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Three of the basic questions of Statistics may be stated as
follows: |

A. Which portion of the data X is actuélly informative about
the parameter of interest 87

B. How can all the relevant information about & provided by
the data X be extracted?

C. What kind of information about @ do the data X possess?

The perspective of this dissertation is that of a Bayesian.

Chapter 1 is essentially concerned ﬁith question A. The theory
of conditional independence is explained and the relations between
anciliarity, sufficiency, and statistical independence are discussed
in depth. Some related concepts like specific sufficiency, bounded
completeness; and splitting sets are also studied in some detéiis.
The language of conditional independence is used in the remaining
Chapters.
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Chapter IT deals with question B for the particular problem of
analysing categorical data with missing entries. It is demonstrated
how a suitably chosen prior for the frequency parameters can stream-
line the analysis in the presence of missing entries due to non-
response or other causes. The two cases where the aata follow the
Multinomial or the Multivariate Hypergeometric model are treated
separately. In the first case it is adequate to restrict the
prior (for the cell probabilities).to the class of Dirichlet
distributions. In the Hypergeometric case it is cdnvenient to
select a prior (for the cell population frequencies) from the
class of Dirichlet-Multinomial (DM) distributions. The DM
distributions are studied in detail.

Chapter 111 is directly related to question C. Conditions on
the likelihood function and on the prior distribution are-presented
in order to assess the effect of the sample on the posterior
distribution. More specifically, it is shown that under certain
cénditions, the larger the observations obtained, the
larger (stochastically in terms of the posterior distribution} is
the appropriate parameter.

Finally, Chapter IV deals with the characterization 6f distri-
butions in, terms of Blackwell comparison of experiments. It is shown
that a result (for the Hypergeometric model) obtained in Chapter
I1I is actwally a consequenée of a property of complete families of

distributions,
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CHAPTER 1. CONDITiONAL iNDEPENDENCE'IN STATISTICS

1 - INTRODUCTION

The notion of conditional independence is a central theme of
Statistics. In a series of recent articles A. P, Dawid (1979a, b,
1980}, J. P. Florens and M. Mouchart (1977), and M. Mouchart and
J. M. Rolin (1978) have explained at length - the grammar of
conditional independence as a language of statistics. This chapter
is a further elucidation on the subject and is generally of an
expository nature. Several results that have already appeared
~elsewhere are amplified and their proofs simplified and unified.

The only mathematical tool that is repeatedly used is that of
conditioning operator. The language of conditional independence
developed in this chapter will be fully utilized in Chapter 2.

The statistical perspective of this dissertation is that of a
Bayesian. A problem begins with a parameter {state of nature) 6
with its prior probability model (@, B, &) that exists only in the
mind of the investigator. There is an observable X with an associated
statistical model (X, A,‘{Pe: 8 ¢ 0}). Writing w= (9, X),

Q, F) = (&8 x X, Bx A), and‘H for the joint dist:ibution of (8; Xy,
there exists then a subjective probability model (Q, F, W) fbf @,
Hidden behind the wings of the Bayesian probability model (2, F, M)

are the four models;:




(1) The prior model (@, B, &),

(ii) the statistical model (X, A, {Pe: 8 € 61

(iii) the posterior model (©, B, {gx: x e X},
and (iv)  the preditive model (X, A, P), where P is the marginal
or predictive distribution of X. |

In classical probability theory, the notion of conditional
independence appears in a rather indirect fashion in the study of
Markov chains and processes. A seﬁuence of three random entities
(X, Y, Z} is said to possess the Markov property if, given X and Y,
the conditicenal distribution of Z depends on (X, Y) only through Y.
An equivalent characterization of the Markov property may be
stated in the symmetric form: X and Z are conditionally independent
given Y. In Section 3 we make precise these two definitions of
conditional independence in terms of the conditioning operator.

In Statistics the phenomenon of conditional independence
 manifests itself in a much more direct and natural fashion. The-
statistical model that is most commonly in use is that of a sequence

X = (Xl, X,, ...) of observables that are independently and identically

29
distributed (i.i.d.) for each given value of 6. It was DeFinetti
(1937) who emphasized that, in view of the fact that 6 is not fully
known, it is appropriate to regard the sequence of Xi's not as i.i.d.
random variables but as an exchangeable process. The fact that the

xi's are conditionally i.i.d. implies that they are positively

dependent - if we consider the (predictive) conditional distributions,




1> ¥y is stochastically in-

creasing with (Xl, Xz), and so on. (See Chapter 3 for details in

X2 is stochastically increasing with X

some concepts of dependence.)

s X

Consider for example the particular case where X 0

1’
are 1.i.d. with common distribution N(yu, 02) with 8 = (u, 02) not
fully known. In almost every textbook on Statistics it is proved
that the statistic X = n_lzxi is stochastically independent of

s? - n_IZ(Xi - i)z. Does it mean that X, when observed, carries

. . 2 ' . .
no information about $”? That the answer cannot be "yes' is easily

seen as follows. Suppose that the sample size n = 25 and that our

H)

partial knowledge about 6 = (y, 02) is as follows: p = 0 or 1 and

o

¢” = 1 or 100 (that is, ©

{0, 1, (1, 1), (0, 100), (1, 100)}).
Suppose now that X is observed and is equal to 2.1. This observation

generates the four likelihoods L(0, 1), L(1, 1), L(O, 100), and

L(1, 100) where L{0, 1) = ;g: exp{-zg-(Z.l)z} and so on. The

2T 7

relative likelihoods work out roughly as 10_1 > 1, 2(10)5, and 3(10]5

respectively. Thus, it is intuitive that the observation X = 2.1
almost categorically rules out the points (0, 1) and (1, 1). There-
fore, the observation of X = 2.1 asserts that 02 = 100 with a lot
of emphasis and so we may conclude that 82 is of the order of 100.
Then X and Sz, even though they are conditionally independent given 8,
are in effect highly dependent,

The three entities 8 = (u, 02), T =(X, 52),and X = (Xl, ey Xn),

in this order, have the Markov property in the sense that, given @




and T, the conditional_distribution of X depends on (8, T) only
through T. This is the sufficiency property of the statistic T as
recognized by R. A. Fisher (1920, 1922). A. N. Kolmogorov (1942)
gave a Bayesian characterization of thé notion of sufficiency by
noting that irrespective of the choice of the prior distribution £
for the parameter 9, the posterior distribution Ex of 8 depends on
X only through T. In other words, the sequence (X, T, 6) have the
Markov property; that is X and 9 are conditionally independent given
T. Note that the Fisher characterization of sufficiency is made only
in terms of the statistical model for X whereas the Kolmogorov
characterization is made in terms of a large family of Bayesian
models (2, F, 0 for‘m-= (8, X). (See Basu (1977) and Cheng (1978)
for further details on these characterizations.)

Fisher regarded a sufficient statistic T as one that summa:izas
in itself all the available relevant information in the sample X
about the parameter 6. He called a statistic Y = Y{X) ancillary if
the conditional distribution of Y given 6, does not involve ¢ (is
the same for all values of 9). For example, the statistic
Z(xi - i)4/84 is ancillary. In a series of articles D. Basu (1855,
1958, 1959, 1964, 1967) studied the phenomena of sufficiency,
ancillarity, and conditional. independence from various angles. In
these articl;s, Basu's viewpoint was non-Bayesian in the sense that

he did not introduce a prior distribution ¢ for the parameter 6.




M. Mouchart and J. M. Rplin (1978) studied in depth the familiar
Basu theorems on sufficiency, ancillarity, and conditional inde-
pendence from the viewpoint of a Bayesian model (@, F, m}. 1In
Sections 5, 6, and 7 we review Basu's results from the Bayesian
perspective. This is done mainly as an exercise in the use of the

language of conditional independence developed earlier.

2 - NOTATION AND PRELIMINARIES

Let (@, F, M) be the basic probability space. By a "random
object”ix we mean a measurable map o > X(w) of (®, F) into another
measurable space (X, A). The sub-o-algebra (to be called subfield)
of X-events {X_lA; A € A} will be denoted by FX' The two probability
spaces (R, FX’ Ty, and (X, A, H-l) are undistinguishable in a sense,
and so we shall, as a rule, ideﬁtify a random object X with the
induced subfield FX of F. In that way, one could say that random
objects are generators of subfields. Examples of random objects
include random variables, random vectors, and any ccllection of random
variables (stochastic processes).

For any two subfields F' and F" of F, F' v F" denotes the
smallest subfield of F that céntains both F' and F'. The smallest
subfieid that contains all null sets of F (a set N is null if

I(N) = 0) is -denoted by F.; that is,

’?0={1=;FeFandn(F)=00rn(P)=_1}




and write FD = {¢, @}, the trivial subfield.

A subfield of F is said to be completed if it contains FO'

For any subfield F' of F its completion is defined by:

Fr.=F v F,.

