the sample only, not for the whole
population. We did not use a notation showing this because, as we have suggested in § 1,
the sample may be considered as fixed at the time of the inference. On the other hand, the
properties of balanced sample, overbalanced sample, extended-balanced sample and
extended-overbalanced sample introduce a way of qualifying a sample and suggest that
intentional sampling may be the procedure to be followed when auxiliary information (here
the matrices X and X*) has been used.
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Résumé
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résultats de la théorie de la prédiction linéaire pour des populations finies. Le Prédicteur Linéaire Robuste est
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