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ABSTRACT
This article argues that researchers do not need to completely abandon the p-value, the best-known
significance index, but should instead stop using significance levels that do not depend on sample sizes.
A testing procedure is developed using a mixture of frequentist and Bayesian tools, with a significance
level that is a function of sample size, obtained from a generalized form of the Neyman–Pearson Lemma
that minimizes a linear combination of α, the probability of rejecting a true null hypothesis, and β , the
probability of failing to reject a false null, instead of fixing α and minimizing β . The resulting hypothesis
tests do not violate the Likelihood Principle and do not require any constraints on the dimensionalities of the
sample space and parameter space. The procedure includes an ordering of the entire sample space and uses
predictive probability (density) functions, allowing for testing of both simple and compound hypotheses.
Accessible examples are presented to highlight specific characteristics of the new tests.
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1. Introduction

It has become clear that the tests performed by comparing a p-
value to 0.05 are not adequate for science in the 21st Century.
Classical p-values have multiple problems that can make the
results of hypothesis tests difficult to understand, multiple kinds
of “p-hacking” can be used to try to get a p-value below the
“magic” number of 0.05, and as many researchers have discov-
ered, tests using standard p-values just aren’t useful when the
sample size gets large, because they end up rejecting any hypoth-
esis. Jeffreys’s tests using Bayes factors with fixed cutoffs also
tend to have problems with large samples. However, hypothesis
testing is a useful tool and is now a more-than-familiar way of
thinking about how to do experiments and a very broadly used
way of understanding and reporting experimental results. What
is a researcher to do?

The present article introduces one solution for researchers
who recognize that the hypothesis tests of the 20th Century are
inadequate, but don’t want to have to change the way they think
about experiments and the ways they interpret and report exper-
imental results. Section 2 delves into some of the problems that
arise with the most widely used hypothesis tests and why those
problems occur. Section 3 presents a new kind of hypothesis
test that avoids the problems described, but doesn’t “throw out
the baby with the bath water,” retaining the useful concept of
statistical significance and the same operational procedures as
currently used tests, whether frequentist (Neyman–Pearson p-
value tests) or Bayesian (Jeffreys’s Bayes-factor tests). Section 4
presents examples of the new tests being used, to highlight
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some of the advantages of the new tests and show researchers
operational details of how the new tests can be used. Final
considerations are given in Section 5. The article is written
for researchers who are interested in a more modern tool for
hypothesis testing, but who are not necessarily statisticians.
It therefore does not go into deep theoretical detail, focusing
instead on issues of more direct relevance to would-be users
of the new tests. However, references are provided for those
interested in the details of the theory behind the tests.

2. Context and Motivation: What’s Wrong With the
Tests People Have Been Using for so Many Years?

The subject of hypothesis testing and some of the problems
that arise has been the subject of vigorous debate for several
decades. Because frequentist tests using p-values are the most
widely used, the use of p-values has been the subject of the most
and harshest criticism. The journal Basic and Applied Social
Psychology even went so far as to prohibit the use of p-values in
articles—see Trafimow and Marks (2015). The controversy over
the use of p-values has been so great that the American Statistical
Association issued an official statement on p-values: Wasserstein
and Lazar (2016).

It is worth saying that hypothesis tests based on p-values
are not the only tools subject to valid criticism. Hypothesis
testing in general has been criticized, for example, in Cohen
(1994), Levine et al. (2008), and Tukey (1969), and some
of the alternative methods of hypothesis testing, such as the
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Bayes-factor hypothesis tests created by Jeffreys, have been the
subject of specific criticisms like those of Gelman and Rubin
(1995) and Weakliem (1999). Further, hypothesis tests are not
the only statistical tools that can be criticized. Every statistical
tool relies on a model of some kind, and ultimately seeks to do
something that can’t be done in an exact and perfect way: make
inferences based on limited quantities of data. Even when there
are many, many data available, the sample is always finite, and
so the inference must be imperfect. As a result, there are valid
criticisms of every statistical tool. Tests based on p-values get
special attention because of the fact that they are so widely used,
and their misuse has contributed greatly to the “reproducibility
crisis” in science and medicine.

The way p-values are used in statistical tests is based on the
work of Fisher and of Neyman and Pearson in the 1930s. Fisher
produced “significance tests” in which a “null hypothesis” about
a parameter in a statistical distribution is tested without any con-
sideration of what the alternative or alternatives are. Neyman
and Pearson created “hypothesis tests,” in which a null hypothe-
sis is tested against a specific alternative or alternatives. In both
cases, the null hypothesis is usually something like “there is no
effect.”1 When the null is rejected, the inference is that there is
some interesting effect to be reported. In both cases, the null is
rejected based on the comparison of a p-value to a “significance
level.” A p-value has multiple possible definitions. It is not always
defined as a probability (see, for example, Schervish (2012)),
but its calculation is always a probability calculation. Given an
experimental result x0, a p-value is calculated as the probability,
if the null hypothesis were true, of an observation x that supports
the null hypothesis as much or less than the actual experimental
result x0. When the p-value is sufficiently small, the researcher
decides that the actual observation x0 is sufficiently unlikely
under the null hypothesis that he or she can conclude that the
null is false.