For a random object X, the notation X ¢ F' indicates that
Fx‘c F' and X is said to be essentially F'-measurable or X is
ess-F'-measurable. A random variable is a random object with range
(Rl, Blj where Rl is the real line and Bl is the Borel o-algebra. A
random variable f is said to be bounded if g a ¢ Rl such that
{w; |f(@)|5 al = 1. In the sequel, all random variables shall be
regarded as bounded unless stated otherwise and the use of small
letters shall be restricted to their representation. The notation
f < X indicates that the random variable f is ess-Fy-measurable. 1In
the same spirit, for two random objects X and Y, we write X € Y to
indicate that Fy < Fy. If Fy = Fy we write X = Y to indicate the
essential equivalence between X and Y. The élass of all bounded
random variables on (2, F, 1) is denoted by L, and L_(X} denotes
the class of all ess—FX—measurable random variables. Here and for
the rest of this chapfer, equality of two random variables means
essential  equality; that is, f = g means that {0; flw) # g(mi}

is a null set.



DEFINITION 1

The conditional expectation of f, given a random object X, is

a random variable f& ¢ L_(X) such that
ffgdH = ff*x.g di v ge L (X).

Another notation for f£*X is E{f[X}. When the coﬁditioning random
object X is implicit in the context, f* is substituted for £*X.
The map £ - £* of L, to L _(X) is lineér, constant preserving,
monbtone, idempotent, and is a contraction in the LP norm if p = 1.
The following proposition, known as §moqthing-th§0rem,i§ widely.
used in this chapter. Here, * is substituted for *Xzand t is

substituted for Y.

PROPOSITION 1

If two random objects X and Y are such that X < Y, then

v f e L
(1)  E{f*|Y} = (£97 = £+
(i)  E(£ X} = (£)* = £

(i1i) £ e X+ £ .= g

The following result which is a restatement of the property
of self-adjointness of the s-operator will be repeatedly used in

the sequel.

PROPOSITION 2

If fel_, ge L., and h e L _(X), then




“E{f*gh} = E{fg*h} = E{f*g*h}. (* stands for *X.)
The proof follows from the observation that (f*gh)* = f*g*h and

that E{f} = E{f*} for every f ¢ L_.
This proposition together with the fact that the s-operator

is idempotent (that is, (f*)* = f*} implies that the «-operator is
a projection of L, in L (X} when the L2 - norm is considered.

Given two random objects X and Y, the random object
(X, Y): @~ X x ¥ generates the subfield Fy v Fy and may be
identified with its completion; that is, ?kX,Y) = 72;7?—ﬁ;, A random
object that essentially generates the subfield ?k n ?}nWill be denoted.

in this chapter by X A Y despite the fact that it does not have.a neat

representation in terms of X and Y as in the case of (X, Y).

REMARK
Given any two subfields F' and F" of F, the following are well

known relations among completed subfields:

1l

(1) FrvFPr= Fr v Tt v
) FrnFecP af=F ap,

The following definition and theorem due to Dymkin are of great
importance. They enable us to present simple proofs of some of the

results stated in the sequel.

DEFINITION 2

Let U be a class of subsets of Q. D is said to be a D-system

(D for Dynkin) if the following conditions hold:




(i) Qe D.
(ii) If B, Ae D, Bc A then A~ B e D.

(iii) If Al, Az, ... € D and An + A then A € D,

THEOREM 1

Let C be a class of subsets of  and assume that C is closed
under finite intersections. If U is a D-system such that C c D
then 6(C) < D. (0(C) is the smallest o-field that contains C.)

For a proof of this result we refer to Ash (1972) pPp- 168-169.
For applications see Basu (1967).

In the next section we discuss the éoncept of conditional

independence.

3 - DEFINITION OF CONDITIONAL INDEPENDENCE

In this section, the two most popular definitions of conditional
independence (c.i.) are discussed. They are called here Intuitive
and Symmetric. A simple proof of the equivalence between them is
presented. Further characterization of the concept of c.i. will be
presented in Section 4.

Three random objects X, Y, and Z are being considered and,

in this section, & stands for the xZ-operator.

DEFINITION 3 - (Intuitive)

The random objects X and Y are conditionallv independent given

Z (in symbols X || Y|Z) if for any f L (X)
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E{(£](Y, 23} = £+ (Y,2) = gs,

Note that if X, Y, andVZ are randém variaﬁles, then to say
that X _LL_Y[Z is equivalent to say that XI(Y, Z} has the same con-
ditional distribution asdoes‘X[Z. This is the intuition behind
Definition 3. Frequently we will use the notation X|(Y,‘Z) ~ X]Z
for X || Y]z.

An equivalent way to define c¢.i. is to say that the map
f > £*(Y,Z) from L, to L (Y, Z) has its range restricted to L (2).
~Particularly, if Z is essentially a generator of FO {the trivial
subfield), then (Y, Z) c Y and the usual concept of independence is
attained since L_ (Z) becomes the class of all essentially constant

functions. In this case the notation is X || Y,

DEFINITION 3a (SYMMETRIC)

The random objects X and Y are conditionally independent given

Z if for any £ ¢ L_(X) and g € L_(Y),
(fg)* = frgr.

The following theorem gives the equivalence of the two defini-
tions showing that X || Y]Z implies Y || XIZ which is not clear.

by looking. only at Definition 3.

THEOREM 2

Definitions 3 and 3a are equivalent.




i1

PROCF

3+ 3a
By using Proposition 1 and the linearity of the «-operator we

have:

If

(fg)* = E{B{fg|(Y, 2)}|Z} = B{gE{f|(Y, 2)}]|z}

i

E{gB{£]Z}|Z} = (gf*)* = frg*

3a + 3

We wish to prove that for any f < X and gcyY, (fg)* = frg*
implies E{f|(Y, Z}} = f*.

Let £ be a class of subsets defined as E = {E; E ¢ ?& v ?é-and

[fd = [ 41 v £ c X}, Clearly E is a D-system since Q ¢ E,
E E

E is a monotone class (by monotone convergence theorem) and for
A, Be Ewith Ac Bwe have B - A e E.

Now take any two sets C and D with C e ?} and D € ?i. Clearly
CD ¢ ?} v T% and

jCDfdn = E{I I f} = E{ (I I )%} = E{ID(ICf)*}.

But by Proposition 2 and by hypothesis, we have
E{I,(I.£)*} = E{I I2£%) = E{I I £*} = fCDf*dH.

Thus, E' < E where

E' = {CD; C ¢ FY and b ¢ FZ}.
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Since &' is closed under finite intefsections, and
o(E') = Fy v ?% we conclude, by Theorem 1, that ?} v ?é < E; that
is, f* = E{f|(Y, )} v f e X. O
An important case of c.i. is X JJ__YIX' where X' c X. Note that

the meaning of this relation is better understood when stated as
v gcY, E{g|X} = E{g|x'}

since X = (X, X')}. In Bayesian inference, if X represents the
sample, and Y the parameter then X' is said to be sufficient for X.
Some applications of the concept of c.i. are presented in the

sequel and emphasis is given to the Bayesian framework.

4 - THE DROP/ADD PRINCIPLES AND OTHER PROPERTIES OF CONDITIONAL

INDEPENDENCE

The concept of c¢.i. gives rise to many questions. Among
them are questions involvihg the DROP and ADD (DROP/ADD) principles.

Suppose that X, Y, Z, W, Xl, and Z. are random objects such that

1
X_JJ_ Y|z, Xl c X, and Z1 © Z. What can be said aboutrthe relation
] if X, is substituted for X, z, for z, (Y, W) for Y, or (Z, W) for
2?7 In other words, can Fy, Ff, or FZ be essentially reduced or
enlarged without destroying tﬁe c.i, relation? In general, the
answer is no. However, for certain kinds of reductions and enlarge-

ments, the relationship will be preserved. To indicate that the

relation || does not hold we write ]d .
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The following simple examples show that arbitrary enlargements
of FX’ FY’ or Fz'may destroy the c.i. property. For a set A c Q,

IA(m) is the indicator function of A.

EXAMPLE 1
Let @ = {1, 2, 3, 4}, F be the power set, and I{i} = 1/4. Let

X=1 Y = 1{1,3}, Z = constant, and W = 1{1,4}1

{1,2}*
Clearly, X _LL_Y and X_JJ_ W but X _ML_(Y, wy. O

EXAMPLE 2

Let @ = {0, 1} x {0, 1} x {0, 1}, F be the power set, and for
i3 G,j=0,1 0{@G, i, )} = .15, 0{(4, i, j}} = .10 and
n{(i, 3, i)}.= -25. If X, Y, Z, and W are such that X(x, y, w) = X,
Y(x, ¥, w) =y, W= (x, vy, w) = w, and Z is a constant in 2, then
X _LL_Y and X ;ML_YIW. This is clear since we obtain the following

probability functions (p.f.):

Y Y
0 1 0 1
o 3 5 8 0 2 0 .2
i ¢ X
1 0 2 2 1 5 3 8
3 7 1 .7 3 1

p-f. of (X, Y) given W= 10 p.f. of (X, Y) given W= 1
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Y
0 1
0 25 25 5
X
1 .25 .25 .5
.5 .5 1
p-f. of (X, Y). B

EXAMPLE 3

Suppose that X and Y are two independent random variables with
the same distribution N(0, 1). Clearly, (X - Y) Mo+ |y.
However, it is well known that (X - Y) JJ_ X+Y).0O

Looking at - the problem from the opposite direction, we
present the following similar examples which show that arbitrary

reductions of the conditioning subfield may destroy the c.i. relation.

