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Abstract The completion of the genome sequence of Plasmodium falciparum re-
vealed that close to 60% of the annotated genome corresponds to hy-
pothetical proteins and that many genes, whose metabolic pathways or
biological products are known, have not been predicted from sequence
similarity searches. Recently, using global gene expression of the asexual
blood stages of P. falciparum at 1 h resolution scale and Discrete Fourier
Transform based techniques, it has been demonstrated that many genes
are regulated in a single periodic manner during the asexual blood stages.
Moreover, by ordering the genes according to the phase of expression,
a new list of targets for vaccine and drug development was generated.
In the present paper, genes are annotated under a different perspective:
a list of functional properties is attributed to networks of genes repre-
senting subsystems of the P. falciparum regulatory expression system.
The model developed to represent genetic networks, called Probabilistic
Genetic Network (PGN), is a Markov chain with some additional prop-
erties. This model mimics the properties of a gene as a non-linear sto-
chastic gate and the systems are built by coupling of these gates. More-
over, a tool that integrates mining of dynamical expression signals by
PGN design techniques, different databases and biological knowledge,
was developed. The applicability of this tool for discovering gene net-
works of the malaria expression regulation system has been validated
using the glycolytic pathway as a “gold-standard”, as well as by creat-
ing an apicoplast PGN network. Presently, we are tentatively improving
the network design technique before trying to validate results from the
apicoplast PGN network through reverse genetics approaches.
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1. INTRODUCTION

Malaria remains the most devastating parasitic disease worldwide, and every
year is responsible for 300–500 million clinical cases and 1–2 million deaths,
mostly in children below 5 years old [http://www.who.int/tdr/diseases/malaria/
default.htm]. Furthermore, the appearance of drug-resistant parasite strains to
most antimalarial drugs and of insecticide-resistant Anopheles mosquitoes, in
addition to the global warming, all have exacerbated this public health situa-
tion.

The advent of genomics into malarial research is significantly accelerat-
ing the discovery of control strategies. Indeed, the first draft of the complete
genome sequence of Plasmodium falciparum, the most deadly human malaria
parasite, was released only three years ago [9], but it has substantially modified
the way of thinking for the development of new vaccines, drugs and alterna-
tives of control strategies. Moreover, it has allowed the initiative for global
scale studies on the transcriptome [1,4,10,12,16], proteome [7,10,14,15] and
metabolome [23] of the parasite in different developmental stages.

Recent experimental evidence indicates that malaria parasites present
unique mechanisms for control of gene expression: data from SAGE analysis
has demonstrated that approximately 17% of abundant tags correspond to anti-
sense transcripts of annotated genes [17], that suggests that these anti-sense
transcripts might be involved in post-transcriptional regulation; reverse genet-
ics approaches have shown that introns co-regulate expression of variant genes
[2]; although promoters seem to be bi-partite, it is postulated that there must
be unique sets of malarial transcription factors due to the high AT-content of
intergenic regions and absence of recognized regulatory transcription factors
[3,13].

Progressing the research effort, dynamical global gene expression measures
of the intraerythrocytic developmental cycle (IDC) of the parasite at 1 h-scale
resolution were recently reported [1]. Moreover, using Discrete Fourier Trans-
form (DFT) based techniques, researchers verified that, during this life stage,
the parasite seems to follow a rigid clockwise program where genes with
common functions are transcribed at similar times. This study recognized
73% of the quality controlled (QC) dataset available for the CAMDA contest
(http://www.camda.duke.edu/camda04/datasets/). The QC dataset comprises
3719 elements with relative expression signals with almost sinusoidal shape in
the logarithmic scale or, equivalently, pulse like shape in the original relative
expression scale. By ordering these signals by phase, they constructed a wave
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of signal propagation and ordered genes. Analysis of ordered genes throughout
the asexual blood stages provided a comprehensive and biologically meaning-
ful list of genes with putatively similar functions [1]. This analysis, however,
did not include the elements that did not have almost sinusoidal shape and
which, however, represented 27% of the QC dataset (i.e., 1361 elements).

In this paper, a list of functional properties is attributed to networks in-
stead of individual genes. To do so, a tool was created that integrates mining
procedures of dynamical expression signals and conventional databases (i.e.,
genome, proteome, metabolome, and clinical data).