How small is “sufficiently small”? This is where the concept
of “statistical significance” comes into the story. The p-value
is generally compared to some small number that ends up
being the probability of incorrectly rejecting a null hypothesis
that is true. In his original work on significance testing, Fisher
mentioned a one-in-twenty chance (5%, or 0.05) of rejecting a
correct null as a convenient cutoff for declaring a statistically
significant result, but did not intend for this number to be used
universally. He states in his 1956 article “Statistical Methods
and Scientific Inference” that the significance level should be
set according to the circumstances. In the seminal work on
statistical hypothesis testing, Neyman and Pearson (1933), an
attempt is made to explicitly control errors in finding the best
kind of test to choose between a null hypothesis and one or more
specific alternative hypotheses. Two kinds of possible errors are
considered: rejecting a true null hypothesis, called “errors of
the first kind” (here called“errors of type I” or “type-I errors”)
and accepting a false null hypothesis, an “error of the second
type” (here, “type-II error”). Neyman and Pearson write “The
use of these statistical tools in any given case, in determining
just how the balance should be struck, must be left to the
investigator,” where “the balance” refers to the balance between

1 Fisher’s tests do not require the null to be a “nil,” but tests are usually
performed that way, even in Fisher’s own work.

the probabilities of the two types of error. Ironically enough, the
very mathematical approach adopted by Neyman and Pearson
makes it close to impossible for a researcher to determine “just
how the balance should be struck.” Neyman and Pearson fix the
probability of a type-I error, which is denoted here and in many
statistics texts as α, and then prove that the test that minimizes
the probability of a type-II error, here and elsewhere denoted as
β ,2 is a test based on comparing the ratio of the likelihoods3 of
the competing hypotheses to some cutoff value, with the cutoff
chosen so that the probability of incorrectly rejecting a correct
null hypothesis is α. As shown in Pericchi and Pereira (2016),
adopting this approach can lead to imbalances so great that the
probabilities of the two types of error can vary by orders of
magnitude.

In addition to the imbalance between the error probabilities
of the two types described above, fixing α can lead to an even
more serious problem. Because p-values tend to decrease with
increasing sample size, the easiest and most common form of
“p-hacking” is to keep taking data until the p-value falls below
0.05 or whatever other level of significance is chosen and fixed.
No matter what level is chosen, a large-enough sample will
almost inevitably lead to rejection of any null hypothesis. In
the words of Berger and Delampady (1987), “In real life, the
null hypothesis will always be rejected if enough data are taken
because there will be inevitably uncontrolled sources of bias.”
According to Pericchi and Pereira (2016), more information
paradoxically ends up being “a bad thing” for Neyman–Pearson
hypothesis testing (and Fisherian signficance testing). Fixing a
lower value for declaring a statistically significant result, say,
0.005 instead of 0.05, as suggested recently by a group of 72
researchers, many of them quite prominent, and some of them
highly respected statisticians (Benjamin et al. (2018)), will only
postpone the problem to larger sample sizes. This is folly even
at the dawn of the era of “Big Data,” and not a good solution in
general. More data will still be “a bad thing” for tests with a cutoff
that is lower, but still fixed, in direct conflict with the common-
sense idea that a result based on a larger sample should be more
believable.

A definition of the p-value for a null hypothesis H and obser-
vation x0 commonly used in statistics textbooks is represented
in Pereira and Wechsler (1993) as follows4:

Definition 1 (PW2.2). The p-value is the probability, under H,
of the event composed by all sample points that are at least as
extreme as x0 is.

2 Some readers may be familiar with the power of a test, the probability of
correctly rejecting a false null hypothesis. The power of a test is given by
1 − β .

3 A likelihood function corresponding to a given probability (density) func-
tion is given by the same expression, but taken as a function of the parame-
ter θ for a fixed value of the observation x. In general, a probability (density)
function for any given value of the parameter θ , summed (integrated) over
the entire space of all possible observations, yields 1, while the corre-
sponding likelihood for a given observation x may not even be summable
(integrable) over the entire space of all possible parameter values, much
less yield the specific value 1.

4 The definition numbers 2.2 and 2.1 from Pereira and Wechsler (1993) are
maintained, even though they are presented in the opposite order in this
article.
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“[S]ample points” here refers to possible experimental obser-
vations. Note that this definition does not in any way take into
account the alternative hypothesis A. One problem with this
definition is that in some cases, a p-value defined this way can’t
even be calculated. For example, when the range of possible
observations (“sample space”) consists of separate intervals, or
when it is multidimensional, it can be unclear what “extreme”
means. Throughout this article, “p-value,” with a lower-case “p,”
is used to refer to a quantity calculated using Definition 1. A
contrasting definition of a quantity analogous to the small-p
p-value was presented in Pereira and Wechsler (1993) and is
reproduced in the next section, along with an explanation of its
advantages over traditional p-values.

Another problem with commonly used hypothesis tests is
that the results can be hard to interpret, and their correct inter-
pretation depends on the intent of the experimenter. An issue
that has been the subject of vigorous debate among statisticians
for decades is the Likelihood Principle (LP). While it still has
the status of a principle that one either accepts or does not5, and
there are greatly respected statisticians who do not accept the
LP, it is still true that LP-compliant tests have intuitive appeal
and can be easier to interpret. For example, Cornfield (1966),
Lindley and Phillips (1976), and Berger and Wolpert (1988)
show that while frequentist tests that are not LP-compliant
can give conflicting results for the same data, depending on
what “stopping rule” is chosen for an experiment, the results
of LP-compliant tests do not depend on the stopping rule and
permit a single, unique inference based on the data without
needing to know the intent of the experimenters. This brings
the added advantage of allowing the collected data to be used
while permitting researchers to stop an experiment early. Ethics
can demand an early end to an experiment, for example, in the
case of a medical study in which it becomes very clear that the
patients receiving a new treatment are recovering, while those
in the control group are not, or when patients receiving a new
treatment are suffering serious side effects. Non-LP-compliant
tests would require the researchers either to carry out the experi-
ments to their pre-planned end, possibly in conflict with medical
ethics, or to throw away all the collected data upon being forced
by ethical concerns to stop the experiments earlier than planned.

