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Scand J Statist 9: 47-48, 1982 

Optimal Sample Depends on Optimality Criterion 

HERBERT LACAYO, CARLOS A. B. PEREIRA, FRANK PROSCHAN and CARL ERIK SARNDAL 

Bureau of Labor Statistics, Washington, Universidade de Sao Paulo, Florida State University, Universit6 de Montreal 

Received July 1980, in final form May 1981 

ABSTRACT. Four different sampling procedures are com- 
pared. Each is optimal under an appropriate optimality cri- 
terion. 

Key words: sampling, optimal, sequential testing, Bayesian 
statistics 

Please read the following problem formulation and 
select among the options listed below. 

A warehouse contains N batteries in storage. 
Batteries fail (silently) according to life distribution 
F(t) = 1 -exp { -At}, A known. At time t1 we select 
a random sample of size ni batteries and find that fi 
are failed (and discarded immediately), while n1 -fi 
are functioning and returned to the warehouse. At 
time t2 > ti we are to select a second random sample 
of n2 batteries. How shall we select our second 
sample: more specifically, how many as yet untested 
batteries shall we select and how many batteries 
tested at time t1 shall we select? (Of course, the total 
number selected must equal n2.) 

1. Select as many from among the untested 
batteries as possible. If the sample size n2 is bigger 
than the number of such batteries, choose the re- 
mainder from among the previously (at time tl) 
tested batteries. 

2. Select as many from among the previously 
tested batteries as possible. If n2 > n1 -fi, to complete 
the sample, choose the remainder from among the 
untested batteries. 

3. Compute pi e-At2 and p2 e- (t2.t) If P2 is 
closer to i than is pi, use the sampling procedure 
described in 2. If Pi is closer to i than is P2, use the 
sampling procedure described in 1. 

4. Dismiss the problem formulation as unrealistic, 
since who knows A? Set up a Bayesian model and 
proceed as in 4' below. 

You guessed it-all four choices are correct. 
That is, there are three reasonable optimality criteria 
such that for a given criterion, the optimal procedure 
is described in one of the first three statements 

above. The Bayesian procedure proposed in state- 
ment 4 is appropriate for A unknown. 

Let us take the easy cases first. Suppose our goal is 
to maximize the number of batteries that we know 
are functioning at time t2. Then it is easy to see that 
we should follow Procedure 2. The probability that 
a battery, found to be functioning at time t1, will be 
found upon inspection at time t2 to be functioning 
is e-lt2e-AtL=e- A(t2.ti) On the other hand, a previ- 
ously uninspected battery has probability e-At2 of 
being in the functioning state upon inspection at 
time t2. Since e-At2 <e-A(t2-t), it follows that the 
optimal strategy to maximize the number of bat- 
teries we know to be functioning at time t2 is as 
described in Procedure 2. 

Suppose, on the other hand, our goal is to weed 
out as many defective batteries as possible by in- 
spection. Now, the optimal plan is described in 
Procedure 1. This follows from the fact that the prob- 
ability that a battery found to be functioning at 
time t1, will be found upon inspection at time t2 to 
be in the failed state is (e--t1 - e- t2)Ie-At, - 

1 -e-(t t2). On the other hand, a previously un- 
inspected battery has probability 1 -e-At2 of being 
in the failed state upon inspection at time t2. Since 

-e- At2 >1 -e-A(t2-tI), it follows that the optimal 
strategy to weed out the maximum number of de- 
fective batteries is as described in Procedure 1. 

A third possible goal is to estimate as precisely as 
possible-precision is defined by the squared error 
loss function-the number X of functioning bat- 
teries at time t2 when A is known. The problem is 
to select a sample of fixed size, from among (a) the 
batteries already inspected at time tL and found to 
be still alive and (b) the batteries not yet inspected 
at time tl. 

Note that the (Bernoulli) variable used to indicate 
the state (functioning or not) of a battery selected 
from among (a) has variance e-A(t2-t)(1 -e-A(t2-tI)), 

while the variable used to indicate the state of a 
battery selected from among (b) has variance 
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e-At (1 - e-At2). Since we wish to obtain an estimate 
of the number X with smallest possible risk, we 
simply follow procedure 3 above. 

