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Sankhy? : The Indian Journal of Statistics 

1987, Volume 49, Series B, Pt. 1, pp. 23-35. 

ROBUST LINEAR PREDICTION IN FINITE 

POPULATIONS: A BAYESIAN 

PERSPECTIVE 

By HELENO BOLFARINE, 

CARLOS ALBERTO DE BRAGANCA PEREIRA 

and 

JOSEMAR RODRIGUES 

Universidade de Sao Paulo, Brasil 

SUMMARY. In this article, the multiple regression model is used to describe relation 

ships among quantities associated to finite population units. Postulating normal priors for 

the regressor parameters and for the error vector, after observing a sample, a posterior distribution 

for the unsampled part of the population is obtained. The case of noninformative priors is covered 

as a limit of the normal priors. We describe the general conditions under which omission of addi 

tional auxiliary regression variables does not affect the posterior prediction. Some standard situa 

tions are discussed under this Bayesian approach. A general class of predictors suggested by 

such robustness conditions is considered and some well known predictors (the ratio estimator for 

example) are shown to be elements of this class, proving that there are situations where they are 

robust predictors. This paper may be considered as a Bayesian version of Pereira and Rodrigues 

(1983) justifying and unifying some results of Roy all and Pfeffermann (1982). The concept of 

robustness treated here follows in Barlow and Wu's (1981). 

1. Introduction 

This article deals with a finite population P = 
{1, ..., N}, of N (known) 

identifiable units. For every unit k of P, there are associated M+l quantities, 

yjc, xicx, ..., XjcM, where all but yk are known. A matrix of order NxM and 

rank M whose row k (k 
= 1, ..., N) is the row vector X'h 

= 
(xkl, ..., xjcm) is 

represented by X. The column vector of unknown quantities is represented 

by y whose transpose is y' 
= 

(yv ...,yx). 

In order to describe his uncertainty about y and his prior information 

about the relationships among y and X, a Bayesian, called here Bayesian 1, 

considers the model 

y = X?+e 

AMS (1980) subject classification: 62D05, 62F15. 

Key words and phrases : Bayesian linear prediction, weak robustness set, robustness set, 

balanced sample, shrinkage factor, class of Bayesian robust predictors. 
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24 H. BOLFARINE, C. A. DE. B. PEREIRA AND J. RODRIGUES 

where (i) e is a multivariate normal random vector of order N with null 

mean vector, represented by E-^t} 
= 

$, and nonsingular covariance matrix, 

denoted by Vx{e} 
? V, 

(ii) ? is a multivariate normal random vector of order M with mean 

vector E^fi} 
= 6 and nonsingular covariance matrix Frf?} 

= B. 

To gain information about a linear function of y, say l'y, the statistician, 

using a sampling plan, selects from P a sample 8. Since the data D = 
{(k, yk); 

k e 8} is a minimal sufficient statistic (Basu, 1969), S is considered as a subset 

of P (not as a sequence of elements of P). The effective sample size (the 

number of elements of 8) is represented by n which may take different values 

for distinct samples (Cassel, S?rndal and Wretman, 1977). Note that D is 

a set of the n elements of 8 together with their associated quantities y'ks. 
As in Pereira and Rodrigues (1983), ik denotes the indicator function that 

indicates whether k (k 
= 1, ..., N) belongs to 8; that is, ik = 1 if k e 8 and 

iic ? 0 if keP?8. The distribution of the random vector (iv ...,ij^) is 

called sampling design. This article is only devoted to noninformative 

sampling designs?the vector (iv ...,?n) has the same distribution for every 

iixed y. Consequently, by the conditionally principle (Basu, 1975), the 

sampling design is irrelevant for inferences about y and (iv ..., i??) may be 

considered as known. 

Some important aspects of the Bayesian inference are highlighted in the 

next section. Section 3 introduces the main result of this article which 

presents a general condition for the Bayesian robustness. Some standard 

situations are discussed, under this robustness considerations, in Section 4. 

A class of predictors satisfying the robustness condition is introduced in 

Section 5. This class includes the ratio estimator which proves that there 

are situations where this predictor is robust. 