EXAMPLE 4

In Example 2 consider NI as follows:

n{¢o, 1, 0)}

n{(1, o, 1)}

I

n{{0, 0, 0)} = n{(o, 0, 1)} .10, and

1
fl
[}
1]

m(1, 1, 13} = m{(1, 1, 0)} = n{(1, 0, 0)} = n{(0, 1, 1)} .15,

Here, we conclude that X [I_Y|w, but X || Y. The probability

functions in this case are:
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Y
0 1 0 1
0 2 .2 .4 0 .2 .3 5
X X
1 -3 .3 .6 2 .3 5
.5 .5 1 .4 .6 1

p-f. of (X, Y} given W = 0.

p.f. of (X, Y) given W = 1,

0 1
.20 .25 .45
X
.25 .30 .55
.45 .55 1
p.f. of (X, Y). _ ]

EXAMPLE 5

In example 3 consider an additional random variable Z such that
z |l x-m and z || (X +Y). Obviously, (X-Y+2) ||
X+Y+2)|Zbut (X-Y+2) )| (X+Y+2).0

Examples 2 to 5 can be viewed as cases of Sympson's paradox
(Dawié L1979al). The paradox, however, is much stronger. For
instancg, let Z and W be two independent normal variables with zero
Defin; X=2+Wand Y =2 - W, The correlation between

X and Y is given by p(X, Y) = %;i“g where § = g:iggg'

means.,

Given Z, the
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conditional correlation p(X, YIZ) is clearly equal to -1. On the
other hand, & may be taken very small in order to make p(X, Y)
close to 1. This shows that we can have a case where X and Y are
strongly positive (negative) dependent but, when Z is given, X and
Y turn to be strongly negative (positive) dependent.

The essence of DROP/ADD principles for conditional indepen-

dence is contained in the following proposition and corollaries.

PROPOSITION 3

If X ]l Y|Z then for every X' c X we have:

(1) x| vz
(i) x || vjez, .

PROOF
(i} Since X' ¢ X, v f ¢ X' + f ¢ X. Then, for every f ¢ X',
since X|| Y|z, E{f](Y, 2)} = E{f|zZ}.

(ii} Clearly, (Z, X', X) = (Z, X) then, for every g < Y,
Efgl|(Z, X', X)} = E{g|(Z, X)} = E{g|z} = g*.
On the other hand, by Proposition 1,

Elgl(Z, X0} = E{E{g|(z, X', )} (z, X} = Blg*](z, X))} = g

Thus, vg ¢ Y E{g|(z, X')} = Elg|(z, X', X)}. O
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COROLLARY 1

For any 7' < Z,

X || Ylz if and only if X || (Y, z")]z.

COROLLARY 2

1f x || Y|z then, for any W, < (X, 2) and W, < (Y, Z), we have:

@ wy |l wlz

iy x || v, Wis W)

By way of explanation, if X _LL_Y|Z then the relation _LL_is
preserved when (i) X and Y is increased (ADD) by any essential part
of Z, (ii) Z is increased (ADD) by any essential part of X or of Y,
and (iii) X and Y are arbitrarily reduced fDROP).

The following interesting reSuit, in one direction, has its
version in classical statistics, If XO is sufficient for X then,
for every statistic £, there is a corresponding function g of XO

with the same mean of £.

PROPOSITION 4

let X', X, and Y be three random objects such that X' ¢ X. The

following condition is necessary and sufficient to have X || Y|X':

vE c X, E{f*|Y} = E{f]Y}, where f* = E{f|X'}.
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PROOF

Here, = stands for fX' and + for =xY.

(i) Necessity.

Since vf < X, f* = E{f]|(Y, X')}, by Proposition 1 we conclude
that vfe X, (f9)7 = £,

{ii) Sufficiency.

let fc X, gcY, and £' ¢ X'. C(learly ff' ¢ X. Note that

(ese)’ = geen)” = glee) T = grerent = (eraent

.Since'E{(fgf')+} E{fgf'}, by Proposition 2 we can write

E{fgf'} = E{f*gf'} = E{f*g*f'}
Then (fg)* = f*g*, []

An equivalent result introduced by Mouchart and Rolin (1978},

which is stated below, is a characterization of c.i..

COROLLARY 3

The following condition is necessary and sufficient to have
x || y|z:

vf c (X, Z), E{f*|Y} = E{f]Y}, where f* = E{f]|Z}.

The equivalence of this result with Proposition 4 follows

directly from Corxrollary 1.
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that if W is a sufficient statistic and T is a statistic "marginally
independent” of W (T || W), then T is ancillary (T || Y) and is
"independent' of W(T _LL'W|Y).

Now we extend the concept of conditional independence for a set
of random cbjects. Let Z be a random object, v be a set of indices,

and {Xt; t € 7} be a collection of random objects.

DEFINITION 4

The set {Xt; t € T} is said to be mutually conditionally

independent given Z if, for any partition (Tl, 12) of T, the two
random objects {X_; t e T]} and {Xt; t e 12} are conditionally
independent given Z.

For example, X, X

1’ 2
given Z if X 10 (X,» Xs)_ |z, X, Al (X5 x3)|z, and
X, 1L (X; xz)[z.

The next result is called here the transfer principle for c.i..

and Xs are mutually conditionally independent

It shows that, for finite sets of random objects, to check Definition

4 we do not have to study all partitions.

PROPOSITION 6

If xl_JJ_ x2|z and (X}, X,) _LL_xslz, then X, ,LL_(xz, xs)]z.

PROOF

By DROP/ADD principles

(X, %) 1L Xz » x|l %l@, X).
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A useful result in statistical applications by Dawid (1979a),

is stated as follows;:

PROPOSITION 5

The following properties are equivalent:

(1) x || Y|z and x || w|(Y, 2).
(i) x || (v, w|z.

PROCF

(1) » (ii) 7

From (i) we have that X|(W, ¥, Z) ~ X|(Y, z) ~ X|Z. Then,
X{(W, Y, Z) ~ X|Z or equivalently, X 1w, v jz.

(ii) » (1)

By Proposition 3, we conclude that X || Y[Z and X || (Y, W|(z, V)
which implies X || W[(z, v). O

Note that since property (ii) is symmetric (Y and W may commute),
the inclusion of the following property is implicit: (iii) X‘JJ_ W|Z
and X || Y[(z, W). The corollary below is an example of a kind of

result we may prove by using the equivalence between (i)} and (iii).

CORCLLARY 4
For T © (X, Z, W), if X ]| Y|(Z, W) and T || W|Z, then
T || Y|z and T || W|(y, 2). |
This result is better understood in the Bayesian context when
X represents the sample, (T, W) c X, Y represents the parameter, and

Z is essentially a constant (Z is a generator of FOJ. We might say
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a) QekE

b} For E E2 c E, if El < E, then

1’ 2

= (I, f - IE )* = IE f* - I £+ = (IE -~ IE JEE*

E

(I.. . D*
(E,-E;) Ey 1 2 1 2 1

I% £*,

That is, EZ - El e L.

¢) For any monotone sequence El, E ., of E, we have that

23 e

I = 1lim I

lim E and by the dominated convergence theorem for
n

E

n

conditional expectation, (lim I f)* = lim(I; £)*. Since E_ ¢ E,
n n

(1im IE f1* = lim IE £f* = I* f*. That is, 1im E e E.

lim E
n n n
To conclude the proof recall that, by hypothesis,

ﬁ'Fn < E and then by Theorem 1,
n=1

VF <& I
n

n=1

To conclude this section we extend Proposition 6 to the

countable case.

PROPOSITION . 7

Let Z, X., X,, ... be a sequence of random objects such that,

1, 2)

for each n =1, 2, ..., (X}, «vvy X)) 1 xn+1[z. Then {xl, Xy, .-}

is mutually conditionally independent given Z.
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By Proposition 5, X L x2|z and X, || xS](z, X,) hold if
and only if Xl ] (Xz, X3)|Z- 0
It is clear now that to check Definition 4 for a finite set of

random objects, say X1 oens Xn,xweneed only check that

(X s X3 —LL-Xk+1IZ

for every k =1, 2, ..., n - 1.

To extend this result to the countable case, we prove the
following theorem which is called the limiting property of c.i..
It will be applied in a characterization of Markov Chains presented

in Section 5.