This annotation approach may be applied to all spotted oligonucleotides of
the QC set, despite the shape of their dynamical signals being sinusoidal or not.
Subsystems of the malaria expression regulation system are modeled as prob-
abilistic genetic networks (i.e., a stochastic process that is a specialization of a
Markov chain) [20]. These networks are designed from the observed dynami-
cal signals. The designed subsystems are annotated using conventional public
databases and biological knowledge. The subsystems to be designed are de-
fined from seed genes of particular biological interest, i.e. the subsystems are
composed by genes that predict or are predicted by seed genes [11]. For exam-
ple, some genes analyzed by the DFT approach were used as seeds to discover
other non-sinusoidal genes associated to the same phase of the parasite life
cycle.

Following this Introduction, Section 2 presents the concept of probabilistic
genetic network (PGN). Section 3 describes the technique used for designing a
PGN. Section 4 describes the developed software tools. Section 5 gives results
of the application of the design techniques to simulated PGNs and presents
preliminary biological results obtained by applying the proposed technique.
Finally, the results and future steps of this research are discussed in the Con-
cluding Remarks.

2. PROBABILISTIC GENETIC NETWORKS

The life of an organism depends on many metabolic pathways that are reg-
ulated by gene expression networks. The mechanism of pathways regulation
involves a complex system with many forward and feedback signals. These
signals are RNA, produced by gene expression, and protein complexes, pro-
duced by interaction of proteins built by translation of mRNA. Protein com-
plexes act as feedback signals that control gene transcription. Forward signals,
in the form of enzymes, act as control metabolic pathways. In such networks,
the expression of each gene depends both on its own expression and on the ex-
pression levels of other genes at previous time instants. This complex network
of interactions can thus be modeled by a dynamical system.
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Finite dynamical systems, discrete in time and finite in range, can model
the behavior of gene expression networks. In such model, we represent each
transcript by a variable that takes the expression value of that transcript. All
these variables, taken collectively, are the components of a vector called the
state of the system. Each component (i.e. transcript) of the state vector has an
associated function that calculates its next value (i.e. expression value) from
the state at previous time instants. These functions are the components of a
function vector, called transition function, which defines the transition from
one state to the next and represents the gene regulation mechanisms. In order
to formalize these ideas, we introduce some definitions and notation. Let R be
the range of all state components. For example, R = {0,1} in binary systems,
and R = {−1,0,1} in three levels systems. The transition function φ, for a
gene network of n genes, is a function from Rn to Rn. A finite dynamical
system is given by

x[t + 1] = φ
(
x[t]),

where x[t] ∈ Rn, for every t � 0. A component of x[t] is a value xi[t] ∈ R.
Systems defined as above are time translation invariant, i.e. the transition

function is the same for all discrete time t . When φ is a stochastic function (i.e.
for each state x[t], the next state φ(x[t]) is a realization of a random vector),
the dynamical system is a stochastic process.

In this paper, we represent gene expression networks by stochastic processes.
The stochastic transition function is a particular family of Markov chains called
probabilistic genetic network (PGN).

Consider a sequence of random vectors X0,X1,X2, . . . assuming values in
Rn and its realizations denoted, respectively, x[0], x[1], x[2], . . . . A sequence
of random states (Xt)

∞
t=0 is called a Markov chain if, for every t � 1,

P
(
Xt = x[t]|X0 = x[0], . . . ,Xt−1 = x[t − 1])

= P
(
Xt = x[t]|Xt−1 = x[t − 1]).

The significance of a Markov chain lies in the fact that the conditional probabil-
ity of the future event, given the past history, depends only upon the immediate
past and not upon the remote past.

A Markov chain is characterized by a transition matrix πY |X of conditional
probabilities between states, whose elements are denoted py|x , and an initial
condition random vector of states π0. The stochastic transition function φ at
the time t is given by

φ
(
x[t]) = y,
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for every t � 1, where y is a realization of a random vector with distribution
p·|x[t].