2. Bayesian prediction 

The quantity of interest, l'y, may be partitioned as 

l'y 
= 

l'Isy+l'(I-Is)y 

where Is is a diagonal matrix of order N with its k-th diagonal element being 

ik (k 
= 1, ..., N) and / is the identity matrix of order N. It is clear that, 

after D (the data) has been observed, I'Isy becomes known and the part of 

l'y that remains unknown is l'(I?Is)y. Hence, a Bayesian naturally 

describes his uncertainty about l'(I?ls)y, the unobserved part of l'y, by 

the conditional (posterior) distribution of l'(I?ls)y given Is\f- As in 

Pereira and Rodrigues (1983), I$y is replacing D as data representation. 
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ROBUST LINEAR PREDICTION 25 

For simplicity, the following notation is used in the sequel : 

Hi 
= 

isy, Ih 
= 

(i?is)y, Xi 
= 

?s X, X2 
= 

(I-Is)X, 

Vx 
- IsVIs, V2 

= 
(/-/*) F(/-J,s), 

and F12 
- 

F^ 
- 

/?F(/-/?). 

It is interesting to notice that y'iy2 
= 0 and FXF2 

= * where * is the 

square null matrix (here of order N). Restricting the study to the case 

where Xj has rank M and representing the generalized inverse of a square 
matrix A by A~ and, if A is non singular, the ordinary inverse by A'1, the 

elements below complete the notation 

4-1 = 
(XftXJ, 

C = 
(A-i+B-1)-^-1, C0 

= 
(?-i+B-1)-1?"1 

and ? = 
?AT^f?/i 

Note that C+C0 is the identity matrix of order M and ? is the classical 

Gauss-Markov estimator of ?. 

The following result introduces the element of work, the posterior dis 

tribution, of Bayesian 1. 

Theorem 1 : For Bayesian 1, the conditional (posterior) distribution of 

y2 given yx (the data) is multivariate normal with mean vector 

^{?/sI?/i} = 
xs+v^y^-x?) 

and covariance matrix 

?M^lfc} 
= 

(Vz-v21vrVn)+(x2-v21v;v12)CA(x2-v21vTv12y 

where ? 
? 

^i{?l?/i} 
= C$+C<P ^ the Bayesian estimator of ?. 

Proof : To conclude that C$+C0b is the Bayes estimator of ?, apply 
the lemma of Lindley and Smith (1972) to the model yx 

= 
X-?+Ist 

To complete the proof, consider the joint distribution of yx and y2, 

apply result 8a.2.1.1 of Rao (1973) to obtain the conditional distribution of 

y%\(yv ?), and finally use the properties of conditional expectation (and 

variance). 

Note that the posterior distribution of l'y, the quantity of interest, is 

normal with mean 
l'yi+l'F1{y2\y1} and variance ^V^y^lUijl 

Following Diaconis and Ylvisaker (1979), from the fact that C+C0 is 

an identity matrix, the Bayes estimator ? =C?+C06 may be viewed as a 

generalization of the convex combination among the sample contribution 
a. 

(?) and the prior contribution (6). 

Bl-4 
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26 H. BOLFARINE, 0. A. DE B. PEREIRA AND T. RODRIGUES 

For the case of noninformative prior for ?, the square null matrix, O 

(here of order M), replaces the matrix B-1, the inverse of the covariance 

matrix of ?. Hence, ? 
= 

? indicating that there is no prior contribution 

in the prediction of ?, and CA = A showing that the results of Roy all and 

Pfeffermann (1982) obtain. 

The following example illustrates the applicability of Theorem 1, 

Example 1 : In the model described, suppose : 

(1) M = 1; that is, X' = 
(xv ..., xN). 

(2) F is a diagonal matrix whose k-th diagonal element is vxk (k=l, ..., N) 

where v is a known real number (positive if xks are positive). 

(3) ? is normally distributed with finite real mean b and variance B > 0. 

By Theorem 1, y2\y? has a multivariate normal distribution with mean 

vector 

and covariance matrix F2+( ?~* 
+?j X2X'2 

where 2 indicates the sum over P and X2 
= 

((1?ii)xv ..., (l?iN)xN). 

Suppose now that B is so large that it is not absurd to substitute 0 for 

B"1. Now, let T = 
y1+...+yN 

= 
(1, ...,l)y be the quantity of interest. 

Hence, 

^i{2*l?i}= #-- Si*ifr= (l+??Z=?L) T, 

and VX{T\yj = 
(N-n)v(l+% 

? --- 
) x, 

where xx and %2 are the means of the auxiliary variable for the sampled and 

the unsampled units, respectively, and Tt 
= 

(1, ..., l)y? is the sampled part 

of T. It is interesting that the Bayes predictor E?{T \ y-? is the ratio esti 

mator of the classical Survey Sampling Theory. 

