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Abstract

This paper is about differential gene expression measured by transcript
counting methods such as SAGE or MPSS. It introduces two significance
tests for detection of differential expressed tags: frequentist and Bayesian.
Under the frequentist view, it is proposed a test that computes the critical
level as a function of each tag total frequency. Under the Bayesian view
the Full Bayesian Significance Test is used considering the logistic normal
distribution. The two proposed significance levels, the frequentist and
the Bayesian, are compared for a data set with four libraries. The linking
function between them is a Beta distribution function with mean 0.39 and
standard deviation 0.30.

1 Introduction

Gene expression is an important measure that helps to elucidate the genes func-
tions in the biological processes. Specially in complex diseases, like cancer or
Alzheimers, the knowledge of transcriptopme can helps in diagnose, prognostic
and treatment. Discovering a gene that differentiates its expression between
case and control is one of the molecular genetics main objectives. In the last
twenty years, several methods were developed to measure the expression level
of multiple thousands – genes at once. Many of those methods are based on
transcript enumeration, such as SAGE[15] and MPSS[4].

The present work presents two new exact significance tests for tag differ-
ential expression detection in transcript counting data. It introduces, for the
frequentist test, a critical level that is a function of the tag expression power,
the total tag frequency among all studied libraries.

There are several statistical tests with the same objective: comparing gene
expression. Most of then rely on asymptotic considerations. However, since
there are drastic differences in expression power among tags, the appropriate-
ness level in using these asymptotic methods varies between tags. There is also
the use, in same data set, of different methods: some exact and some asymptotic.
In those cases there are distinct criteria to judge a tag quality for differentia-
tion. We notice that here we establish methods that judges all tags using the
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same criterion. Moreover, we do not need to make any use of asymptotic con-
siderations. In fact, we use the original definition of tail area to calculate our
p-value and e-value: p for probability and e for evidence. The p-value is for the
frequentist significance test, and the e-value for the Bayesian significance test.

2 Frequentist Significance Test

The main problem addressed by this paper is the detection of tags that are
differentially expressed among k (> 1) libraries known to be collected from
individuals under different conditions. The total number of distinct tags is
represented by M and the total number of tags in library j (j = 1, 2, · · · , k) is
represented by Nj . The frequency of the i-th tag in the j-th library is denoted by
Xij . Hence, Nj = X1j +X2j + ...+XMj . By power of the i-th tag we mean the
total frequency of the i-th tag on all k libraries, that is, Yi = Xi1+Xi2+· · ·+Xik.
The basic statistical model can be stated as:

1. For each j, the random vector X•j = (X1j ;X2j ; · · · ;XMj) is multinomial
distributed with parameters Nj and Pj = (p1j ; p2j ; · · · ; pMj).

2. The random vectors X•1,X•2, · · · , and X•k are mutually statistical in-
dependent. That is, we consider that the libraries are independently col-
lected.

3. Since low frequency models have been considered in the literature for prob-
lems like the ones presented here, the tag frequency Xij is approximated
by a Poisson distribution[2]. That is, considering each tag j alone, it is
not absurd to use the approximation of the binomial to the Poisson dis-
tribution. In other words we have that Xij is approximately distributed
as Poisson with mean Njpij .

4. Finally, since the libraries are collected independently, the full model con-
sidered here is as follows:

Pr {Xi1 = xi1, · · · , Xik = xik|pi1, · · · , pik} =
(N1pi1)xi1 · · · (Nkpik)xik

xi1! · · ·xik!
exp(N1pi1 + · · ·+Nkpik) (1)

2.1 Partial Likelihood

One can now write equation (1) using an alternative parametrization. Let
the new parameters be θi = N1pi1 + · · · + Nkpik, πij = Njpij/θi and Πi =
(πi1; · · · ;πik). Note also that, taking yi = xi1 + · · · + xik, the following two
events are equivalent:

{Xi1 = xi1, · · · , Xik = xik} ≡ {Xi1 = xi1, · · · , Xik = xik;Yi = yi} .
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Therefore, the alternative statistical model is then written as:

Pr {Xi1 = xi1, · · · , Xik = xik, Yi = yi|Πi, θi} =

y!
xi1! · · ·xik!