A Probabilistic Genetic Network (PGN) is a Markov chain (πY |X,π0)

such that

(i) πY |X is homogeneous, i.e. py|x is not a function of t .
(ii) py|x > 0, for every pair of states x, y ∈ Rn.
(iii) πY |X is conditionally independent, i.e. for every pair of states x, y ∈

Rn,

py|x =
n∏

i=1

p(yi |x).

(iv) πY |X is almost deterministic, i.e. for every state x ∈ Rn, there exists a
single state, y ∈ Rn such that py|x ≈ 1.

(v) For every gene j there exists a vector aj of integer numbers such that
for every x, z ∈ Rn and yj ∈ R,

if
n∑

i=1

a
j
i xi =

n∑

i=1

a
j
i zi then p(yj |x) = p(yj |z).

These axioms imply that each gene is characterized by a vector of coeffi-
cients a and a vector stochastic function gj from Z, the set of integers num-

bers, to R. If a
j
i is positive then the target gene j is excited by gene i. If a

j
i

is negative then it is inhibited by gene i. If a
j
i is 0, then it is not affected by

gene i. We say that gene j is predicted by the gene i when a
j
i is different of 0.

The component j of the stochastic transition function φ, denoted φj , is built
by the composition of gj with the linear combination of aj and the previous
state x[t], i.e. for every t � 1,

φj

(
x[t]) = gj

(
n∑

i=1

a
j
i xi[t]

)

,

where gj (
∑n

i=1 a
j
i xi[t]) is a realization of a random variable in R, with distri-

bution p(·|∑n
i=1 a

j
i xi[t]).

The axioms that define the PGN model are inspired in biological phenom-
ena or mandatory simplifications due to the usual lack of data for the model
estimation. The main hypothesis adopted is to choose a discrete model. This
is justified because transcription and translation are discrete phenomena. The
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levels of quantization are chosen according to the available data for model pa-
rameters estimation.

Axiom (i) is a constraint just to simplify the estimation problem, but it could
be generalized easily. Axiom (ii) imposes that all states are reachable, that is,
noise may lead the system to any state. It is a quite general model that reflects
our lack of knowledge about the kind of noise that may affect the system. Ax-
iom (iii) means that the expression of a gene at a given time instant t does not
depend on the expression of other genes at t . This happens when the time step
of the model is less than the time spent for transcription-translation. Axiom (iv)
means that the system has a main structural dynamics that is subject to small
noise. This is what happens in practically all known engineering systems de-
signed by man. Axiom (v) means that genes act as a non linear gate triggered
by a balance between inhibitory and excitatory inputs, analogous to neurons.

It is important to recall that axiom (iii) might no be verified due to the 1h
time resolution limitation of the available experimental data. However, this
axiom was adopted in our model to allow statistical tractability. Of importance,
using this axiom, we were able to generate biologically meaningful results (see
below).

3. DESIGN OF PGNS

The goal of this research is to estimate a PGN representing a subsystem
of the malaria parasite gene expression network from dynamical microarray
relative expression measures and biological knowledge. In the following the
procedure adopted for PGN estimation is described.

The entropy H(X) of a random variable X is a measure of its distribution
{pi}, given by

H(X) = −
n∑

i=1

pi logpi.

The entropy has some remarkable properties: (i) all the distributions formed
by permutations of pi have the same entropy; (ii) concentrating the probability
mass of a distribution implies in decreasing its entropy. As a corollary of prop-
erty (ii), the uniform distribution presents maximum entropy and those with
minimum entropy have the total probability mass concentrated in one point.

The mutual information [5] between two random variables X and Y is the
measure defined by

I (X,Y ) = H(Y) − H(Y |X).
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It measures the probability mass concentration of P(Y ) in P(Y |X) by the
observation of X. The expectation E[I (X,Y )] of I (X,Y ) is given by

E
[
I (X,Y )

] = H(Y) − E
[
H(Y |X)

]
.

When E[I (X,Y )] = 0,X and Y may be independent variables and the condi-
tion P(Y ) = P(Y |X) should be tested. In case this condition is true, then X

and Y are independent, otherwise, they have dependence.
The expectation of the mutual information is used to estimate the PGN. The

random variable Y will be the gene value yi[t +1] to be predicted and the given
random variable X will be the vector of genes x[t] weighted by an integer
vectora, associated to gene yi . For each vector a, with ai ∈ {−1,0,+1} and at
most three values different from 0, the mean mutual information is estimated.
The first vectors a, that have larger mutual information, are selected. These
vectors indicate the connection between genes and the kind of connection:
excitatory or inhibitory.