As a final remark, if the posterior variance is regarded as a good measure 

of uncertainty, a Bayesian should take xx as large as possible, and hence, 

?2 as small as possible. This suggests that sampling designs be purposive 
rather than random. 
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ROBUST LINEAR PREDICTION 27 

3. Bayesian robustness 

The concept of Robustness considered in this paper, was inspired, by 

Barlow and Wu (1981) rather than by Smith (1983). 

Consider a second Bayesian, called Bayesian 2, who believes that Bayesian 
1 has omitted, in the regression model, some important auxiliary variables. 

Although they do not agree on the prior of y, they do agree on the distributions 

of ? and e. In fact, Bayesian 2 considers the model 

y 
= 

X*?*+e 

where 

(i) is as described by Bayesian 1; 

(ii) X* is a matrix of order Nx(M-\-L) whose M first columns are those 

of X and the last L columns form a matrix Z whose k-th row (k 
= 1, ..., N) 

is Z'k 
= 

(zkl, ..., zjcl). That is, one admits L additional auxiliary variables 

and the design matrix becomes X* ? 
(X; Z); 

(iii) ?*' 
= 

(?'; 8') where ? is as before and 8 is a column vector of order 

L. Here, ?* is a multivariate normal vector of order M-\-L with mean 

\B D 1 
b* = 

(6'; d')' and covariance matrix B* ? ~, ? . Note that, marginally 

? is as described by Bayesian 1. 

'o 

A set of conditions, j?, on the prior considerations of the two Bayesians 
is said to be a "Robustness set" if under R these two statisticians reach the 

same inference about the unknown quantity of interest. 

A formalization of this concept is included in the two definitions below. 

In the sequel E2{-} and V2{-} are the mean and covariance operators for the 

model considered by Bayesian 2. 

Definition 1 (Weak Robustness) : A set of conditions R is a "weak 

robustness set" in relation to any linear function of y, say l'y, for a class S 

of Bayesians, if under R the conditional (posterior) expectations of y2 (of l'y) 

given yl9 for all the elements of ?8, are equal. 

Definition 2 (Robustness) : A set of conditions R is a "robustness 

set" in relation to any function of y (to a linear function l'y) for a class S of 

Bayesians, if under R the conditional (posterior) distributions of t/2 (of l'y 

given yv are the same for every element of &. 

Note that a set R may satisfy Definitions 1 or 2 for a class ?3, but may 

not satisfy them for a different class f?!. 
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28 H. BOLFARINE, C. A. DE B. PEREIRA AND RODRIGUES 

As before, the sampled and unsampled quantities are denoted by 

X[ 
= 

ISX*, XI 
= 

(I-Is)X*, Z1 
= ISZ and Z2 

= 
(I-ls)Z, 

which implies that 

Xl 
= (X1,Z1) and X? 

= (X2;Z2). 

The main contribution of this paper is in the three following results 

(Theorems 2 and 3, and Corollary 1) because in that way the authors may 

pin-point the roles of the moments, the prior distributions, and the population 

quantities of interest. In that way, the authors believe that some obscure 

points of Royall and Pfeffermann (1982) are clarified. 

Theorem 2 : If a set of conditions, R, envisages that 

(i) 8 and ? are independent, and 

(ii) l'Z2 = l'UXi-VnV?XJiA-i+B-^Xi+VuW?Zi, 

then R is a "weak robustness set", in relation to the linear function l'y, for any 

class, &, of Bayesians (not necessarily including Bayesians 1 and 2) whose 

posterior means of y2 are either equal to E1{y2 \ ?/J or E2{y21 j/J. 

Proof: First write for Bayesian 2, y* 
= 

y? Zh = 
X?+e, y\ 

= 
Isy* 

and y\ 
= 

(I?Is)y*. Since ? is independent of 8, from Theorem 1 we have 

EM | yv 8} 
= 

E2{yl | y\, 8} 
= 

X?+V21V,(,,{-XJ) 

where ? 
= 

C?+C0b and ? 
= 

fi-AX'jVjZjS. 

Hence, 

E2{yt I Vi, 8} 
= 

E,{y21 y1}-XtCAX[VTZ1t-VtiV-1Z1t 

+V21V-X1CAX[V~1Z18 
and 

^{?/.l?/i, 8} 
= 

Ex{v2\ Ul}+Z2t>-[(X2- VaV-iX1)CAXi+Va\V-1Z18. 