THEOREM 3

Let Z, X, Y., Y,, ... be random objects such that

1’ 2
X || (Yl, Y2, ey Yn)|2 for every n =1, 2, ... . Then,
X || (Yl, Y2, ...)IZ where (Yl, Y2, ...) essentially is the

an = o(ngan). (Here, Fn Fyn.)

generator of
n

<8

PROOF

Since'an is a field, it is closed under finite intersections,

Let % stand for *Z and consider the set

E={E; Ee¢ VF and (I.H)* = I*f* v f c X},
n=] ® E E

The following conditions show that E is a D-system:
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PROOF

Let ({il’ i2’ R {jl’ jz, ...}) be a partition of the set
{1, 2, ...}. We wish to prove that the relation

(ﬁl,xﬁ,..J | (%1,%2,“.HZth& Note that, for any

k, 2 e {1, 2, ...} the finite relation

X, , X. , ..., Xik) 1 (le, X. 5 oeon, xj )]Z holds. This

t R Ja %

follows from the discussion after Proposition 6 and from the fact
that (Xl, cens Xm) II xm+1|z ¥ym=1, 2, ..., v, where
v = max(il, ces ik’ jl, cens jl)' By Theorem 3 it follows that
(Xi s e Xi ) ]I (Xj', Xj , .+.)|Z. Finally, applying again

1 k 1 2
Theorem 3 we prove our claim. [J

We write X, _LL_XZ Al ...z or ﬁ&%_xi[z torindicate that the

sequence (Xl, X2, ...} is mutually conditionally independent given Z.
The next section presents some applications of c.i. in Bayesian

statistics and in a characterization of Markov chains.

5 ~ MARKOV CHAINS AND BAYESIAN INFERENCE

As discussed in Dawid (1979a, 1980), many of the important
statistical concepts are simply manifestations of the concept of
"conditional independence. In this section we use the framework of
¢.i. to study a well known characterization of the Markov Chain
property and to describe the Bayesian version of those statistical
concepts and their properties.

The following is the usual definition of Markov Chain.
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DEFINITION 5

A sequence of random objects, Xl, X2’ ... 1s said to form a

Markov Chain if,

(5.1) nz 1, (X, ..., X)) [ Xn+2lxn+1{

This concept is better understood when the relations (5.1) are

replaced by,

(5.2) vn 21, (X, ..., X)) | (Xeps Xouss ...}]xn+1.

Here, if the indices represent time we might say that the past is
independent of the future given the present. The following propo-

sition states the equivalence among (5.1) and (5.2).

PROPOSITION 8§

The sequence Xl, X2’ ... of random objects forms a Markov

Chain if and only if the relations (5.2) are satisfied.

PROOF

(5.2) » (5.1) Follows directly from Proposition 3.
(5.1} > (5.2)

Step 1 - First we wish to prove that

vn 2 1, (xl’ e Xn) —LL—(xn+2’ xn+3)lxn+1'

But, using DROP/ADD principles, (5.1} implies that
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>
v =2 1, (Xl’ v Xn) _I._an+2lxn+l and

(X5 oees X 1 xn+3|(xn+l, X )

The conclusion of step 1 follows now directly from Proposition 5,

Step 2 - Now we wish to prove that

Va2 1and k 22, (X, ..., %][1 “ma’“"ﬁnﬁlﬁwr

By induction (in k}, suppose that

mzl, (X, ..., X) [ (X 4ps =oos xn+k_1)[xn+1 and

(xl’ T Xn+l) HLL-(xn+3’ e xn+k)|xn+2‘

With the same argument as in step 1, we conclude step 2.
Step 3 - Finally, we wish to prove (5.2). But {5.2) follows
- directly from step 2 and Theorem 3. [

Having established the concept of Markov Chains, the following
properties afe immediately stated:

A - If (Xl, XZ’ ...) forms a Markov Chain, so does
(..., X, XI)' [From Definition 3a.]

B - Any subsequence of a Markov Chain is a Markov Chain.
[ From DRGP)ADD principles.]

cC - If (Xl’ X,, ...} forms a Markov Chain, then vn 2m + 2, m > 1

2,

COPIRPRIR S I | I ¢ SUPYRRTRINS & I I I ¢ SYPIPIIS | o SRS SIS B




26

To prove property €, it is enough to have

PROPOSITION 9

If (Xl, X2, XS’ X4, XS) forms a Markov Chain, then
X, xg 1 x o, xp.

PROOF
By hypothesis, X, | (Xg, X, x5)|x2 and (X,, X,, X;) [ x5|x4.

By DROP/ADD principles this implies that X, “LL.(X3’ X4)[(X2, Xc) and

, X3 _LL_XSI(XZ, X4). The conclusion follows directly from Proposition
6. O

To conclude our discussion on the concept of Markov Chains, we
notice that Definition 5 can be generalized by considering an
additional random object Z in the conditioning random objects of
{(5.1}). That is, in the place of (5.1} consider the relations
vn =z 1, (Xl, cees Xn) _LL_Xn+2|(Z, xn+lj; In this case, we say

that (X:;, X,, ...) form a conditional Markov Chain given Z. It

93
is clear that we could have a similar discussion for this general
concept. Finally, we notice that if (Xl, X2 ...) forms a conditional
Markov Chain given Z and vn 2 1, X o “LL_Z|Xn+1 then, (X;, X, ...)
forms a Markov Chain. This is a direct application of Proposition 5.
In order to focus our attention on applicationé in Bayesian
statistics, it is important to review some of the structures involved.

Let (X, A) be the usual sample space and {Pa; 6 € 0} be a

family of probability measures on (X, A) where © is the usual
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parameter "space'. In addition, the Bayesians consider a (priorx)
probability space (0, B, £) where B is a o-algebra of subsets of O
such that PG(AJ is a B-measurable function for every fixed A ¢ A.
Clearly, the choice of the prior model is not completely arbitrary,
since it has to match the statistical structure on the B-measurability
of PG(A).

After all these considerations, it becomes clear that we can
Testrict ourselves to the probability space (R, F, ), where now

Q=089 xX, F=BxA and Il is defined as

n(p)_:;fpe(an])g(de)
A _

for every F € F where F[6] = {x ¢ X; (6, x) ¢ F}. Note that if

A e A and B € B, then

(B x A)

1]

jPB(A)g(de).
B

The uniqueness of I and the fact that I is a probability measure
are included in Theorem 2.6.2 of Ash (1972). Now, we can define

a (marginal]probability measure P on (X, A) in the following way:
P(A) = T(0 x A)

for every A € A.
Let X and Y be two random objects on (R, F). We say that X

represents the sample and Y represents the parameter if
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-
I

{0 x A; Ae A} and

-1
m

{B x X; B ¢ B}

In addition to X and Y as defined above, consider two random
objects Xl and X2 such that (Xl’ Xz) c X. The Bayesian version of
the concepts of sufficiency and ancillarity is contained in the

following.

DEFINITION 6

al If X || Y|Xl we say that Xl 1s sufficient for X with
respect to Y.

b) If X2 |] Y we say that X2 is ancillary with respect to Y.

The classical concept of statistical independence between Xl and
Xz has its Bayesian version as:

) X L X2|Y.

Basu (1955, 1958) speculates under what conditions two of the
three relations a), b), and c) imply the third. One of the objectives
of this chapter is to study Basu's theorems under the Bayesian

framework. The next result which is Basu's first conjecture

presents conditions to have b) and ¢) implying a).

PROPOSITION 10
If in addition to X2 ]| Y and Xl || X2|Y we have X ll YI(XI, XZ),

then X || Y|x.
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COROLLARY 4

Let X, Y, and Z be three random objects such that X _LL_Y[Z
and X || Zz|Y. Then, X || (¥, Z)|Y A Z.

Note that Corollary 4 shows that relations a) and c¢) imply

b) if X, A Y is essentially constant on @ (that is, essentially

1
generates FO). This condition will be studied in Section 6 in
connection with Basu's second result,

To end this section we present an extreme case of DROP/ADD
principles for the conditioning random object. It appears in Dawid
(1980} and it was originally introduced by G. Udny Yule in terms

of collapsibility of contingency tables. It must clarify the

problems with Sympson's paradox in Examples 2 and 4.

PROPOSITION 12

Let X, Y, and Z be three random objects such that
- Cy .
F,o= {¢, 9, A, A} with 0 < I(A) < 1. If X || Y and X || Y|Z, then
either X | ZorY || Z.
The proof‘becomes simple when we recognize the following

general result:

LEMMA 1
If X [I Y and X ]| Y|z, then for every atom A of Z with

I{A) » 0, we have

-1
E{IAI(X, Y)} = [n(A)] "E{I, |X}E{T,|Y}.
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PROOF

By Proposition 5 we have that:

i) X, || Yend X || X,|Y if and only if X, 1l X, and
X, 1 vlx.

ii) X, JJ__lel and X _LL_Y](xl, X,) if and only if X _LL_lel
since (Xz, ) =X.0

Looking at the above proof, we see that if Xl s X5,
then a) implies b) and c). The meaning of the relation Xl _LL_XZ
in classical statistics, however, is void.

Note that Proposition 10 gives conditions for reducing (DROP)
the conditioning random object. Actually, all of Basu's theorems
are cases of DROP/ADD principles. Basu's other theorems are
. discussed in the next sections of this chapter.

Another type of reduétion of the condifioning random object
is presented in the proposition below which is a Bayesian version

of a theorem introduced by Burkholder (1961).

