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A Hierarchical Weibull Bayesian Model for
Series and Parallel Systems

Bhering, F.L.∗, Polpo, A.† and Pereira, C.A. de B.∗

∗University of São Paulo
†Federal University of São Carlos

Abstract. In this paper we present a hierarchical Bayesian approach to the estimation of compo-
nent’s reliability in a series and parallel systems using the Weibull model. The reliability problem of
a series system is similar to the survival problem of right-censored data, while the parallel system
is related to left-censored data. We used the Weibull model for the reliability time and a gamma
distribution for first level on hierarchy for both, scale and shape, parameters of the model. The es-
timation is done using Monte Carlo Markov Chain tools and Expectation-Maximization algorithm.
To exemplify the efficiency of the model we presented an study with simulated data.
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1. INTRODUCTION

For the problem of estimate the reliability of series system or competing risk, there are
many works in literature. A very important paper for this problem is the Kaplan and
Meier [2], with developed a non-parametric estimator using a frequentist approach, and
Polpo and Sinha [5] is his Bayesian counterpart. For the case o parallel system, for the
best of our knowledge, Polpo and Pereira [4] was the first to address the estimation prob-
lem, using a non-parametric estimator under Bayesian paradigm. For parametric models,
Polpo et al. [6] presented the estimation of Weibull model under Bayesian approach with
a non-informative prior. However, in our analysis this procedure showed to be hard to
estimate. The convergence of Monte Carlo Markov Chain (MCMC) algorithms are not
easy to be achieved, and thus the estimation problem is a very hard task. In this work we
suggest the use of a non-informative prior too, but considering one hierarchical level, to
have a more robust model and less problems in estimation than those find in the Polpo
et al. [6]. Also, we provide an easy way to find credible bound for the reliability function.

A series system is a arrangement of components which works only if all components
are active, that is, whenever one fails the system fails too. On the other hand, for the
parallel system fail, all components must fail.

Rodrigues et al. [7] performed a simulation study of three different methods to es-
timate the reliability data. They compared the Kaplan-Meier estimator [2], maximum
likelihood estimator (MLE) and the Bayesian plug-in estimator (BPE) for parametric
Weibull model. Their results indicated that both MLE and BPE performed very similar
and the Kaplan-Meier was the inferior estimator. However they did not addressed the
question of credible bounds for the reliability function, which is one of our objective.

The estimation of reliability function was made as follows: (i) we draw a sample
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from the posterior distribution of the Weibull parameters; (ii) using the appropriate
transformation, we evaluated a sample from the posterior of reliability function; (iii) for
each reliability time, we evaluate the posterior mean, based in the posterior distribution
of the reliability function, and use as point estimate. The high posteriori density (HPD)
procedure was used to evaluate the credible region for the reliability function for each
point. We call the reader attention that we are not using the plug-in estimator in this
work, we are evaluating the posterior mean of the reliability function based in the
Weibull model. Hence, this procedure is superior, in our opinion, than those used by
Rodrigues et al. [7], and also simplifying the problem of estimating credible bounds. A
comparative study of both procedures is a subject for a future work and will not be treat
here.

This paper is organized as follows. In Section 2, we describe all functions involved
in the estimation procedure. In Section 3, a numerical example is analyzed to illustrate
the procedure presented in this paper. Some consideration and comments are given in
Section 4.

2. THE MODEL

We will use the same notation as in Polpo et al. [6]. Consider a system of k components
and let (Xj) j∈{1,...k} the sequence of failures times of all components. We assume that
this sequence is composed of independently random variables with Weibull distribution.
Recall that we only observe a random vector of two variables, namely, (T,δ ) with
T = min(X1, . . . ,Xk) for the series system and T = max(X1, . . . ,Xk) for the parallel
system, and δ = j if T = Xj, for j = 1, . . . ,k. The δ quantity can be viewed as an
indicator function of the component that caused the system failure.

Consider a sample (size n) of independent and identically distributed systems (all se-
ries or parallels). The observations are represented by (T,δ ) = {(Ti,δi) : i = 1, . . . ,n}.
Also, the reliability function of j − th component is given by R j(t) = P(Xj > t),
j = 1, . . . ,k. Therefore, for the whole series system the reliability function is R(t) =
∏k

j=1 R j(t) and for the parallel system is R(t) = 1−∏k
j=1(1−R j(t)).

2.1. Likelihood, Priors, Posterioris

We define a random variable X with Weibull distribution and parameters θ = (β ,η),
that is,

P(X > x|θ) = R(x|θ) = exp

{
−
(

x
η

)β
}

(1)

for x > 0, β > 0 (shape) and η > 0 (scale).
Then, the likelihood function for the series system is given by

L(θθθ |t,δ ) ∝
k

∏
j=1

n

∏
i=1

[ f j(ti|θ j)]
I{δi= j} [R j(ti|θ j)]

1−I{δi= j} (2)
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and for the parallel system,

L(θθθ |t,δ ) ∝
k

∏
j=1

n

∏
i=1

[ f j(ti|θ j)]
I{δi= j} [1−R j(ti|θ j)]

1−I{δi= j} (3)

where f is the density function of a random variable with Weibull distribution, θθθ =
(θ1, . . . ,θk), θ j = (β j,η j), for j = 1, . . . ,k and I is the indicator function.