We end the proof by noticing that 

E,{y2\y1} 
= 

E2{y2\yvS}\y1}. D 

The next result shows why the statement 
' 
'Because the condition in 

Theorem 1 is true for every fixed 8, it is true when S has any prior distribu 

tion..." of Royall and Pfeffermann (1983) needs a proof. In fact, conditions 

that are true under the conditional distribution do not need to hold under 

the marginal distribution. In the particular case of that paper, "... is true 

for every fixed 8..." means that it is true conditionally on S which does not 

necessarily imply that it is true marginally. For some counter examples see 

Basu and Pereira (1983), 
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ROBUST LINEAR PREDICTION 29 

Theorem 3 : For Bayesians 1 and 2, the set of conditions R, in Theorem 2, 

is actually a "robustness set" in relation to the linear function l'y. 

Proof : Since y21 yx is normally distributed for both Bayesians and, 

under R, E1{l'y2 y^ 
= 

E2{l'y2\ yj, to prove that the two posterior distribu 

tions of V y2 are equal (under R) we need only to prove that 

v1{i'y2\y1} 
= 

v2{i'y2iy1}. 
Note that 

V*{l'y* I i/i} = V2{E2{l'y21 yv 8} | yJ+Et{V$'yt | ylf 8} | y? 
and under R, E2{l'y2\yv 8} 

= 
E1{l'y2\ i/J which is independent of 8 that 

makes V2{E2{l'y2 \ yv 8} y?} null. On the other hand, since 

r&'vz I y? 8} = v$'y\ I ?/i> 8} = vx{i'y, I y& 
we have that 

E?y&'y*\yi>*} 
= 

v&'y*\v? 

which concludes the proof. 

Corollary 1 : For Bayesians 1 and 2, if the set of conditions R in Theorem 

2 includes condition (ii) for every vector I of order N, then R is a robustness set 

in relation to any function of y. 

This result is proved by recalling that if Vy2 is normal for every I, then 

y2 is multivariate normal. 

It is important to emphasize that the normality of 8 and the independence 
of ? and 8 are essential for Theorem 3 and Corollary 1. However only the 

independence is essential for Theorem 2. 

Another important fact is that conditions (i) and (ii) of Theorem 2 are 

sufficient conditions for robustness. If in the place of (ii) we consider 

(ii)' l'Z2E2{S | Ul} 
= 

l'KXz-V^X^A-i+B-^Xl +VaW{Z1Et{h | y? 

they turn out to be necessary and sufficient conditions for robustness. How 

ever, condition (ii)r depends on the data y1 which may not be feasible since 

yx is obtained after 8 has been chosen. Note that condition (ii)' implies 

that 

where, as before, d = 
E2{S} is a column vector of order L. From this last 

equality, for L = 1, a strong result for robustness is stated next. 

Corollary 2 : If S is a scalar with finite non-null prior mean, E2{$}, then 

R is a {weak) robustness set in relation to l'y (for the class S of Theorem. 2) for 

Bayesians 1 and 2 if and only if R contains (i) and (ii) of Theorem 2. 
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30 H. BOLFARINE, C. A. DE B. PEREIRA AND T. RODRIGUES 

The following example shows that many standard situations may be 

viewed as applications of the Bayesian robustness results discussed here. 

Example 2 : Suppose that F is a positive definite diagonal matrix and 

define Ff 
== IgV^Is = Is F*"1. Suppose in addition that B'1 is not far 

from the null matrix (noninformative prior for ?) and that ? and 8 are inde 

pendent. Then, condition (ii) reduces to 

(iii) l'Z2 = 
l'X2AX[V^Z1 

or equivalents l'(l-Is)Z 
= 

l'(I-Is)X(X'IsV~1IsX)-1X'IsV-1Z. 

Under these robustness conditions ly2\y1 is normally distributed with mean 

and variance given respectively by 

= 
V{i-i8)X{X'hv-*X)-ix'isv-1y1 

and by 

^{l/?2l!fi} 
= 

F1{I'ya|?1} 
= 

l'(l-Is)[V-i+X(X'IsV-iX)--iX'](l-Is)l. ... (1) 

Condition (iii) above, surprisingly, is the condition that appears in 

Theorem 2 of Pereira and Rodrigues (1983) which is a paper that discusses 

robustness under the classical set-up. This particular condition only ensures 

that the best unbiased estimator of l'y under the model y 
? 

X?+e is un 

biased under the model y 
= 

X? + Zb+e. This suggests that condition 

(ii) of Theorem 2 may actually be related only with the expectations of l'y. 