PROPOSITION 11

Let X . and X. be two random objects such that (XO, Xl) c X,

0 1
x 1] Y[x0 and X || lel. Then X || YiX, X,. (If X, and X,
are sufficient for X, then so is XO A Xl.)

The proof follows directly from the definition of ¢.i.. As
an important consequence of this proposition we have the following

result which was introduced by Dawid (1979b).
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PROOF OF LEMMA 1

Here we use * for #X and 1 for Y. Let B and C be two sets such

that IB ¢ X and IC ¢ Y. Using the properties of conditional expec-

tation and the fact that X H Y we have that,

- _ t
gCI*I dn fIBIKICIAdH JI3p1, cdn

-I- =
[f1pdndC [, dnd = [f1,pdn3(fT, dul.
That is, since II(A) > 0,

[ 1z1tan = HABI(AC) = (H(A)] “nlmyncc|a),

BC
_ TI(AB). . .
where H(BIA) = TA) We notice now that on the atom A, the functions
I"‘Z and IEZ are constants and equal respectively to H{B|A) and H(C|A).
Analogously, the function IE% is equal to H(BC]A) on A. On the
other hand since X || Y|z, I*ZIEZ = I#Z; thus I(B|A)I(C[A) =

T(BC|A). This shows that
T =
f IX1,dI = T(A)T(ABC).
BC
To conclude the proof we must prove that H(AJII dn = fI*I dn for
D

every D such that I c (X, Y). Following the same technlque used

in Theorem 2 and 3 we obtain this as a consequence of Theorem 1, [

 PROOF OF PROPOSITION 12

Let p = N{A), I* = E{IA|X}, and 1@ = E{IA|Y}. From Lemma 1 we

have that
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(1-1%a-1H
I-p

.f.
_I*1
E{I,| (X, I} = >

and E{I |(X, V)} =
C
A
Clearly
..[..

4 Q-1 -1
P I-p

that is,

T
I* 1,
(1- 5 ) (1 - 5"9 = 0.

Since X ]I Y, this last equation holds if and only if either
+ ' :
1 or %——E 1 almost surely. 0

I*
p

REMARK

1 - LetyY = (Yl, Yz) represent the parameter and X represent the
sample. If Y1 and Yz are independent a priori and a posteriori
(i.e., Yl [] Y2 and Y1 ]] YZIX),then from Lemma 1,

(5.3) ' E{I,|Y} = [n(A)]"IE{IAIYI}E{IAIYzL

where A is a positive atoﬁ of X. Note that if Y1 and Y2 are inde-
pendent a priori, and X is a discrete random variable, then Y1 and
Y2 are independent a posteriori if and only if (5.3) holds and .
(5.3) defines the likelihood function. This result is the discrete

case of the theorem introduced in Section 9 of Basu (1977).

6 -~ ON MEASURABLE SEPARABILITY OF RANDOM OBJECTS

Basu (1955) stated that any statistic independent of a suffi-

cient statistic is ancillary. Later on Basu (1958) presented a




33

counter-example and recognized the necessity of an additional
condition (connectedness) on the family {Pe: 8 € 0} of probability
measures. Koehn and Thomas (1975) strengthened this result by
introducing a necessary and sufficient condition on the family.
More recently Basu and Cheng (1979), generalizing results of Pathak
(1975), showed the equivalence between these two conditions in
Coherent Models.

In the scope of the present work, this question will be stated
in terms of random objects. Suppose that X represents the sample
and Y the parameter. The following theorem is a Bayesian version

of the result of Koehn and Thomas (1975).

THEOREM 4
Let Xl c X be a sufficient random object (i.e., X || Y[Xl).
The random object Y A Xl is essentially a constant
(i.e., FYAxl = FO) if and only if X2 I[ Y whenever X2 < X and
Xl ]I X2|¥ (i.e., X2 is ancillary if Xl and X2 are statistically

independent).

PROOF

+ See discussion following Corollary 4.

<+ Take X2 such that X, = Y A Xl. Since X2 c Y, Xl |l X2|Y.

2

Then by hypothesis X || Y, which implies that X2 |[ X2 since

2

X2 < Y; that is, X2 =Y A X1 is essentially a constant. [
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REMARKS

2 - The condition introduced by Koehn and Thomas (1975) is the
non-existence of a splitting set. A set A in the sample space
{i.e., A e A) is a splitting set if Pe(A) =0or 1 for all 8 ¢ ©

and at least for a péir {8 62} c e, PGH(A) = Pe (Ac) =1. In
1

13

2
the Bayesian framework, since X represents the sample and Y the
parameter, an analogous definition is as follows: A set A such
that IA < X is a splitting set if 0 < H(A) < 1 and

2
E{1,]Y} = E {1,[Y}. Let Iy = E{I,|Y} and note that
2 2 . B ..
{(IA - I }x = % - (IK) . Thus? if A is a splitting set,

E{(IA - IK )2} = 0; that is, I, = IK. Then. I, ¢ Y or equivalently

A A

I, €Y A X, We conclude that the non-existence of a splitting set
is equivalent to Y A X being essentially a constant.

3 - Let X, Y, and Z be three random objecfs such that X _LL_Y[Z.
Since this is equivalent to (X, Z) || (Y, 2)|Z, with the same
argument we use in the proof of Theorem 4, we can easily show that
(X, 2) A (Y, Z) = Z. Intuitively we would say that if X 1L iz,
then Z possesses all common information contained in both X and Y.

The following result is a Bayesian solution for a two-parameter
problem in inference. Suppose that the parameter Y is such that
Y = (Yl’ Yz). Let X represent the sémple, Xl c X 5e specific
sufficient with respect to ng and X2 < X be specific sufficient

with respect to Y,. That is, X ] Y2|(X1, Y,) and
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X ] yll(xz, Y,). (See Basu (1978) for details on the notion of
specific sufficiency.) The question here is under what conditions

does the specific sufficiency of X, and X2 imply the sufficiency of

1

PROPOSITION 13

If (X}, YD A (Xy, Y)) € (X, X)), then X | YZI(XI, Y;) and

X H oy lex,, v5) imply X || Y1(X), X,).

PROOF

From DROP/ADD principles we have that X |] YI(Xl, Yl) and

X ] Yl(Xz, ¥,). Thus, by Proposition 11,
X [ Y[, ) A (%, Y,),

and since (X X2) c X, the result follows. [J

1,
The following related result is a direct consequence of

Proposition 5.

PROPOSITION 14
1€ X [ v,lex;, ¥) and X || Y [(X,, ¥,), then X || Yi(X,, X))

if and only if X || Yll(xl,‘xzj lequivalently X || Yzl(xl’ Kzil.

Note that the condition X |] Yll(xl, X,) does not have an
interpretation in classical statistics since distributions depend
on both parameters Y1 and YZ' OQur conjecture for a future work is

that specific sufficiency of Xl and X2 implies sufficiency of
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(Xl, X2) if Yl and Y2 are variation independent (i.e., the parameter
space is the cartesian product of the domain of Y1 by the domain of
Yz). (See Basu (1977) and Barndorff-Nielsen (1978) for details on
the notion of variation independence.} Dawid (1979b) presented

an cxample where (Xl; Xz) is not sufficient even though Xl and X2
are specific sufficient. In this example, however, the parameters

are not variation independent,

The title of this section was motivated by the following:

DEFINITION 7

The random objects X and Y are said to be measurably separated

conditionally on Z if (X, Z) A (Y, Z) = Z. When Z is essentially
a constant we simply say that X and Y are measurably separated.
A large list of results related with this concept appears

in Mouchart and Rolin (1978).

7 - BASU THEOREM

Basu (1955) proved that any ancillary statistic is statistically
independent of any bounded complete sufficient statistic. The |
Bayesian analogous concept of boundedly completeness is the concept
of strong identifiability (Dawid [1980] and Mouchart, and Rolin .
[1978]). The main objective of this section is to study this concept
and present Basu's result under the Bayesian framework.

Let X and Y be two random objects. As before, we study some
aspects of the linear maps L_(Y) % L(X) and L_(X) & L_(Y),where »
is for «X, and + is for «Y. Recall that for two random variables

fi and f., by f1 # f, we mean that M{w; fl(m) # fZ(m)} > 0.

23
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DEFINITION 8

The map L_(X) 1 L_(Y) is essentially one-one if f; # f;

whenever (fl, fz) < X and fl # f2' In this case we say that X is

strongly identified by Y and write X << Y.

Clearly, X << Y if and only if for f c X, f+ = 0 implies f = 0,
This shows intuitively that when Y repreSents the parameter and X
the sample, Definition 8 is the Bayesian version of the concept of

bounded completeness.

DEFINITION 9

The map L_(Y) : L_(X) is essentially onto if for every f c X

there is a g © Y such that g* = f.

The following result relates these two definitions.

PROPOSITION 15

If the map L_(Y) 3 L_(X) is essentially onto, then X << Y,

PROOF

Let (f, h) < X and f+ = 0. Since * is essentially ontozig oY

s.t. g¥ = h. Then
E{fh} = E{fg*} = E{fg} = E{f g} = O.