There are Bayesian alternatives to frequentist hypothesis
tests, the tests based on Bayes factors created by Jeffreys in
the 1930s (see Jeffreys (1935, 1939)) and reviewed 60 years
later in Kass and Raftery (1995). They are not as widely used
as frequentist tests, but they have gained some acceptance in
certain areas of research and are sometimes held up as a better
alternative. As noted earlier, no tool is perfect, and Bayes-factor

5 A proof of the equivalence of the LP to the combination of two much
less-controversial principles, the Conditionality Principle (CP) and Suffi-
ciency Principle (SP), appears in Birnbaum (1962), and a modified version
in Wechsler, Pereira, and Marques (2008), but the validity of this kind of
proof has been questioned by, for example, Evans (2013) and Mayo (2014).
Gandenberger (2015) presents a proof of the same equivalence designed
to resist the kinds of attacks brought against Birnbaum’s proof, but the
controversy continues to rage. It is worth noting that even if both proofs
were incorrect, that would not mean that the LP was not equivalent to the
combination of the CP and SP. Further, even if that equivalence were not
valid, that would not mean that the LP is not true. Even so, the LP is still not
considered proved, which is why it is still just a principle that one chooses
either to accept or not.

tests have also been criticized by both Bayesian and frequentist
statisticians. For the purposes of this article, it is worth noting
that Bayes factors, once calculated, are also compared to fixed
cutoffs in Jeffreys’s tests. The calculation of Bayes factors is
described in the next section. For now, it is enough to know
that the Bayes factor BFHA is a measure of the evidence favoring
H over A. Jeffreys proposed an initial table of evidence grades
against a null hypothesis H, with cutoffs at half-integer powers
of 10, and Kass and Raftery updated the table by reducing the
number of grades of evidence, noting that the Bayes factor
measuring evidence against a null hypothesis H in favor of
an alternative A, BFAH, is 1/BFHA, and compiling a table of
cutoff values of BFAH. No justification is given for the cutoffs,
other than Kass and Raftery stating “From our experience, these
categories seem to furnish appropriate guidelines.” Jeffreys’s
Bayes-factor tests do not take experimental error into account,
and the cutoffs, whether those proposed by Jeffreys or those
proposed by Kass and Raftery, do not take sample size into
account. As with frequentist hypothesis tests with fixed cutoffs,
inconvenient behavior with large samples is to be expected.
This manifests itself in multiple ways, including a tendency of
Bayes factors to favor null hypotheses strongly for large samples,
especially in cases of small effect sizes.

3. Solving Some of the Problems in Hypothesis
Testing

Most readers of this article already knew before starting to read
it that there are some problems with the kinds of hypothesis
testing done in many fields of research. In the previous section,
some of those problems have been described in a bit more
detail than a news article can usually dedicate to the subject.
So now what? What can a researcher do? In this section, one
solution is presented, and some of its advantages over currently
used hypothesis tests are described. The approach uses both
frequentist and Bayesian methods and results in hypothesis tests
that are operationally very similar to the commonly used tests
that compare a p-value to a significance level α.

The authors of this article take the position taken over 60
years ago by both a Bayesian statistician, Lindley (1957), and
a frequentist statistician, Bartlett (1957): a major part of the
problems with p-value-based tests is in fixing a significance level
that does not depend on the sample size. That is, the problem is
not as much in the use of p-values themselves as in comparing
p-values to fixed signficance levels. The solution to this issue is
surprisingly simple and is rooted in the presentation of Neyman
and Pearson’s lemma in DeGroot’s widely used textbook (DeG-
root 1986), perhaps the greatest bridge between the frequentist
and Bayesian “schools” of statistics. Instead of starting with a
fixed α and determining the tests that minimize β as Neyman
and Pearson did, DeGroot presented a generalized form of the
Neyman–Pearson Lemma in which a linear combination of α

and β is minimized. When α is then fixed, the result is the same
as the one presented by Neyman and Pearson in 1933. In its
full generality, the version presented by DeGroot has a major
advantage: by minimizing a linear combination of α and β , it
allows the probabilities of both types of error to vary, avoiding
the kind of drastic imbalance between the probabilities of the
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two types of errors described in Pericchi and Pereira (2016),
because instead of α being fixed and β tending to decrease
with increasing sample size, both error probabilities depend
on the sample size. By controlling the ratio of the coefficients
of α and β in the linear combination that is minimized, a
researcher can actually determine “just how the balance should
be struck,” realizing the vision of Neyman and Pearson in a
way Neyman-Pearson tests simply cannot. Cornfield (1966) sug-
gested optimizing tests by minimizing a linear combination of α

and β .
How should the coefficients a and b in the linear combination

aα+bβ be chosen? The coefficients a and b represent the relative
seriousness of errors of the two types or, equivalently, relative
prior preferences for the competing hypotheses. If, for example,
a > b, that means type-I errors are considered more serious
than type-II errors. That means incorrectly rejecting H in favor
of A is considered more serious than incorrectly rejecting A in
favor of H, which indicates a prior preference for H. Here is a
concrete example: imagine a state in which there have been more
cases of meningitis than usual, and where the governor is very
budget-conscious. Take H to be the hypothesis that there is not
a meningitis epidemic in the state, and A to be the competing
hypothesis that there is an epidemic. The governor may consider
the unnecessary spending from an incorrect rejection of H to
be more serious than the consequences of not declaring an
epidemic, or equivalently, favor hypothesis H over A, and so
would set a > b. Decision theory allows for the underlying
assumptions to be made even more explicit by going more
deeply into the meaning of a and b. The details can be found in
the section on “Bayes test procedures” in DeGroot (1986), but
the important point here is that if the losses due to incorrect
rejection of each hypothesis can be quantified, and the prior
probability that H is true can be estimated, then a and b can be
calculated from those numbers. It is worth mentioning that the
absolute scale of a and b, and therefore the absolute scale of the
losses from the two possible types of errors, do not matter; only
the ratio of a and b affects the actual decision whether to reject
a hypothesis.