(πi1)xi1 · · · (πik)xik
θyi e
−y

y!
(2)

With this new parametrization, the full likelihood is a product of a multi-
nomial by a Poisson probability functions. Also, it is important to note that
the new parameters, Πi and θi, are of independent variation; i.e., the value
of one carries no information about the value of the other. Following Basu[3]
and Cox[5], to perform inference about Πi (θi) one only has to consider as
the likelihood the multinomial (Poisson) factor of equation (2). With this new
parametrization the null hypothesis of interest – tag i have the same expression
in all libraries – is reduced to a simple hypothesis as following:

H ′0 : Πi = (πi1, · · · , πik) =
(
N1

N
, · · · , Nk

N

)
(3)

Recall that for the full likelihood models, the original hypothesis is, equiva-
lently, as follows:

H0 : Πi = (pi1, · · · , pik) = (pi, · · · , pi) (4)

This approach of partial likelihood introduced by Cox[5] simplifies consider-
ably the problem of comparing the expression of the j-th tag in all k libraries.
Hence, under the null hypothesis the likelihood is simple a multinomial proba-
bility function evaluated for Π0. In symbols, letting Yi = Xi1 + · · · + Xik and
Xi• = (Xi1, · · · , Xik), the distribution under the null and alternative hypotheses
are

H ′0 : Pr{Xi• = (x1, · · · , xk)|Yi = yi; Πi = Π0} =
yi!
Nyi

k∏
j=1

N
xj

j

xj !
(5)

and

H ′1 : Pr{Xi• = (x1, · · · , xk)|Yi = yi; Πi} = yi!
k∏
j=1

π
xj

ij

xj !
(6)

2.2 Significance Test: p-value

According to Cox[6] and Kempthorne[10], a significance test is a method that
measures the consistency of the data with the null hypothesis. The common in-
dex used to perform this task is the well known p-value. We refer to Kempthorne
and Folks[11] for important discussions on the evaluation of p-values. For an
experiment that observes the value of a random vector X, let T (X) = T be a
statistic that small values of it cast doubt about H0. If for an observation x the
value of T (x) = t, the p-value associated to the observation x is the value of the
probability, under H0, of the event {T ≤ t}; that is, p = Pr{T ≤ t|H0}. The
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consequence of this definition is that the random variable T must be a function
that produces an order in the sample space. This ordered sample space indicates
that sample points with low (high) order favor the alternative (null) hypothesis.
The difficult is that most of the sample spaces have dimension higher than one,
as in the case of the present paper.

It seems that the really appropriate candidate for ordering the sample space
relative to the null hypothesis is the likelihood ratio. Recall that the likelihood
ratio for an observation x is the maximum of the likelihood under H0, the
null hypothesis, divided by the maximum under H1, the alternative hypothesis.
Clearly, small (large) values of the likelihood ratio favor the alternative (null)
hypothesis.

If R is the likelihood statistics and R(x) = r is the value of that statistic at
the observation x, the p-value associated to x in relation to H0 is Pr{R ≤ r|H0}.
Since a sample point w, such that R(w) < R(x), favors H1 more than x does,
it should not be difficult to prove that Pr{R ≤ r|H0} < Pr{R ≤ r|H)1}. This
is a desired property of a p-value.