Since h is afbitrary, £f=0.0

Let X ] be the random object that generates the smallest

Ly
subfield that contains all functions g* where g ¢ Y. Note that

X ¢ X. The following result shows that X[Y] may be viewed as

£yl

the Bayesian minimal sufficient statistic.
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PROPOSITION 16

@ x ] vy,

(i) If X; = X is such that X L Y[Xl, then X 5 < X..

Lyl

PROQF

(i) vgecy, Elg|(X, X[Y])} = g* © Xpyq by definition,

(1) vg = Y, Elgl(X, X))} = E{g]X} = E{g|x;}.

Then for every g c Y, g* c Xl. Since x[Y]

smallest subfield containing the functions g*, X[Y] c X..

'is the generator of the

When XEY] = X, X is said to be identified by Y (Dawid [19801],

and Mouchart and Rolin [1978]). The name strong identification

was motivated by the following result:

PROPOSITION 17

If X <<Y, then X ] = X.

Ly

PROOF

Note that X || ¥|X Thus,

[yl
vec X, BE£](, Xypd ¥} = B{ELE| X0, 3 (YD,

..I_

For § = E{f }since X<< Y, we have that

Xry)

E{(f - £)|Y} =0 F=f. Then vEfcX, fc Xryp and X = X

[yi-

The Bayesian version of the Basu theorem is contained in the

result below.

g
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PROOF

From Proposition 16, X c X, and X Y{X 4. Usin
[yl -~ ™1 [Y] g
Proposition 3 we can write (i) X£Y] || Y|X1, {ii} Xl |[ YIX[Y]

and (iii) Xl << Y. Let f < X,, and note that from (ii)} and Pro-

1,

position 1 we have

E{£f|Y} = E{E{f[X[Y]}IY}.
Since Xryq < Xy, E{f|X[Y] From (iii) we conclude that
E{fleY] X[ y]- Then every f < X) implies £ < X, which

implies that X, < x[Y]' O

REMARK
4 - The concept of strong identifiability may be generalized

as follows: X is strongly identified by Y conditicnally on Z

(X << Y|z) if for evexry f c (X, Z), E{f|(Y, Z)} = O implies f = 0.

Analogously, X is identified by Y conditionally on Z if

(X, 2y 47 = (X, D).

All the results of this section may be easily generalized by
introducing a conditioning random object Z to each relation stated.
For our future work we intend to relate these general results with

the work of Dawid (1979c), Ferreira (1980}, and Godambe (1980).
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THEOREM 5
Let X, Y, and Z be three random objects. If X ] Y, x {| Y|z,

and Z << Y, then X || z]|y.

PROOF

Since X JJ__YIZ vf < X, E{£|(Y, Z)} = E{£f]{Z}. On the other hand,
since X || Y, E{f|Y} = E{f} but, by Proposition 1,
E{f]Y} = E{E{f|(Y, Z)}|Y} = E{E{£]2}]|Y}. Then E{f} = E{E{f]|Z}|Y}
which implies that E{[E{f|Z} - E{f}1]Y} = 0. Since Z << Y, E{f} =
E{£f|Z} for every f ¢ X. That is, if Z << Y, then X || Y and
X ij_YIZ implies X_JJ_ Z. Now, by Proposition 5 we have that
X _LL_Y|Z and X || Z is equivalent to X Jjn_zlY and X JJ__Y. O

Note that to obtain the Basu Theorem we consider X as the sample,

Y as the parameter, and X, and Xl two random objects such that

0
(X5, X)) < X, X, | v, x || Y|x1 and X << Y. Clearly X, | -lel
and the result XO || XJ Y follows.

Lehmann and Scheffe (1950) proved that if a sufficient
statistic is boundedly complete, then it is a minimal sufficient

statistic, The Proposition below is the Bayesian version of this

Tresult.

PROPOSITION 18

jet Xi’ X, and Y be three random objects such that Xl c X and

x 1] lel. If X, << Y then X = Xy
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CHAPTER II. .ON THE BAYESIAN ANALYSIS OF CATEGORIGAL DATA:
THE PROBLEM OF NONRESPONSE

1 - INTRODUCTION

The simplest case of the problem of nonresponse is as follows.
Let Hl be the unknown proportion of individuals in a certain popu-
lation, P, that belong to a particular category Al. With Hl as the
only parameter of interest, a survey is conducted using a simple
random sample of size n. Of the n individuals surveyed, ny respond
to the qpestion "Do you belong to category Al?" with a yes/no answer,
but n, =mn-mn individuals do not respond. ‘Dénoting the category
of respondants by R, and the complementary category by R', the-

survey data may be summarized as:

(1.1) , R R!
Al x1 "
2
Ay X,
nl l’l2 T

with A2 being the complement of Al.
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In many practical problems, it is understood that the non-
response of an individual is highly dependent on the value of the
measurement under study. For example, suppose that one is surveying
a population of students in order to estimate the proportion of
cannabis smokers. In this case, it should be expected that a
student who smokes has a higher chance of being a nonrespondent than
one who does not. 1In this instance, at least, a nonresponse is a
strong source of information. | |

The above understanding of the problem suggests that the
population must also be partitioned into the categories R and R';
that is, the class of elements which would reSpénd to the question,
if selected, and its complement. The population proportions may be

displayed in a 2 x 2 - tabular form as:

(1.2) R R
A P31 P12 T fp=1t-14
A P P il
2 21 22 2 q =Py + Py
q T-q[ 1

How can the data (1.1) be analysed vis-3-vis the parameter of
1 = ?
interest Hl pll + P12'

If the population of size N is regarded to be infinitely large
compared to the sample size n; that is, if a multinomial model for

the data is adopted, then the likelihood function is:
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5{ X n
1 2 2
(.1°3) L= Pll P21 (1 - q) .

We represent the data by X = (xl, X5, n2) with n, =n - (xl + xz).

Since Py, cannot be defined in terms of the sampling distri-
bution of X, an orthodox non-Bayesian would characterize
Hl =Py * Py @S nonidentifiable, and would have little else to
say on the matter. None of the many non-Bayesian methods of
nuisance parameter elimination listed in Basu (1977j apply to the
present case. On the other hand, a Bayesian regards a parameter as
an unknown entity that exists in its own right. It enters into
the sampling distribution of a properly planned experiment but is
not defined by the experiment. Nonidentifiability is, therefore,
a non-problem from the Bayesian viewpoint.

With a suitable representation £ of his/her opinion about
p = (pll, P,i» Py P,,), the Bayesian will proceed to derive the
posterior distribution by matching £ with the likelihood function
(1.3). The posterior marginal distribution of the parameter of

interest T will be obtained by integration.

1
In Section 2 we demonstrate how the choice of a Dirichlet

priox for p simplifies the Bayesian operation. The more general

case where the respondents are classified into k (instead of 2)

categories, A ‘s Ak, is analyzed in a similar fashion. Since

1’

the inference is based on the data, it is of interest to study the

distribution of the data under the considered prior. Section 3
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introduces the Dirichlet-Multinomial distribution and some of its
properties. This distribution, besides being the marginal distri-
bution of the data, plays an important role in the rest of the paper.
Sections 4 and 5 deal with the case of sampling from a finite
population; that is, the case where the statistical model is
Hypergeometric or, more generally, Multivariate HYpargeometric.
For the case where k = 2, instead of Pll’ p21, p12’ and Pyys the
unknown frequency counts 811, 921, 812, and 622 musf be considered.

As in (1.2), the population parameters may be displayed as:

(1.4) - R R
Ay 11 %12 %

Ay 951 892 8,

P N -4 N

with 62 = N - el, and the ﬁarameter qf interest being 61 = ell + 312.
A Dirichlet-Multinomial prior for 8 = (911, 621, 912, 622) greatly
simplifies the analysis of the data (1.1) vis-d-vis the parameter of
interest 81.

NOTATION : let x, ¥y, and z be either random variables or
random vectors. When x, y, and z are mutually independent we write
x |l vy |l z. By x || ylz it is meant that x and y are condi-

tionaily independent given z, and if x and y have the same distri-

bution we write x ~ y.
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Let p = (pl, ceay pk] be a k-dimensional positive random vector

such that ZEPi = 1. We write p ~ D(al,

the distribution of p is a Dirichlet with nonnegative real parameters

. ak) to indicate that

Qps Gos =nes K

use the conventional Beta distribution notation, Py~ B(al, az).

o For k = 2, instead of {pl, p2) ~ D(ul, az}, we

Let x = (xl, ceny xk) be a k-dimensional nonnegative integer
random vector with fixed n = Z?xi. We write EJE.N M(n; p), where P
is defined as above, to indicate that the conditional distribution
of x given p is Multinomial yith parameters n and p. For k = 2,
instead of (Xl, xz)l(pl, P,) ~ M(n; (pl, p,)), we use the
conventional Binomial distribution notation, x1|p1 ~ Bi{n; pl).
When 6 = (91, cees ek) is a nonnegative integer random vector with
Ziei = N fixed, we write x|6 ~ H(N, n, 8) to indicate that the
conditional distribution of X given 8 is Multivariate Hype?geometric
with pérameter (N, n, 2). For k = 2, instead of
(%, x2)|(el, 8,) ~ H(N, n, (6,, 6,)), we use the conventional
notation for Hypergeometric distributions, xllel ~ h(N, n, el).'
The probability function corresponding to H(N, n, 8) may be expressed

in the following two ways:

ol -

"

£(x{9)
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2 - NONRESPONSE: THE MULTINOMIAL MODEL

First we consider the case of k = 2, where the data, the
population parameters, and the likelihood are described by (1.13,
(1.2}, and (1.3) respectively.