The Neyman–Pearson Lemma and the extended version
of it presented by DeGroot are proved for simple-vs.-simple
hypotheses, that is, for comparing specific values of a parameter.
For example, for a normal (Gaussian) distribution with mean
θ and variance 1, N (θ , 1), one might compare the hypotheses
H : θ = 0 and A : θ = 0.7. For a given observation x, the ratio
of likelihoods L(θ = 0|x)/L(θ = 0.7|x) would be compared
to a cutoff chosen so that the probability, under hypothesis H,
that is, if x obeyed a N (0, 1) distribution, of an observation
falling in the rejection region would be some fixed value α, like
the commonly used 0.05 or the recently suggested 0.005. For
certain types of distributions and certain types of hypotheses
(see DeGroot (1986) or other statistics textbooks for details),
the Neyman–Pearson Lemma can be extended to find the best
tests for composite hypotheses, that is, hypotheses involving
multiple values or continuous ranges of values of the parameter
of interest. A Bayesian approach to extending beyond optimal
simple-vs.-simple hypothesis tests offers a simple and obvious
way to extend to tests where one or both of the hypotheses can
be composite hypotheses, and where either or both hypotheses
may be very complex.

As usual, consider a random vector x representing exper-
imental results, with a probability (density) function6 f (x|θ)

having a parameter vector θ , with x and θ elements of real
sample space X and parameter space �, respectively, each space
having some positive integer dimensionality. The competing
hypotheses H and A must partition the parameter space, that
is, divide it into nonoverlapping pieces �H and �A such that
the hypotheses can be expressed as

H : θ ∈ �H and A : θ ∈ �A. (1)

As long as the two pieces make up the entire space (� = �H ∪
�A) and do not overlap (�H ∩ �A = ∅), the hypotheses can
be of any dimensionality and arbitrarily complex.

Define the binary parametric function λ(θ) as follows:

λ(θ) =
{

0 θ ∈ �H
1 θ ∈ �A.

(2)

Because λ is a function of θ , one can write

f (x|θ) = f (x|θ , λ). (3)

Now treat the original parameter θ as a “nuisance parameter”
and remove it the Bayesian way: by taking averages of f (x|θ , λ),
weighted by a prior g(θ), over the two pieces of the parameter
space �H and �A. The result is two predictive probability
(density) functions

fH(x) = f (x|λ = 0) and
fA(x) = f (x|λ = 1).

(4)

Using the approach based on the generalized form of the
Neyman–Pearson Lemma presented by DeGroot and previously
used by Cornfield, as described earlier in this section, but now
with the likelihoods averaged over �H and �A to produce fH
and fA, one obtains averaged error probabilities α and β that
are optimal in the sense of the generalized Neyman–Pearson
Lemma, and the optimal averaged α can be used as a significance
level that depends strongly on the sample size.

As stated in the previous section, one problem with hypoth-
esis tests comes from the use of definitions like Definition 1 to
calculate p-values. A second definition that takes into account
the alternative hypothesis A, unlike Definition 1, is presented in
Pereira and Wechsler (1993). As in the previous definition, x0
represents the observation and H is the null hypothesis.

Definition 2 (PW2.1). The P-value is the probability, under H,
of the event composed by all sample points that favor A (against
H) at least as much as x0 does.

Note that the quantity defined here is a capital-P “P-value,”
to distinguish it from the small-p “p-values” defined by Defi-
nition 1. The P-value has the advantage that, unlike a small-p
p-value, it can be calculated for arbitrarily complex hypotheses
that lead to arbitrarily complex rejection regions (regions where
p < α, where the null hypothesis would be rejected if the exper-
imental observations were to occur there). However, to do so,

6 The notation “probability (density) function”is used to refer to a probability
function for discrete sample spaces and a probability density function for
continuous sample spaces.
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it requires an ordering of the space of possible observations, the
sample space, according to how much each possible observation
favors one of the hypotheses over the other. The new approach,
like Montoya-Delgado et al. (2001), uses the Bayes factor

BFHA(x) = fH(x)

fA(x)
(5)

to order the sample space according to how much each point
x favors H over A. Then, if the experiment yields a result x0,
the P-value is calculated as the probability, given probability
(density) function fH(x), of a point in the sample space favoring
A as much as or more than x0 does. That is, it is the sum or
integral of the probability (density) function fH(x) over the part
of the sample space where the Bayes factor BFHA(x) is less than
or equal to the Bayes factor calculated at x0. Calling that part of
the sample space � , it is defined as

� = {x ∈ X : BFHA(x) ≤ BFHA(x0)} , (6)
and the P-value is

P =

⎧⎪⎨
⎪⎩

∑
�

fH(x), X discrete∫
�

fH(x)dx, X continuous.
(7)

There is a one-to-one correspondence between the P-value used
in this approach and the Bayes factors used to calculate them,
so once a cutoff for P—a significance level α—is determined,
a corresponding cutoff for Bayes factors at the same signifi-
cance level can be determined. As a result, researchers who are
more comfortable with Bayes-factor tests can continue to use
them, but with a cutoff determined by this method, which takes
experimental error into account and depends on the sample size,
rather than with arbitrarily defined cutoffs like those of Jeffreys
(1935) or Kass and Raftery (1995).