The use of likelihood ratios for computing p-values was discussed by Neyman-
Pearson[12], Pereira and Wechsler[13], and Dempster[9]. The next section presents
the steps to compute the p-value described here. We end this section with the
likelihood function used in this paper. Let a multinomial sample point for the
i-th tag be represented by W = (w1, · · · , wk), for which wis are non negative
integers and w1 + · · · + wk = yi. Taking N = N1 + · · · + Nk, the likelihood
associated to W is as follows:

Ri(W) =
( yi
N

)yi
k∏
j=1

(
Nj
wj

)wj

(7)

Define now the tail set, Ti, of extremer frequencies than xi. This set can be
written as

Ti = {w = (w1, · · · , wk)|w1 + · · ·+ wk = yi ∨R(w) ≤ R(xi)} .

The p-value of the tag i, pvi, that provides the significance test for H0 when
the observation is xi, is evaluated as follows:

pvi =
∑
w∈Ti

yi!
Nyi

k∏
j=1

N
wj

j

wj !
(8)

For the computation of pvi the algorithm based in Monte Carlo Method is
in figure 1.

2.3 Critical significance level

As mentioned before, the tag abundances can be very different among the tags.
Considering the same significance level would be unfair for the tags with low
frequencies. Following the recommendations of DeGroot[8], we use the decision
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p-valor(X,N, runs)
1 t← R(X,N)
2 y ←

∑
Xi

3 p← N/
∑
Ni

4 c← 0
5 for i← 1 to runs
6 do W← Random vector with Multi(y,p)
7 if R(W,N) ≤ t
8 then c← c+ 1
9 return c/runs

Figure 1: Algorithm for p-value computation.

theory optimum procedure that minimizes the risk function aα + bβ, a linear
combination of the two kinds of errors: α and β are, respectively, the first and
the second kind of errors. After a long discussion with molecular scientists
our choice for the scalars of the combination are a=4 and b =1. With this
choice the minimization of α is stronger than that of β. We believe that the
first kind of error, deciding in favor of differentially expressed when it is not,
is more dangerous than the second kind of error, deciding against differentially
expressed when it is.

The value of α is simply the value of the probability of the critical region
using the parameter value defined by the null hypothesis. However, the com-
putation of β is not so simple since the alternative hypothesis H1 is composed,
not a single point hypothesis. To solve the problem of defining the appropriate
β, we consider the average of all possible single alternative hypotheses inside
the set that defines the alternative hypothesis. To perform this computation we
use a uniform prior for the parameter and consider the predictive distribution
for this prior choice. Fortunately, it happens that this predictive distribution is
a uniform discrete distribution in the sample space. Hence, a constant that is
equal to the inverse of the number of points of the sample space. The mentioned
average of β is then the number of points inside the acceptance region divided
by this constant.

To choose the critical level we consider all possible critical regions. The
critical level is then the value of α for the critical region that gives the smallest
value of 4α+ β.

To establish the function of y that gives the approximate α, we consider the
pairs {L = Log(y);Log(α)} and use the least squares method piecewisely in two
difference regions of y values: [1;50] and [51;10,000] . Here the αs are the ones
obtained as above. Figure 1 illustrates the adjusted functions for the cases of
2, 3, 4, 5 and 6 libraries. The low region adjusts a second degree polynomial
akL

2 + bkL+ ck and the high region adjusts a line uk + vkL. Table 1 presents
the coefficient values for those functions. Figure 2 shows their adjustment to
the calculated points.
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ak bk ck uk vk
k=2 0.00957978 -0.463118 -2.76474 -2.37781 -0.530119
k=3 -0.304365 1.18976 -4.60784 -0.713611 -0.968513
k=4 -0.931159 5.00318 -10.1863 0.385118 -1.28105
k=5 -0.685327 3.39467 -7.59502 1.47602 -1.57657
k=6 -0.914225 4.84175 -9.81444 1.93518 -1.70783

Table 1: Coefficients values of fitted critical level functions.

Figure 2: Dilog graphic with the simulated values of the critical level, and the
fitted functions.

We also define a score for the tags with pv < α: S = 10
(
1− pv

α

)
, which

is a practical device to order the tags by the ones which the p-value are more
distant from the critical level.