4'. Suppose that A is unknown and we choose a 
distribution to represent our prior opinion about A. 
In particular, suppose we choose a Gamma distribu- 
tion a priori. That is, 

fltccX-1 

11(2) =: - (1 ) 

is the prior density for A. Having observed a sample 
of size n1 at time t1 containing fi] failed batteries 
and n1 -f, functioning batteries, we compute the 
posterior mean of the function: 

PA(l -P1) -P2(1 -P2) 

= e-At2(l- e-At2) e-A(t2Ite)(-eA(t2et)) 

= e-At2 _e-2At2 - e-A(t2-tl) + e-2A(t2-tl) (2) 

where PA and P2 are defined in statement 3 above. 
If the result obtained is greater than zero, we select 
one battery from among the N-nl completely un- 
tested batteries and test it at time t2; if the result 
obtained is less than or equal to zero, we test at t2 

a battery chosen from among the n1 -f, batteries 
that survived the test at time t1. We incorporate 
this new result in the original sample and obtain an 
adjusted likelihood. With this likelihood and the 
original prior we again compute the posterior mean 
of (2) in order to decide from which set (a) or (b) the 
next battery will be selected. This procedure will 
be followed sequentially to complete the sample of 
size n2 or until either sets (a) or (b) are exhausted; 
in this case complete the sample (of size n2) with 
items chosen from the remainder set (either (a) or 
(b)). 

To specify the computations explicitly we list the 
following notation: 

n= number of batteries tested at time t1. 
= number of batteries (among these nl) failed at 

time t,. 
n12= number of batteries tested at time t1 and at 

time t2. 
fi2 = number of batteries failed at time t2 from 

among these n12. 
n2 = number of batteries tested at time t2. 

= number of failures among the n2 - n2 batteries 
tested only at time t2. (Note that thef12 batteries 
are not part of the f2 batteries.) 

For reasons of simplification we relax the above 
notation in the following formulas. The quantities 
n2, n12, f2, and fi2 are viewed below as changing 
steadily at each step of the sequential procedure. 

The general likelihood is given by: 

L - (e-Atl)lj-nl12-f1( - e-Atl)fL(e-At2)8-f2If2(l -e-At2)f2 

x (e-AtL e- At2)fl2 (3) 

We emphasize the fact that this likelihood is com- 
puted at each step with the current values of n2, 
n12 f2, and f12. 

From the likelihood (3) and the prior (1), we may 
compute the Bayes estimator for e- (c2t2-c tl) as 
follows: 

-A(C2t2 - l tl 
fl f2 fl2 

E{e A(cltcltl)Data}= 1 E 
2 

Ai=o J=o k=O 

X (- l)V+J+kC' ;)k2 

[(3+ t,(n, -fi + i + k- C1) + t2(n2 -f2 +fi2 +j-k +C2) 

(4) 
where 

A =: :2 : 
i i k 

)_i+J+kC)3 ?2 

[?t1(n -f1 + i + k)+ t2(n2 -f2 +j- k)]+ 

Note that the final Bayes estimator for e-At2 is 
computed by taking c2 1 and cl =0 in (4). 

We emphasize that the Bayes sequential procedure 
described above may be only an approximation to 
the optimal Bayes procedure. We do not know if 
this procedure, although very intuitive, is the one 
which minimizes the risk for the squared loss func- 
tion. 

Final Remark: 
Note that the criteria used depend only on the values 
of Pi and P2, not on the fact that we have an expo- 
nential distribution. This shows the generality of 
the methods discussed. On the other hand, suppose 
that ql, q2 and q3 =1 -(ql +q2) are the probabilities 
of a battery failing respectively, before tL, in the 
interval (tl, t2), and after t2. If we represent our prior 
opinion about (q1, q2, q3) by a Dirichlet distribution, 
then the Bayes solution in this case is very similar to 
the one presented here. 

Professor Frank Proschan 
Department of Statistics 
Florida State University 
Tallahassee, FL 32306, USA 
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