4. Examples

Here some specific examples of applications of the new tests are
presented. An important point emphasized throughout is the
way the significance level varies with sample size.

4.1. Bernoulli (“Yes–No”) Examples

Though they are the simplest models, Bernoulli models, which
are used for experiments with a “yes–no” result, like “heads-
or-tails” coin flips, are very important. This is because many

medical studies, among other kinds of experiments, fall into this
category, with “yes” indicating, for example, a recovery from an
illness or injury. The unknown parameter is the proportion or
probability of success, and hypothesis tests are applied to that
parameter in different ways, depending on the purpose of the
study.

4.1.1. Comparing Two Proportions
A physician wants to show that the incorporation of a new
technology in a treatment can produce better results than the
conventional treatment. He plans a clinical trial with two arms:
case and control, each with eight patients. The case arm receives
the new treatment and the control arm receives the conventional
one. The observed results in this example are that only one of the
patients in the control arm responded positively, but in the case
arm there were four positive outcomes.

The most common classical significance tests result in the
following p-values: the Pearson χ2 p-value is 0.106, changed to
0.281 with the Yates continuity correction applied, and Fisher’s
exact p-value is 0.282. Traditional analysts would conclude that
there were no statistically significant differences between the
two treatments, using any of the canonical significance levels.
Note that these procedures were for testing a sharp hypothesis
against a composite alternative – H : θ0 = θ1 vs. A : θ0 �= θ1,
comparing the proportions of success for the two treatments.
Note that the hypothesis H is precise or “sharp,” representing a
line in the two-dimensional (θ0, θ1) parameter space. Here, the
proposed P-value and the optimal significance level α(δ∗) are
calculated to choose one of the hypotheses using the new tests.

To be fair in our comparisons, we consider independent
uniform (noninformative) prior distributions for θ0 and θ1.
With these suppositions and the likelihoods being binomials
with sample sizes n = 8, the predictive probability functions
under the two hypotheses are

fH(x, y) =
(8

x
)(8

y
)

17
( 16

x+y
) and fA(x, y) = 1

81
, (8)

where (x, y) ∈ {0, 1, . . . , 8}× {0, 1, . . . , 8} represent the possible
observed values of the number of positive outcomes in the two
arms of the study. Table 1 shows the Bayes factors for all possible
results.

To obtain the P-value, define the set �obs of sample points
(x, y) for which the Bayes factors are smaller than or equal to

Table 1. Bayes factor for all possible results in a clinical trial with two arms of size n = 8 each. Cells in boldface make up the region �∗ , and the observed Bayes factor is
shown in boldface italics. See text.

y

x 0 1 2 3 4 5 6 7 8 Sum

0 4.765 2.382 1.112 0.476 0.183 0.061 0.017 0.003 4e-04 9
1 2.382 2.541 1.906 1.173 0.611 0.267 0.093 0.024 0.003 9
2 1.112 1.906 2.052 1.710 1.166 0.653 0.29 0.093 0.017 9
3 0.476 1.173 1.710 1.866 1.633 1.161 0.653 0.267 0.061 9
4 0.183 0.611 1.166 1.633 1.814 1.633 1.166 0.611 0.183 9
5 0.061 0.267 0.653 1.161 1.633 1.866 1.710 1.173 0.476 9
6 0.017 0.093 0.29 0.653 1.166 1.710 2.052 1.906 1.112 9
7 0.003 0.024 0.093 0.267 0.611 1.173 1.906 2.541 2.382 9
8 4e-04 0.003 0.017 0.061 0.183 0.476 1.112 2.382 4.765 9
Sum 9 9 9 9 9 9 9 9 9 81
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the Bayes factor of the observed sample point, that is,

�obs = {
(x, y) ∈ {0, 1, . . . , 8} × {0, 1, . . . , 8} : BF ≤ BFobs

}
,

(9)
and then the P-value is the sum of the prior predictive probabil-
ities under H in �obs :

P =
∑

(x,y)∈�obs

fH(x, y) =
∑

(x,y)∈�obs

(8
x
)(8

y
)

17
( 16

x+y
) . (10)

Recalling the observed result of the clinical trial, (x,y) = (1,4),
the observed Bayes factor is BFobs = 0.661. Based on this, the
P-value is P = 0.0923.

The test δ∗ minimizes the linear combination aα(δ) +
bβ(δ). The Bayes factor is compared to the constant K,
the ratio of the coefficients: K = b

a . Then, define the set
�∗ = {

(x, y) ∈ {0, 1, . . . , 8} × {0, 1, . . . , 8} : BF ≤ K
}

, and
the optimal averaged error probabilities from the generalized
Neyman–Pearson Lemma are

α(δ∗) =
∑

(x,y)∈�∗
fH(x, y) =

∑
(x,y)∈�∗

(8
x
)(8

y
)

17
( 16

x+y
) and

β(δ∗) =
∑

(x,y)/∈�∗
fA(x, y) =

∑
(x,y)/∈�∗

1
81

.
(11)

In DeGroot (1986), it is shown using decision theory that a
linear combination wHπα(δ) + wA(1 − π)β(δ) is minimized,
where wH is the expected loss from choosing to accept hypoth-
esis A when H is true, and π is the prior probability that H is
true. Taking the hypotheses to be equally likely a priori, π = 1

2 ,
and representing equal severity of type-I and type-II errors by
taking wH = wA = 1, the result is K = 1. The set �∗
is identified by the cells with boldface numbers in Table 1.
The observed Bayes factor is in boldface italics. The optimal
significance level is α(δ∗) = 0.1245 and the optimal averaged
type-II error probability is β(δ∗) = 0.4815. The high type-
II error probability is completely expected for small samples.
Contrary to the classical results, the conclusion is now the most
intuitive one: the null hypothesis is rejected because P < α(δ∗).
However, the rejection is only at the 12.45% level of significance.
So what sample size would be necessary to obtain some better
(lower) significance level, say 10%?