It seems now clear as to why the main result of this paper is divided 

into two theorems and two corollaries by way of pin-pointing the role of 

normality in this linear theory of Bayesian robustness. In fact, if F12 is 

null, Theorem 2 holds for every independent prior distribution (with finite 

first moment), chosen for , ? and 8. Normality is needed for Theorem 3 and 

Theorem 2 when F12 is not null. However, for Bayesians 1 and 2, it would 

be enough to consider Definition 2 and Theorem 3. 

The next section trenats some interesting examples. 

4. Special examples 

Example 3 : Under the conditions of Example 1, suppose that Z' = I' 

= 
(1, ..., 1). Condition (ii) of Theorem 2 reduces, in this case to 

(v \ 

a?! H-p*). 
This condition guarantees the robustness of 
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ROBUST LINEAR PREDICTION 31 

if ? and 8 are independent and normally distributed. If 0 be substituted for 

v * 

-=->, then T is the ratio estimator of T which is robust if %2 
= 

&v the balanced 

sample property. 

Note that in Example 1 the prescription was to maximize xx in order to 

minimize the posterior variance of T. However, Example 3 vindicates a 

balanced sample. Hence, since the selection of 8 has to be decided a priori, 
a Bayesian may want to follow the rules of selection that we present next : 

(a) If one does not have any doubt about the non-inclusion of S in the 

model, he must decide for a sample that makes xx maximum. 

(b) If one is not sure about the value of S in the prediction of T, he must 

decide for a balanced sample. In both cases purposive samples are re 

commended. 

Next example has been considered by many authors, see Pereira and 

Rodrigues (1983) for a complete review. 

Example 4 : Consider the following elements, X' = V = 
(1, .... 1), 

V = vl, b is a finite real number, B is a positive real number. 

f x1 x\ 
... xT{ 1 

z= i : : ... : ,, ? i 

and D0 
= 

(0, ..., 0), the null vector of order L. The prediction of the total 

T = 
yx-\-,..-\-yN for Bayesian 1 is given by 

Condition (ii) of Theorem 2 reduces to the following system of equations 

v 
where S is the sum from k = 1 to k = N. If ? is approximately equal to 

zero, then the condition above is close to the balanced sample property and 

N 
T is approximately equal to ? 

Tv the expansion estimator. 

This example shows that "balanced samples may not play any important 

role for robustness when informative priors 
are considered". 
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32 H. BOLFARINE, C. A. DE B. PEREIRA AND T. RODRIGUES 

Note that if a priori ? is expected to be zero (that is, b ? 
0), then the 

Bayes predictor of T is T = 
f 1 -\-/1 + , > ̂  

-11 rI\ that has some simi 
le n \ nBi J 

larity with an estimator proposed by Lindley (1962). Here, the factor 

v ?? 
may be called "the Shrinkage factor". 

Next we consider a class of predictors that, under noninformative 

priors, plays an important role in the theory of robust linear prediction. 

5, A CLASS OF ROBUST PREDICTORS 

The prediction of a linear function l'y is considered in this section under 

the assumptions of Example 2. That is, F is a nonsingular diagonal matrix, 

? and 8 are independent, and B_1, the inverse of the covariance matrix of ?, 

is approximately equal to the null matrix of order M which corresponds to a 

noninformative prior for ?. 

In addition to conditions (i) and (ii) of Theorem 2 and (iii) of Example 2, 

the following ones are relevant. Suppose that there is a scalar c such that 

(iv) IX2 
= 

cl'Xv 

and 

(v) IZ2 
= 

cl'Zv 

Finally, to complete the list of conditions consider 

(vi) VXXAX V- = lls 

where, as before, A = 
(X^V^X^'1. Note that since F is diagonal, (vi) is 

equivalent to I' Vx 
= 

l'X1AX1 which satisfies condition L of Royall and 

Pfeffermann (1982) for V diagonal. On the other hand, (iv), (v), and (vi) 

together imply (iii) since 

l'X2AX\V\Zx 
= 

cl'X1AX[V^Z1 
= 

cl'Z1 
- 

l'Z2. 

(iv) (vi) (v) 

This shows that (iv), (v), and (vi) together form a sufficient robustness set of 

conditions. It is important to notice that conditions (iv), (v), and (vi) are 

less restrictive than the conditions imposed by Royall and Pfeffermann (1982), 

since in that paper c is taken equal to -. 