4. DEVELOPED SOFTWARE TOOLS

The designed software system estimates gene networks from dynamical ex-
pression measures and represents them as graphs linked to malaria databases.
Firstly, the system receives the raw fluorescence intensity measures as input
and applies a quality control procedure that generates a new dataset. Then, the
signals of this dataset are normalized and quantized into three expression levels
{−1,0,+1}.

Some target genes together with the quantized signals are provided to the
main module of the system, which is responsible for computing the best pre-
dictors set for each target (based on the PGN design techniques described in
the last section).

A user-friendly graphical interface was implemented to facilitate the bio-
logical interpretation of the results. The table of predictors, the file of func-
tional groups annotated by Bozdech et al. [1] and the Overview dataset (http:
//www.camda.duke.edu/camda04/datasets) are organized and given as input
for the GraphViz (a package to visualize graphs, http://www.research.att.com/
sw/tools/graphviz). A color code was assigned to each node of the network (i.e.
oligo) according to the functional biological categories defined in [1]: tran-
scriptional machinery (pink), cytoplasmic translation machinery (blue), gly-
colitic pathways (yellow), etc. (see Figure 2). Besides, the node shape indi-
cates if the oligonucleotide is present in the Overview set or not: a square
indicates that it is present and a circle that it is not. Each node has a link to a
page with pointers to three public databases: PlasmoDB (http://plasmodb.org),
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Metabolic Pathways (http://biocyc.org/PFA/) and DeRisi’s transcriptome data-
base (http://malaria.uscf.edu/). The output including the graph and links to
public databases is fully generated in HTML.

Thus, this software allows easy access to different information of each target
gene and can help in the annotation of hypothetical proteins and null elements.
Figure 1 represents a scheme of the data analysis pipeline used in this study.

5. EXPERIMENTAL RESULTS

5.1. Simulations

For validating the proposed PGN estimation technique, artificial networks
that satisfy the PGN definition were created, simulated and estimated. These
simulated networks have 12 genes that may be predicted from one to five
genes or may even be independent. All network genes are ternary (values in
{−1,0,+1}) and p(yi |X) has at least 80% of concentration mass. The sim-
ulations were just 48 iterations long (i.e. the number of iterations present at
an 1 h-scale resolution observation of the asexual blood stages of P. falcipa-
rum). For each target gene, the five best tuples (individual, pairs, triples)
of predictors were computed according to the mutual information criterion.
The quality of a predictor g was defined as the addition of the mutual in-
formation of all tuples of predictors in which g appears. Finally, the predic-
tors were ordered by their quality. In the performed experiments, the genes
with greater quality were almost always exactly the predictors for the tar-
get gene. Some of these experiments can be found at the following site
http://www.vision.ime.usp.br/CAMDA2004/simulations/.

5.2. Pre-processing

We performed standard pre-processing procedures in the contest dataset
such as filtering low-intensity unreliable spots and dye bias normalization.
Moreover, we checked the normalization procedure described by Bozdech
et al. [1] and found that they used an overall global normalization factor to
normalize the expression ratios. There are known concerns in using global
normalization procedures since it could represent clear systematic non-linear
dependence between expression ratio and fluorescence intensities [18]. How-
ever, we verified that non-linear dependences were negligible in the complete
dataset available for CAMDA.

Bozdech et al. [1] excluded the low hybridization intensity signals since
they received the same treatment as blobs or blotches. However, important bio-
logical information may be hidden in genes that are not expressed during some
part of the intraerythrocytic developmental cycle of malaria parasites. We con-
structed a different dataset from the original output of GenePix. Original flags
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for blobs or blotches were kept, whereas non-detectable expression values of
low intensity signals were set to zero. We classified a spot as non-detectable if
the mean intensity measurement in Cy3 or Cy5 is below to some local thresh-
old value. This threshold is calculated from the distribution of pixel intensities
of the background surrounding the spot. The 90% quantile of the local back-
ground distribution was used to define the intensity threshold. Spot’s mean
intensities below to this threshold were truncated to 0. This simple rule can nat-
urally exclude unreliable signals, since the hybridization log-ratio log 2(0/0)