4.1.2. Comparing Two Proportions With Varying Sample
Sizes

Consider first a clinical trial just like in the previous example, but
now with arms of size n = 20. The observed result is (x, y) =
(4, 10), that is, four patients had a positive result in the control
arm, while 10 had a positive result in the arm receiving the new
treatment. The same calculations done for the previous section
are repeated, but with the appropriate expressions for fH and fA
for a trial with two 20-patient arms. The observed Bayes factor
in this case is BFobs = 0.415, which leads to significance index
P = 0.02901, optimal significance level α(δ∗) = 0.0995, and
type-II error probability β(δ∗) = 0.3651. The classical χ2 p-
value is p = 0.0467, indicating rejection of the null hypothesis
at the canonical 5% significance level. The new test also rejects
H, because P < α(δ∗).

Figure 1. Optimal averaged type-I (solid gray line), type-II (dotted line), and total
(solid black line) error probabilities as functions of the number of patients n in each
arm of a two-arm medical study.

The same analysis can be done to calculate the optimal
significance level and type-II error probability for any sample
size. Figure 1 shows the optimal adaptive significance level α and
optimal adaptive type-II error probability, plus the minimized
linear combination α + β , as functions of the size of each arm
in a study.

Table 2 shows the optimal adaptive averaged error proba-
bilities α and β for various arm sizes without the restriction of
the two arms having equal size. For a given total sample size,
an unbalanced sample can have higher probabilities of both
type-I and type-II errors than a balanced sample. For example,
the error probabilities for an unbalanced sample with n1 = 60
and n2 = 20 are larger than those for a balanced sample with
n1 = n2 = 40, even though both experiments would have the
same total sample size, n1 + n2 = 80. The effect of unbalanced
samples can be as important as the effect of total sample size.
For example, the error probabilities of an unbalanced sample
with n1 = 60 and n2 = 10 are larger than those of a balanced
sample with n1 = n2 = 20, even though the unbalanced sample
has a total size of n1 + n2 = 70 and the balanced sample just 40.

4.1.3. Test for One Proportion and the Likelihood
Principle

A common example in which the Likelihood Principle can be
violated is the comparison of binomials to negative binomials
in a coin-flipping experiment with a coin that may or may
not have the expected 50–50 chance of coming up “heads,” as
described in Lindley and Phillips (1976).7 For the same values
of x, the number of successes in n independent coin flips, the
two distributions produce different p-values, which can lead to
different decisions at a given level of significance. That is, the
inference can actually be different for exactly the same data,
depending on the intent of the researcher before starting the
experiment. If a result is nine heads and three tails, did the
researcher start the experiment planning to flip the coin exactly
12 times? Was the intent to flip until the 9th occurrence of
heads? Until the third occorrence of tails? Was it some other

7 Lindley and Phillips actually consider throws of thumbtacks, called “draw-
ing pins” in U.K. English, but the principle is identical.
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Table 2. Optimal averaged error probabilities α(δ∗) and β(δ∗) for comparison of two proportions for various arm sizes n1 and n2 in a two-arm medical study. Calculations
were performed with a = b.

n1 n2 α β n1 n2 α β n1 n2 α β

10 10 0.1639 0.4050 60 50 0.0626 0.2652 90 30 0.0707 0.2804
20 10 0.1318 0.3939 60 60 0.0591 0.2572 90 40 0.0648 0.2608
20 20 0.0995 0.3651 70 10 0.1130 0.3675 90 50 0.0575 0.2506
30 10 0.1159 0.3900 70 20 0.0865 0.3132 90 60 0.0550 0.2401
30 20 0.1045 0.3333 70 30 0.0727 0.2876 90 70 0.0529 0.2323
30 30 0.0997 0.3070 70 40 0.0645 0.2717 90 80 0.0493 0.2281
40 10 0.1250 0.3703 70 50 0.0603 0.2593 90 90 0.0468 0.2240
40 20 0.0868 0.3357 70 60 0.0575 0.2501 100 10 0.1111 0.3627
40 30 0.0850 0.3029 70 70 0.0539 0.2446 100 20 0.0818 0.3079
40 40 0.0706 0.2968 80 10 0.1130 0.3648 100 30 0.0684 0.2795
50 10 0.1126 0.3761 80 20 0.0834 0.3122 100 40 0.0617 0.2601
50 20 0.0883 0.3240 80 30 0.0704 0.2847 100 50 0.0559 0.2479
50 30 0.0767 0.2992 80 40 0.0634 0.2671 100 60 0.0538 0.2368
50 40 0.0718 0.2817 80 50 0.0603 0.2530 100 70 0.0512 0.2291
50 50 0.0667 0.2718 80 60 0.0553 0.2455 100 80 0.0483 0.2238
60 10 0.1097 0.3741 80 70 0.0531 0.2380 100 90 0.0467 0.2188
60 20 0.0860 0.3193 80 80 0.0508 0.2327 100 100 0.0449 0.2150
60 30 0.0765 0.2903 90 10 0.1131 0.3626
60 40 0.0689 0.2747 90 20 0.0810 0.3114

intent, but the experiment was interrupted? With frequentist
hypothesis tests, this actually matters because they violate the
Likelihood Principle.