3 Bayesian Significance Test: e-value

The Bayesian test is defined on the original libraries parameters P1, · · · , and
Pk. As a prior for these parameters we consider independent and identically
distributed Dirichlet with meta parameter α1, · · · , αM . Consequently, the pos-
terior distribution for each independent parameter Pj is Dirichlet with meta pa-
rameters x1j+α1, · · · , xMj+αM [1].For this model the posterior marginal density
for the parameter pij is Beta(xij+αi, Nj+S−xij−αi), with S = α1 + · · ·+αn,
and, from independency, the joint probability of all libraries for one tag is a
product of these Beta densities.

The FBST, Full Bayesian Significance Test, was introduced in Pereira &
Stern[7] and with a long review in Pereira, Strern & Wechsler[14]. To perform
this test one needs two numerical procedures: optimization and integration.
The objective is to obtain an alternative index to p-values, namely e-values:
p for probability and e for evidence. Both indexes are numbers between zero
and one, since they are probabilities; the p-value on the sample space and the
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e-value on the parameter space.
Due to the difficulties caused by the low values of xij + αi, compared with

the high values of Nj +S−xij−αi, we consider the transformation of the betas
to the logistic-normal distributions[1]. The problem becomes more tractable
since we have to integrate regions of a joint distribution of independent normal
variables. In addition, the parameters of the normal distributions involved avoid
numerical approximation problems that would appear when using directly the
beta distributions. We recall here that the mean and the variance of the normal
distribution obtained after the logistic transformation, ζij = log[pij/(1 − pij)],
are the digamma for the mean and the trigamma for the variance. In other
words, the mean and the variance are, respectively:

µij =Ψ(xij + αi) + Ψ(Nj − S − xij − αi) (9)

σ2
ij =Ψ(xij + αi)−Ψ(Nj − S − xij − αi) (10)

Notice that the null hypothesis ζi1 = · · · = ζik is equivalent to the original
hypothesis pi1 = · · · = pij . Hence, the test is performed in this normal density
replacing the work with the beta density.

4 p-value versus e-value

In order to illustrate the results of the two tests we calculate both p-values and
e-values for all tags that appears in the data set of Alzheimer Disease (GSE6677
of GEO) with four libraries.

To obtain the relationship between p-values and e-values we consider p-value
intervals of length 0.04. In each of those intervals we calculate the weighted aver-
age of the e-values. The weighing system was defined by the y values. We them
obtain the pairs (p,e) where p is the center of the interval and e the weighted
average. A Beta distribution function was adjusted to those pairs as a function
of p-values. The best fit was the Beta distribution with parameters a=0.66 e
b=1.036, corresponding to a beta with mean 0.39 and standard deviation 0.30.
The values of the two significance levels and the fitted function are illustrated
by Figure 3.

5 Final Remarks

This paper presented two new methods to compare transcript counting libraries.
There are other alternative ones in the literature that have been widely used.
However, when comparing tags by their differentiating expressions we may have
been comparing values obtaining from different methods: χ2 for highly expressed
tags, which make use of asymptotic characteristics, and exact tests for low
expressed tags. Both of our methods are exact and have the same methodology
for all kinds of expressing tags. We based our calculus on the original definition
of extremer sample points. We do not make any use of asymptotic results as the
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Figure 3: Linking function for p-value and e-value.

χ2 test do. Both methods are independent of dimensionality both in parameter
and sample spaces.

In the last section we can see that there is no disagreement between the
two tests. The differences among their values are due only to the fact that the
p-value is an integral in the sample space although the e-value is an integral
in the parameter space. Even with that difference they converge to the same
conclusions most of times.

The two methods are implemented in C language and the source code is
freely available with GPL license in the internet site http://code.google.
com/p/kempbasu/

6 Authors’ contributions

CAdBP conceived the methods. LV implemented them and performed the anal-
ysis. Both authors wrote the paper. Special thanks to Helena Brentani for text
revision.
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