In the fu%l response model, it is well known that the family
of Dirichlet distributions of the correct dimension is the natural
conjugate family for the Bayesian analysis. That is, if Yy and Yo

were the observations in R', and

(2-1) B = gy Pyys Prps Pyp) ~ Dlayys ogys gy, 0p))

a priori, then the posterior distribution would be

D(all + xl, a21 + Xy 612 + yl’ 322 + yz)_

To introduce a Bayesian solution to the nonresponse case, it is
useful to consider the following reparametrization:

P11 P12
(2.2) @ =Py ¥ Pyys py = g @nd qpy = 7 q

with the reverse transformation being

Py; = 99310 Py = (1 - adqg,
{2.3)
p21 = q{:l - qll): and P22 = (1 = C{)(l - qlz)

The following general result for Dirichlet distributions

is a key to the solution. Let me {2, ..., k - 1} be fixed.
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LEMMA 1
The following set of conditions is necessary and sufficient

to have (pl, Cee pk) ~ D(al, ceay ak):
. Lovmo m k '
Ay = Ly~ BUyes Tingyey)
(1) L, ..., p) ~ D o)
U N Ops wees O

l - y m+l) L Pk) ~ D(am+1’ b | ak),

.. 1 1
and (111} Yy __U_;(Pl: LRI Pm) J_l_"i'_—y(pm_‘_l’ seey Pk)-

The proof of this result is straightforward and therefore is
omitted.
Suppose that, a priori, (2.1) is considered. By Lemma 1,

this is equivalent to

q ~ B(a_l’ 0‘".2)3 q.ll ~ B(all, 0'21),
(2.4)

Uy ~ Blagys ayp), and q [ ap, ] ap,

where a¢ . = a.. +a,., (J =1, 2).
3 1j 2 ( s 2)
The reparametrization (2.2) changes the likelihood (1.3) to

n It X X

(2.5) L=q -q %aq 0 -aq,) "

By matching the prior (2.4) with (2.5), we derive the posterior

distribution of (q, T qlz):
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(1) q [l a, 1 ap,I%
(11) @)y |X ~ Blog; + x5 0y + X)),
X~ ap, ~ Blag,,s @),

and (iii) q|x ~ q|nl ~ B(a-l ARSI + nz).

As expected, n. is sufficient to predict q, and 45 is inde-

1

pendent of the data. Since a ,, = a N, the

9 = % P Uy =0,

posterior distribution of the original parameter p is again Dirichlet

if and only if n, = 0. It is, however, a mixture of Dirichlet

distributions, and (pll’ Py (1 - q))|x r D(all + X, Oyt X,

a ., n2). Note that these properties of the posterior allow.
one to define a "nice'" conjugate family of distributions for the
nonresponse case. That is, the ?rior given by {2.4) would be
conjugate if, instead of q ~ B(a.l, a.z), we had q ~ B(u_l, ),
where 8 2 e -

To proceed with the estimation of II., the parameter of interest,

13

we recall (2.3) to write II, = q 941 * {1 - q)qlz, and consider

1
Q=0 toy o, 22,andai_ = ey * 0, (i=1, 2). Under
the squared error loss function, the Bayes estimator of Hl is
given by:

fi, = E{1,[X} = Blqay, + (1 - @)a,,|X}.

In view of the posterior distribution (2.6), we finally have:
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Iy = Bla|X}E{q, [X} + E((1 - @) |X}E(q,,|X}
(2.7}
a
1 12
—a+n(al. +X1+a2n2)
*12
We notice that (see Example in Section 3) T is the conditional

.2
expectation of Yy~ the sample frequency of nonrespondents that

belong to Al - given the data. Therefore, ﬁl is an intuitive
estimator since in the case of full response we would have Yy in
*12
place of n,.
o, 2

The generalization of the above analysis to the case of k

categories, A - Ak (k 2 2}, is straightforward., Tables {(1.1)

l’

and (1.2) are replaced respectively by:

(2.8) R. R’
A |
I,
A X
nl nz n
(2.9) R R
Ay P11 | P2 T
Ay Py1 | Pxz T
q l-gq 1
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The parameter of interest is now Ie= (Hl’ caees Hk), and the data
is X = (xl, cees Xy nz). In place of (2.1), a priori, we consider
that

B = (Pyps oos Pyypo Prps coes Ppd

!D ‘.I LI I -
(0175 +ovs gy oy, > )

Analogous to (2.2) and (2.3) the following reparametrization is

considered:

k _Py1 P |
4= 0Py 95y = o G4 T T g @=L B

q
(2.11)

Q = (qll’ caes qkl)’ and Q, = (qlz, e, qkz}_
Conversely, '

Pip = Q4375 Py, = (B -a)gyy (=1, ..., kj
(2.12)

and I = qu + {1 - q)Qz.

With the reparametrization (2.11) the likelihood is given by:
n n, k =x.

(2.13) L=qi(1-q % =@ q,]-
i=1

Again, by Lemma 1, to consider (2.10) a priori is equivalent

to considering the following set of conditions:

a 1l o Il 9, a~Bq,a,),
(2.14)

Ql ~ D(all, cees akl), and Q2 ~ D(alz, cees akz),
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where o . = } a.. (J = 1, 2).
r glj(J )

By matching (2.14) with (2.13), we obtain the posterior

distribution which is defined by the conditions below.

a o L QIx alx~afn; ~Ba ; +ny, 0, v ny),

(2.15) Q1|X ~Dlogy * X, e, g * XD, andr
QX ~ @y ~ Dlap,s -any )

Again, EJX is distributed as Dirichlet if and only if n, = 0.

It is, however, a mixture of Dirichlet distributions and
(pll),“'l p‘kl’ (1 - Cl))IX ~ D(all + xl, R | akl + xl, 0".2 + n2)°
As before, we might consider a conjugate family of distributions

by taking B8 2 « 2 for o ., in (2.14).

2

The Bayes estimator for the parameter of interest

I = (Hl, cees Hk), analogous to (2.7), has the following form:

(2.16) I = E(H[X) = ~L[(a

e B CHPRETR ak.) + XM]

where M is a (k + 1) x k-matrix with the (k + 1)th row being

(a12, e ak2)61_3 the diagonal elements being the unity, and the

.2
remaining elements being zero.
The next section deals with the study of the distribution of

the data X. The covariance matrix of ﬁ_is presented at the end of

the section.
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3 - THE DIRICHLET - MULTINOMIAL DISTRIBUTION: PROPERTIES

When the discrete data follow the Multinomial model, the
family of Dirichlet distributions has been widely used by Bayesians
since it is a conjugate family large enough to accommodate various
shades of prior opinion. The study of the mixture of Multinomial
distributions by a Dirichlet distribution therefore becomes relevant
because the (marginal) distribution of the data is then a mixture
of this kind. Generalizing the definition of the Beta-Binomial
(Ferguson [1967]) this mixture is called here the Dirichlet-
Multinomial distribution. More specifically, for k =2 2, Iet
X = (xl, ey xk) be a nonnegative integer random vector such that
Z?xi = n is fixed, and let p = (Pys --es P, ) be a nonnegative real
random vector with Z?pi = ],

DEFINITION

Ifp ~ D(a

i 1’
of x is called Dirichlet-Multinomial (DM) with parameter

. ak) and EJE_N M(n; p), then the distribution

(n; @ .y ak), and we write x ~ DM(n; Ups =ees ak). When k = 2,
in place of (xl, x2) ~ DM(n; OE az), we write Xy~ BB(n; @ a2)
to indicate that X; is distributed as Beta-Binomial.

It is easy to check that the probability function (p.f£.)

associated with the DM distribution is given by:

n! r(e) § Fley +x)

(3.1) £(x) = ?fﬁ“i_ET'ifl XUy

where o = Z?mi.
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Some of the important properties of the DM distributions are
given below. Let x = (xl, cee xk) ~ DM(n; Cys ey ak).

PROPOSITION 1

If (il, Ces ik) is a permutation of (1, ..., k), then

x. , «.., X. ) ~DM(n; a. , ..., a. J.
11 1k 11 k

PROPOSITION 2

Ifme {1, 2, ..., k} is fixed, then for B = ZTai
(X, -+, X , 11 - me.) ~ DM(n; a .. @ , a - B}, and
1, . > m’ 1 1 S | l, ‘A m’ >
m
n, =) 1% ~ BB(n; 8, a - B).
These two results are immediate consequences of analogous

properties of the Multinomial and the Dirichlet distributions.