The priors distributions were considered independent with β j ∼ gamma(mβ j ,vβ j),

η j ∼ gamma(mη j ,vη j), π(mβ j) ∝ π(mη j) ∝ 1, and vβ j and vη j are known constants,

j = 1, . . . ,k. Then

π(θθθ) ∝ π(θθθ |mmmβββ ,vvvβββ ,mmmηηη ,vvvηηη)π(mmmβββ )π(vvvβββ )π(mmmηηη)π(vvvηηη)

∝
k

∏
j=1

π(θ j|mβ j ,vβ j ,mη j ,vη j)π(mβ j)π(vβ j)π(mη j)π(vη j)

∝
k

∏
j=1

β
m2

β j
/vβ j

−1

j exp{−mβ jβ j/vβ j}
(vβ j/mβ j)

m2
β j
/vβ j Γ(m2

β j
/vβ j)

η
m2

η j
/vη j−1

j exp{−mη jη j/vη j}
(vη j/mη j)

m2
η j/vη j Γ(m2

η j/vη j)

where mmmβββ = (mβ1
, . . . ,mβk

) and mmmηηη = (mη1
, . . . ,mηk) are the prior mean parameters,

vvvβββ = (vβ1
, . . . ,vβk

) and vvvηηη = (vη1
, . . . ,vηk) are the variance (precision) prior parameters,

and mβ j ,mη j ,vβ j ,vη j > 0, j = 1, . . . ,k.

In this case, we have that the posterior distributions of series and parallel systems are,
respectively,

π(θθθ |ttt,δδδ ) ∝ π(θθθ)
n

∏
i=1

[
tiβ j−1β j

η j
exp

{
−
(

ti
η j

)β j
}]I{δi= j}[

exp

{
−
(

ti
η j

)β j
}]1−I{δi= j}

,

and

π(θθθ |ttt,δδδ ) ∝ π(θθθ)
n

∏
i=1

[
tiβ j−1β j

η j
exp

{
−
(

ti
η j

)β j
}]I{δi= j}[

1− exp

{
−
(

ti
η j

)β j
}]1−I{δi= j}

,

where ttt = (t1, . . . , tn) are the observed failure time of the system, δδδ = (δ1, . . . ,δn) are the
indicators which component fail, and the others quantities are as defined before.

2.2. Estimation

Arguably, we can use the mode of the integrated likelihood of (mmmβββ ,mmmηηη) to determine
a prior distribution [1]. The EM algorithm [3] can be used to obtain the maximum
a posterior estimates of mmmβββ and mmmβββ . The MCMC procedure is used to generate a
sample from the posterior distribution of θθθ . We are omitting the details about these
computational tools because they are already well known tools and are not the main
subject of the present paper.
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3. NUMERICAL EXAMPLE

Consider that X1 has Weibull distribution with mean 2 and variance 2, X2 has gamma
distribution with mean 2 and variance 0.816, and X3 has log-normal distribution with
mean 2.014 and variance 2.639. We generated a sample (with size n = 100) of a series
system with these three components and another sample (with size n = 100) of a parallel
system with this same three components. The components was choose to have similar
means but different variances and, moreover, different distributions. We use the same
theoretical components in both simulation (series and parallel systems) to verify in each
situation the difference of the proposed model and the available data. Note that, our
interest is in the estimation of the reliability function of each component, and with our
simulated example we have a huge amount of censored data. Then, this is a challenge
example.

For the estimation procedures we used a MCMC tool and we the convergence of the
algorithm was very “fast”. We only needed to discard the first 10,000 samples from the
posterior to achieve the stationary measure and then generate a sample from the pos-
terior. To perform the estimation of the reliability functions and the credible intervals
we used a sample with size 1,000 from the posterior. To verify is the estimation was
reasonable, we compared the “true” reliability of each component with the estimated re-
liability function. Table 1 present the posterior mean and the posterior standard deviation
of each parameter involved in the model, for both systems. We notice that the standard
deviations are relatively low, indicating the estimates are good.

TABLE 1. Summary of estimated parameters

Series system Parallel system

Mean Std. Deviation Mean Std. Deviation

β1 1.4646 0.1591 1.3554 0.1383
η1 2.0999 0.2322 2.7416 0.2448

β2 3.0913 0.3795 2.4724 0.2898
η2 2.1567 0.1766 2.2634 0.1409

β3 1.4777 0.1597 0.9485 0.1136
η3 1.8199 0.1851 2.1766 0.2990

In figures 1–3, we can see by the 95% credible bound that “true” reliability of each
component was good estimated. For the component X1 in the parallel system (figures
4–6) the 95% credible bound does not contains the “true” reliability function. but the
other two components has good estimation. Considering our challenging example we
understand that this “problem” in the estimation it is normal, and when the estimate was
not good, does not mean that was horrible.
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FIGURE 1. Series system example: component 1.
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FIGURE 2. Series system example: component 2.
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FIGURE 3. Series system example: component 3.
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FIGURE 4. Parallel system example: component 1.
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FIGURE 5. Parallel system example: component 2.
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FIGURE 6. Parallel system example: component 3.
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4. FINAL REMARKS

We presented a Bayesian statistical analysis with a hierarchical model for the problem
of estimating the reliability function and credible bounds. This model shows a good
convergence of MCMC tools, making easier the inference process. Also, we used in our
formulation an “non-informative” scheme to define the prior hyper-parameters, which
implies that the procedure can be used for any type of data. The simulated example
showed that the model performed well, however for component X1 in the parallel system
we found the “worst” estimates for reliability function. We believe with an improvement
in our algorithms can give us better estimates. This will be addressed in future works.
Another important aspect is the ease of obtain the credible bounds for the reliability
function, which is not a simple task when one use a plug-in estimator for the reliability
function. Some questions that should be addressed in future works are: (i) the hypothesis
test of the components, for example, one can be interested in test the hypotheses of equal
means of all components (or a subset of components), and (ii) other types of systems,
extend this work to coherent system perhaps.
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