In this example, the new tests are applied to show that they
do not violate the Likelihood Principle. The reason the inference
(decision to accept or reject a hypothesis about the parameter θ)
ends up being the same for different models is that although the
P-values for the two models are different from each other, the
adaptive significance levels α for the two models are also dif-
ferent, and the decision about rejecting one hypothesis in favor
of the other ends up being the same. Using different notation
from the previous example, let the sample vector consist of the
number of successes x and the number of failures y, and let
the corresponding vector of probabilities be (θ , 1 − θ). Take
H : θ = 1

2 vs. A : θ �= 1
2 , that is, a fair coin vs. an unbalanced

coin, as the hypotheses to be tested. Taking a uniform prior for
θ , taking the two hypotheses to be equally probable a priori
(π = 1

2 ), and considering the two types of error equally severe,
the predictive probabilities for the tests are as follows.
For a binomial,

fH(x, y) =
(

x + y
x

)(
1
2

)x+y
and fA(x, y) = 1

x + y + 1
,

(12)

and for a negative binomial,

fH(x, y) =
(

x + y − 1
x

) (
1
2

)x+y

and fA(x, y) = y
(x + y)(x + y + 1)

. (13)

The Bayes factors are equal for the two models, and since using
the lemma will lead to comparing them to the same constant,
the decisions about the hypothesis H : θ = 1

2 end up being
the same. The P-values and significance levels α are different
for the two models, but the inference ends up being the same.
Considering the observations (x, y) = (3, 10) and (x, y) =

(10, 3) for a binomial, both samples yield the same results:
P = 0.02, where the optimal error probabilities are α = 0.09
and β = 0.43. For a negative binomial, the same observations
produce different values of the significance index P, but the
error probabilities are different. For the first (second) sample,
one stops observing when the number of successes reaches 3
(reaches 10). For the first sample point, the P-value is 0.01, and
the relevant error probabilities are α = 0.18 and β = 0.48.
For the second sample, P = 0.01, and the error probabilities
are α = 0.12 and β = 0.33. The decisions made for binomials
are the same as those for negative binomials with the same (x, y).
This behavior is much more general than this specific example,
and in fact it is proven in Pereira et al. (2017) that the new
tests are compliant with the Likelihood Principle for any discrete
sample space.

4.1.4. An Important Note About “Yes–No” Experiments
and the New Tests

The predictive densities under many common hypotheses in
Bernoulli experiments can be calculated analytically for bino-
mial and negative bionomial models when Beta priors are used.
A few examples are H1 : θ = θ0; H2 : θ �= θ0; H3 : θ ≤ θ0;
H4 : θ > θ0; H5 : θ ∈ [θ1, θ2]; and H6 : (θ < θ1) ∪ (θ > θ2);
etc. The predictive densities for several such sets of hypotheses
are presented in Pereira et al. (2017).

4.2. Tests in Normal Distributions

Normal distributions are very widely used because the sample
means of large random samples of random variables tend to act
like normally distributed variables. This is the familiar tendency
of large-sample distributions to look like “bell curves,” described
mathematically by the central limit theorem. Details can be
found in DeGroot (1986) or other statistics textbooks. Because
of the importance of normal distributions, two examples are
presented here of how the tests can be used with normal dis-
tributions.
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Figure 2. Type-I (solid gray lines), type-II (dashed black lines), and total (dot-dashed black lines) error probabilities as functions of sample size n for tests of H : μ = 0 on a
normally distributed variable with variance 1 and unknown mean μ, N (μ, 1), with priors for the mean μ ∼ N (m, 100) with m = 0 (left) and m = 10 (right).

Figure 3. Bayes factor for N (0, 2) vs. Cauchy, arising from a test of a normal variance with hypotheses H : σ 2 = 2 vs. A : σ 2 �= 2.

4.2.1. Test of a Mean in a Normal Distribution
Consider iid variables X1, . . . , Xn | μ, that obey a normal
distribution with mean μ and variance 1. Take as a prior for
μ a normal distribution with mean m and variance v. Instead
of working with the full n-dimensional sample space, the min-
imal sufficent statistic Xn, the sample mean, can be used. The
sampling distribution of Xn | μ is a normal distribution with
mean μ and variance 1/n. For hypotheses H : μ = 0 and
A : μ �= 0, the predictive distributions are Xn | H ∼ N (0, 1/n)

and Xn | A ∼ N (m, v + 1/n).
To calculate the probability of a type-I error, define the region

XA = {xn : fH(xn)/fA(xn) < 1}, (14)

and evaluate α = ∫
XA

fH(xn)dxn. For the probability of a type-
II error, define the region XH = {xn : fH(xn)/fA(xn) > 1},
and evaluate β = ∫

XH
fA(xn)dxn. These error probabilities are

plotted in Figure 2 for v = 100 and two values of the prior mean:
m = 0 and m = 10. The plot with m = −10 would be identical
to the plot with m = 10.

4.2.2. Test of a Variance in a Normal Distribution
This is an example used by Pereira and Wechsler (1993), show-
ing that the region of the space of possible results where a test
rejects the null hypothesis is not always the tails of the null
distribution; it can be a union of disjoint intervals. In such cases,
it can be impossible to calculate a classical p-value defined as in
Definition 1, but the ordering of the entire sample space by Bayes
factors allows for an unambiguous definition and calculation of
the new index, a capital-P P-value in the sense of Definition 2.