is not defined. However, this rule preserves the potentially relevant situations
when a signal is transcriptionally inactive only in a fraction of the time-course,
since the expression becomes log 2(0/reference) = −∞. Although this is not
a numerical ratio, the result can be incorporated in our Markovian approach
because of the quantization step. As a result of this pre-processing step the
USP-dataset used for the contest contained 6532 oligos, including 1361 oligos
with not almost sinusoidal expression, as opposed to the 3719 oligos used in
the overview dataset used by Bozdech et al. [1] to generate the phaseogram of
the IDC malaria cycle.

5.3. Signal Normalization and Quantization

In order to validate the proposed methodology, the well known glycolytic
pathway was studied. Before applying the predictor estimation techniques the
signal was normalized and quantized. The signals were normalized by the nor-
mal transformation η given by, for every signal g(t), η[g(t)] = g(t)−E[g(t)]

σ [g(t)] ,
where E[g(t)] and σ [g(t)] are, respectively, the expectation and standard de-
viation of g(t).

The normal transformation has two important properties: (i) E[η[g(t)]] = 0
and σ [η[g(t)]] = 1, for every random variable g(t); (ii) η[g(t)] = λη[g(t)],
for every real number λ. The quantization of a gene at a given instant is a map-
ping from the continuous expression log-ratio into three qualitative expression
levels {−1,0,+1} (i.e. down, null and up regulated in relation to the reference,
respectively). The quantization of a gene signal g is performed by a threshold
mapping given by

g′(t) =





+1 if g(t) � h,
0 if l � g(t) � h,
−1 if g(t) � l,

for every t � 0, where

l =
∑

g(t)<0 g(t)

|{g(t): g(t) < 0}| and h =
∑

g(t)>0 g(t)

|{g(t): g(t) > 0}| .
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Normalization and quantization have the effect of creating equivalence classes
between signals, thus decreasing estimation errors due to lack of data.

5.4. Glycolytic PGN Network

During the asexual blood stages, malaria parasites rely entirely on gly-
colysis for its ATP production [21]. Thus, we chose target genes that code
for all the 10 enzymes pertaining to the glycolytic pathway (hexokinase,
phosphohexose isomerase, phosphofructokinase1, aldolase, triose phosphate
isomerase, glyceraldehide 3 phosphate dehydrogenase, phosphoglycerate ki-
nase, phosphoglycerated mutase, enolase, and pyruvate kinase) to test our
model. Significantly, an interconnected glycolytic PGN network was gener-
ated by using the first five genes with the lowest entropic values associated
to each glycolytic enzyme (Figure 2). Moreover, analysis of 40 best predic-
tors for each glycolytic target (289 distinct oligos in total) revealed that most
of them (96%) corresponded to hypothetical proteins genes related to tran-
scription, translation, DNA and RNA synthesis, actin myosin motors and ki-
nases (http://www.vision.ime.usp.br/CAMDA2004/Table1S.html). Remaining
genes encoded surface antigens and thus, a priori, can be considered false-
positives. Worth mentioning, similar results were obtained from a list of 400
genes expressed in-phase with glycolysis obtained from data of Bozdech et al.
[1] (not shown). As expected, no genes of the TCA cycle were found in the gly-
colytic PGN network further corroborating the lack of a functional TCA cycle
during the asexual blood stages of malaria parasites [21]. Of relevance, several
oligonucleotides not included in the overview dataset due to low hybridization
intensity or non-sinusoidal signals, were included in the PGN network (Fig-
ure 2). Of relevance, two oligonucleotides (opff72413 and m11919_1) corre-
sponding to two glycolytic enzymes, hexokinase and aldolase, respectively,
excluded from the phaseogram of Bozdech et al. [1], were included in the gly-
colitic PGN network. Together, this data demonstrates the value of the PGN
model in generating a biologically meaningful glycolytic network that includes
genes not included by the Fourier approach [1].