In the rest of this section, 1' = 
(1, ..., 1). 
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ROBUST LINEAR PREDICTION 33 

Recalling Theorem 1, if (iv) and (vi) hold the posterior mean of T,the 

population total, may be written as 

T = 
E1{T\y1} 

= E2{T\y1} 

= 
i'yi+i'xS 

= i^+ci'yi 
= 

(l+c)l'y1 
= 

(l+e)T1 ... (2) 

where T1 is the sample total, and c is the scalar defined in (iv). In the parti 

ng?w) 
cular case where c = - 

(balance on X and on Z), it follows that 

N 
T = ? 

Tv the usual expansion predictor considered by many authors 
n 

(Royall and Pfeffermann, 1983). 

By applying conditions (iv), (v), and (vi) to expression (1) of Example 2 

it can be shown that 

V1{T | y?} 
= 

V2{T | Vl} 
= cH'VJ+l'VJ 

= ?'F? + (c2- ?WVJ. ... (3) 

Note that, efficiency and robustness may be attained if there is a scalar c 

that, besides satisfying (iv) and (v), minimizes the posterior variance of T 

given by (3). This emphasizes the interest on the class of predictors defined 

by expression (2). To illustrate that this class of predictors indeed contains 

interesting members, the following examples are considered. 

Example 5 : If X (or Z) includes the unit vector as a column, then 

N?n 
c =-and conditions (iv) and (v) reduce to balanced sample conditions 

on X and Z and T reduces to the expansion estimator. 

Example 6 : Suppose that the' model considered by Bayesian 1 is as 

described in Example 1, with noninformative prior for ?. Also assume that 

for Bayesian 2, yv ..., yx are conditionally independent given ? and 8 whose 

distributions are N($Xi-\-bzf, vx?), i ? 
1, ..., N, and ?, 8, and e are mutually 

independent where ? is as described by Bayesian 1. 

Here, condition (vi) is easily verified and conditions (iv) and (v) are equi 
valent to 

^2_ _ ?2_ _ n 

xx zx N?n 
... (4) vt/1 A?-| JL1 - IV 

Bl-5 
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where xv %1} x2, and z2 are the sample and unsample means for x and z, res 

pectively. Therefore, T reduces to the usual ratio predictor which is shown 

to have the robustness property under condition (4). Note that, if (4) holds 

for every sample selected, then efficiency demands a sample with x? (or 

equivalently zx) as large as possible minimizing the posterior variance. 

As a final remark, it is relevant to note that similar results are obtained 

when the finite population is partitioned into H strata (by all the Bayesians 

involved) with different regression coefficients in each stratum. Robustness 

and efficiency would then be guaranteed by selecting in each stratum h, 

h = I, ..., H, the smallest possible Cn satisfying 

x2n _ %& ___ nu 

xxn 

~~ 

\h Nh?nh 

where (a) N and n^ are the sides of stratum h and of the sampled 

part of stratum h, respectively; 

(b) Xihi z-ji, x^h, and z^n are the sampled and unsampled means for x and z, 

respectively, in stratum h. 

The best predictor of the population total in this case is given by 

T = S(l+c?)I'y? 

where 2 is the sum from h = 1 to h = H and y h is the column vector of order 

N = UN h whose components are ijchyk with ijcn = 1 if k e S and k is in stratum 

h and ijcn 
? 0 otherwise. 

6. Final considerations 

Throughout the above sections, the main applicability restrictions are 

related to the covariance matrix V of e. First, it was supposed known and 

later as unknown but a fixed constant. 

The analysis with a prior distribution postulated for V is postponed to 

a future work. The next example shows that a common V is a natural 

restriction. 

Example 7 : Consider the model y 
? 

i?+e where I' = 
(1, ..., 1) and 

? 
~ JV^O, B) for both Bayesians. They disagree only on the prior distribu 

tion for e. For Bayesian 1, e^*N$9I) and for Bayesian 2, e~ N($, vi). 

Recalling Example 4, we have that 

Ei{T\y?-T,+^=!L(i+-lBfT1 
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and that AT _t 

E?T\yi} = 
T1+^ (l+JL) Tv 

Hence, EX{T \ y?} 
= 

E2{T | f/J if and only if v = 1; that is, the two statisticians 

must have the same prior information. 

Note that from Corollary 2 we obtain a necessary and sufficient condition 

for robustness when we add a new auxiliary variable and the covariance 

matrix of e remain the same. Example 7 suggests that equal covariance 

matrix for e is a necessary and sufficient condition for robustness when the 

same model is considered. Hence, by transitivity equal covariance matrix 

for s seems to be a necessary condition for the linear robustness considered 

in this paper. 
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