Consider a normally distributed random variable X with
mean zero and unknown variance σ 2. The hypotheses consid-
ered here are H : σ 2 = 2 and A : σ 2 �= 2. A χ2

1 (chi-
squared with one degree of freedom) distribution is used as a
prior density for σ 2. The predictive densities under hypotheses
H and A are

fH(x) = 1
2
√

π
exp

(
−x2

4

)
and fA(x) = 1

π
(
1 + x2

) , (15)

a normal density with mean zero and variance 2, and a Cauchy
density, respectively. Figure 3 shows a plot of the Bayes factor,
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using a value of 1.1 as a cutoff for a decision about the hypothe-
ses. The sample points that do not favor H are in three separate
regions: a central interval and the heavy tails of the Cauchy
density. The set that favors H is the complement, made up of
two intervals between the central interval and the tails:

XH = {x|x ∈ (−2.8, −0.6) ∪ (0.6, 2.8)}. (16)

The set that favors A over H includes, in addition to the tails,
the central region (−0.6, 0.6). Even with this or even more
complex divisions of the sample space into regions that favor one
hypothesis over another, the new method allows for calculation
of a P-value.

4.3. Test of Hardy–Weinberg Equilibrium

“Hardy–Weinberg equilibrium” refers to the principle, proven
by Hardy (1908) and Weinberg (1908), that allele and genotype
frequencies in a population will remain constant from genera-
tion to generation, given certain assumptions about the absence
of external evolutionary influences.

An individual’s genotype is determined by a combination
of alleles. If there are two possible alleles for some character-
istic (say A and a), the possible genotypes are AA, Aa, and
aa. Let x1, x2, x3 be the observed frequencies of the genotypes
AA, Aa, and aa, respectively, and θ1, θ2, θ3 the corresponding
probabilities. Assuming a few premises, as described by Hartl
and Clark (1989), the principle says that the allele probabili-
ties in a population do not change from generation to gener-
ation. It is a fundamental principle for the Mendelian mating
allelic model. If the probabilities of alleles are θ for allele A and
1 − θ for the allele a, the expected genotype probabilities are(
(θ2, 2θ(1 − θ), (1 − θ)2), 0 ≤ θ ≤ 1.

The Hardy–Weinberg equilibrium hypothesis is

H :

⎧⎨
⎩

θ1 = θ2,
θ2 = 2θ(1 − θ),
θ3 = (1 − θ)2,

(17)

Given n, using as a prior distribution for {θ1, θ2, θ3} a
Dirichlet(1, 1, 1), that is, f (θ1, θ2, θ3) = 2, and using the
multinomial probability

f (x1, x2, x3 | θ1, θ2, θ3) = n!
x1!x2!x3!θ

x1
1 θ

x2
2 θ

x3
3 (18)

for (x1, x2, x3), the predictive under hypothesis A is

fA(x1, x2, x3) =
∫ 1

0

∫ 1−θ1

0
f (x1, x2, x3 | θ1, θ2, 1 − θ1 − θ2)

× f (θ1, θ2, 1 − θ1 − θ2)dθ1dθ2

=
∫ 1

0

∫ 1−θ1

0

n!
x1!x2!x3!θ

x1
1 θ

x2
2 (1 − θ1 − θ2)

x3

× 2 dθ1dθ2

= 2n!
(n + 2)! . (19)

Figure 4. Type-I (solid gray line), type-II (dotted line), and total (solid black line)
error probabilities as functions of the sample size n for the Hardy–Weinberg equi-
librium hypothesis.

Under hypothesis H, the surface integral to normalize the values
of the prior density in the set corresponding to the null hypoth-
esis yields f (θ) = 1, 0 ≤ θ ≤ 1. Then,

fH(x1, x2, x3) =
∫ 1

0
f (x1, x2, x3 | θ)f (θ)dθ

=
∫ 1

0

n!
x1!x2!x3!2x2θ2x1+x2(1 − θ)2x3+x2 dθ

= n!2x2(2x1 + x2)!(2x3 + x2)!
x1!x2!x3!(2n + 1)! .

(20)
The probability of a type-I error, α, is obtained from a sum

of the predictive under H over all samples {x1, x2, x3} where
fH(x1, x2, x3)/fA(x1, x2, x3) < 1. The probability of a type-II
error, β , is obtained from a sum of the predictive under A over
all samples {x1, x2, x3} where fH(x1, x2, x3)/fA(x1, x2, x3) > 1.
These error probabilities are plotted in Figure 4.

5. Final Considerations

Using the hypothesis-testing procedure described here, the
sample-size dependence of the optimal averaged α can be used
to determine the best significance level for a given n, which can
be relevant in studies where a limited number of trials can be
done, or to determine the necessary sample size to achieve a
desired α.

The procedure can be applied to other models and hypothe-
ses, without restrictions on the dimensionality of the parameter
space or the sample space. The sample space, regardless of its
dimensionality, is ordered by a single real number, the Bayes
factor. In all the examples used in this article, analytic (closed-
form mathematical) solutions are available, but this is not the
case for all distributions and hypotheses. For example, hypothe-
ses about a normal distribution with unknown mean and vari-
ance involve calculations of significantly greater complexity and
require some sort of analytic approximations or approximate
methods for evaluating the necessary integrals, such as Monte
Carlo methods. Note that the method requires the calculation
of five integrals: two over the nuisance parameter(s) to find the
predictive distributions fH(x) and fA(x); and three of predictive
distributions over specific regions of the sample space to obtain
α, β , and the capital-P P-value.
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It is worth noting that the approach described here is compat-
ible with guidelines in the ASA’s statement on p-values (Wasser-
stein and Lazar (2016)). Specifically, because the signficance
level depends on the sample size, and therefore is not the kind
of predefined “bright-line” rule the ASA recommends avoiding,
the approach is compatible with point 3, “Scientific conclusions
and business or policy decisions should not be based only on
whether a p-value passes a specific threshold.”
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