Next, we attempted to create an apicoplast PGN network. Enzymes from
this organelle are becoming new targets for malaria since there is no homolo-
gous organelle in the human host [19,22]. Of relevance, two different computa-
tional algorithms have been developed to predict apicoplast proteins. In the first
one, a genome-wide scan of P. falciparum revealed over 550 nuclear genes that
encoded a consensus bi-partite peptide signal sequence [8]. In the second one,
genes expressed in-phase with the plastid genome and containing the bi-partite
peptide signal sequences narrowed the list of apicoplast nuclear-encoded genes
from over 550 to 156 [1]. In order to apply our algorithm, oligonucleotides rep-
resenting each of the 20 putative apicoplast genome-encoded proteins listed
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from DeRisi’s laboratory (http://malaria.ucsf.edu/) were fed to our program
and an apicoplast PGN network was generated (Figure 2). Analysis of the
results clearly indicated that our method is capable of interconnecting genes
that have been experimentally demonstrated to be part of the apicoplast (acyl-
carrier protein and ribosomal protein S9), whereas many other genes lack pre-
dicted bi-partite peptide signal sequences. These results are difficult to recon-
cile with our present knowledge of the predicted malaria apicoplast proteome.
Reverse genetics approaches similar to the ones used to define the importance
of the bi-partite peptide signal sequences [8] can now be envisioned to validate
some of these genes. Alternatively, our model describes genes not only related
to the apicoplast proteome but genes whose expression is essential to create
such network.

As our program creates PGN networks, a negative control was idealized to
further validate the biological value of our findings. Thus, eight genes, four
from glycolysis and four from the apicoplast organelle, were chosen randomly
and used together as seed genes to create PGN networks based on single-gene
and two-gene predictions. The results clearly demonstrated that the glycolysis
and apicoplast PGN networks based on single-gene predictions were not in-
terconnected (http://www.vision.ime.usp.br/CAMDA2004/ga.html). Based on
two-gene predictions, with the exception of two genes from the glycolytic
PGN network that inter-connected with the apicoplast PGN network, remain-
ing genes were not connected (http://www.vision.ime.usp.br/CAMDA2004/
ga2.html). It is important to recall that two-gene predictions are based on
21,330,246 calculations further reinforcing the value of these results. Together,
this data demonstrates the value of the PGN model in generating biologically
meaningful networks and which include genes not included by the Fourier ap-
proach [1].

An ideal PGN network will include interconnectivity networks based on
interactions of several genes. Unfortunately, the “limited” amount of data
presently available from the IDC transcriptome of P. falciparum, precludes
such analyses without introducing a large degree of error. Regardless, this data
demonstrates that the PGN model and program presented here are capable of
constructing biologically meaningful networks of malaria from dynamical ex-
pression signals of the asexual blood stages and that it can be used as a com-
plementary computational approach to Fourier analysis by including genes that
are not periodically expressed.

6. CONCLUDING REMARKS

In order to advance our knowledge on the biology of P. falciparum, we have
designed PGNs from dynamical expression signals of the asexual blood stages
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reported by Bozdech et al. [1]. Unlike their DFT approach, PGN design al-
lowed us to use all the elements available in the dataset. Significantly, this tech-
nique was applied to target genes that code for enzymes of the glycolytic path-
way and a biologically meaningful glycolytic network was obtained. Next, we
applied this algorithm to construct an apicoplast PGN network and although
“signature” apicoplast genes were found, many other genes lack the consensus
bipartite peptide signal sequence.

These results were obtained without considering the equivalence between
linear combinations of inputs, what should improve the results, since the es-
timation errors will diminish and the hypothesis is quite consistent with ob-
served gene dynamics. Besides, this model will permit to distinguish between
inhibitory and excitatory signals. Although the normal transformation creates
equivalence classes that diminishes the estimation errors, it amplifies noise in
housekeeping genes that have almost constant expression signals. One way of
circumventing this problem is to detect and exclude the housekeeping genes of
the regulatory systems study before signal quantization.

The next steps of this research include mainly improving the network de-
sign technique and validation through reverse genetics approaches of some of
the genes previously unpredicted by other algorithms as being part of the api-
coplast. If validated, the PGN approach could thus be used to annotate genes
not considered by the DFT approach and to accelerate the discovery of new
targets against malaria.
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