~ PROPOSITION 3

For m and n, defined as above, we have that
(X5 ees xm)|nl ~ MR g, e, ).

Proof

Note that the conditional probability function of
(X5 «oes xm)ln1 is obtained by dividing the p.f. of

, N - nl) by the p.f. of n, which is the p.f. of a

ceey X
(XI, 2 W

DM(n; Gis wens ak). g

The result we present next is an important characterization
of the DM distribution which will be used in the sequel.

Let (xl, e, xk) be a nonnegative integer random vector

with Zixi = n fixed. Choose an integer m ¢ {2, ..., k - 1}, and
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denote n, = Z?Xi with Ny, =7 - ng. Consider now the following set

of conditions:

(1) (Xl’ R Xm) JJ* (Xm+1, RN xk)]nl

(3.2) (i1} (x5 --es xm)!nl ~ DM e, -, o),

., xkjlnl ~!DM(n2; G op10 vt

(xm+1’

L. n m
and (iii) n, o~ BB(n; Zlai’ a - Zlai).

THECGREM 1
The above set of conditions (3.2) are necessary and sufficient
to have:

(iv) (xl, R xk) ~ DM(n; Gps vovs ak).

PROOF

By Propositions 1, 2, and 3 (iv) = (ii) and (iii). To
prove the remaining implications we need only note that (3.1) may

be factored as:

' re+ n.)T(a - 8 + n,)
£(x) = [n.F(a) : '1 2 ]
= T(a + n) n,'n,! (B)r(a -~ B)
n_IT(8) m T{a. + x,) n,!fF{a - 8) k  TIfa. + x.)
* o= 1 ] x [2 R S A
r{s + nl) i=1 xi.F(ai] F'(a - B + n2) i=mel xi.P(ai)

where, as before, a = Ziai’ and 8 = ZTui. The first factor is the
p.f. of a BB(n; B, o - 8), the second is the p.f. of a

DM[nl; A 12 e ak), and the third is the p.f. of a

DM(nz; G 12 o ak). U
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EXAMPLE
Recalling the Bayes estimator ﬁl presented in (2.7), we
notice that (xl, xz) |[ (yl, y2)|n1, and then
yllx ~ yllnz ~ BB(n,; ap,, azzi which implies (see (3.3) below)
12

that E{yIIX} = E{yllnz} = n, a—-z—

An interesting property of the DM distribution is given below
where we consider the finite sequence (zl, cers zk) with
=j i =1, . k .:: = =
zj 1% {3 > »+., KJ. Clearly, z, X5 zm n s and zk n.
-COROLLARY
..If (xl, e, xk) ~ DM(n; al, cens ak], then (zl, cens zk)
forms a Markov Chain.
It is intuitive that we might give a characterization of the
DM distribution in terms of (zl, ceey zk). This, however, would go
beyond our needs.

To present the mean vector and the covariance matrix of the DM

distribution we introduce the vector a = (ul, ceny ak), and the

matrix
al 0-. 0
A= 10 Gpen- 9
¢ 0. e

From Propositions 1 and 2, we notice that X~ BB(n; a., o - ai),

and x. +x, ~ BB(n; «, +a., o - a, - a.) fori, j =1, ..., k with
1 J 1 J 1 J
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i # j. From easy computations when using the definition of BB we

have that
&5
(3.3) Ef{x.} = n —
i o
2
Var{x,} = Lo a+n
ek A Y D S
(o; + Otj)z a4+ n
and Var{xi + xj} = [ai + aj - = ] e l)n =

Var{x.} + Var{x.} + 2 covix., x.}.
1 ] 1 J

From this last equation, it follows that

covix., x.} = i aj a+tn 5
i’ 7y a ofe + 1) -

-Finally, the mean vector and the covariance matrix are given by:

Elx} =T a

o +mn

- 1 L}
COV'[_.?_C_} = [A - a a a]mn

where a' is the transpose of a.
The data vector X = (xl, e Xps nz), for the nonresponse
data presented in Section 2, follows the DM model; that is,

X ~ DM{n; a In this case

1’ e %k a.Z)'
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= 1
(3.4} a (all, ees Oy a_z), and o q 0 .. O 0
A = ? ¢yy . 9 0
0 0 d) g t]
|0 0 0 o

The mean vector and the covariance matrix for i, the Bayes

estimator given by (2.16), are:

B{f) = —=L(a, > -.., @ ) + E(XWM, and

o +1n

(3.5)

Cov{ﬂ} = (u 1 )2 M' Cov{XIM.

+ 1N

Using (3.4}, we have that

B} = 3 (ay 5 s 0y )

TSI
M'AM=‘ 0 ... &kl el O UEIEEE L YR CIPIEE

1 viaram = L ' .
and " M'a'aM 5 (ul., cavs ak.) (al_, cnay ak'),

which imply

2
a.
A n i2 1 2
Var{l} = ola + Do + n) Lagq * a, a %]
(3.6)
. .
- - _ o} iz 732 1
Covily, I} = o T N m ; s %, %7

for i, j =1, ..., kand i # j.

.2
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To conclude this section we notice that some of the important
discrete distributions are particular cases of the DM distribution.
For example, for U = evn =0y = 1, the probability function is

n+k-1.-1

f(x) = ( 0 ) 7 which goes by the name Bose-Einstein statisticin

Statistic Mechanics. See Feller (1968) for additional discussion.

4 - THE DM DISTRIBUTION: A NATURAL FAMILY OF PRIORS FOR FINITE

POPULATION STUDIES

A sample of fixed size n is taken from a population of finite
size N which is partitioned in k < N categories. The category
frequency counts are represented by 81, ceey ek with Z? ei = N.
.From-the sample, an inference about [81, ...,'ek) is required.
Coiresponding to each eifi =1, ..., k), X5 is the sample frequenty
count of the i-th category where Zixi = n,

The above problem may be viewed in a simple wa} by considering
a bag with N balls of k £ N different colors that are identified
by ¢, €y onn ck.' The number of balls with the i-th color
(i=1, ..., k) is represented by ei where Zfei = N. Suppose that
the N balls are separated iﬁto two bags in such a way that one
bag (bag number 1) contains n balls, and the other (bag number 2)
N-n balls., The statistician is allowed to look at the composition

of bag 1 and record the numbers x s X the frequency counts

1’

of the k colors. Now, the unknown quantities for the statistician

are 61 - Xy oeees ek - X that is, the composition of bag 2.
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We restrict the choice of the prior distribution for 8 to the
family of DM distributions. Given the sample x = (xl, cen, xk), the
composition of the first bag, we want to derive the posterior

distribution of 6 -x= (81 - X . ek - xk), the composition of

1’
the second bag. In order to reach this goal, we use only intuitive
arguments since an algebraic analysis, besides being tedious
(albeit easy}, would bury the beauty of the argument.

let e, = (1,0, ..., 0), ..., e = (0, ..., 0, 1) be the

1 k
standard orthonormal basis for Rk. To eaéh ﬁnit j @G =1, ...; N}
of the population P, we associate an incidence vector yj which is
equal to e, if the color of.j is c; More specifically, let
P = {l,r..., N} be an enumeration of the population of balls.
Associated with P are the incidence vectors Yis ovea YN described
above. The unknown vector is 8 = (81, cens ek) = Z?yj. We are
considering the case where the sampling selection is noninformative.
That is, the selection of the n balls (sample) from P, is based only
on the labels 1, ..., N, which are themselves uninformative about
the incidence vectors Yis +ves YN
A natural way to introduce the prior model 6 ~ DM(N; ai, aey ak)

is to consider a random vector P = (Pl’ ey pk) ~ D(ul, eeas uk),

and to stipulate that for j = 1, ee., N

yilp ~ M p), and y, || ... ] yglp-




63

In other words, given p the yj's are i.i.d. with common distribution
M(l; p). Since (yl, ceey yN) is an exchangeable finite sequence,
without loss of generality, we can consider our sampled items as
being the first n population items, say {1, 2, ..., n}. That is,
the two bags are {1, ..., n} and {(n + 1), ..., N}. Now, the sample
is represented by the vector X = Eiyi, and the unknown quantity of
interest is the vector § - X = X:+1yi.
In terms of the pseudo parameter p we then hafe, a priori, the

following:

(i) P~ Doy, «ony ),

(i)  x|p ~ M(n; p).
{4.1) (111) x ~ DM(n; Gps eens uk),

(iv) (8 - ¥)[p ~ M(N - n; p),

V) (@ -0 ~DMN - 15 ap, .., o),

CONGES B INE 2

and (vii) 8|p ~ M(N; p).

The result below is useful to our discussion.

LEMMA 2

If two independent random vectors X, and Y are such that
X~ M(nl;‘gj and Y ~ M(nz; P}, then the conditional distribution
of X|X + Y is the Multivariate Hypergeometric with parameter
(n, + n,, n,, X+ Y); that is, X[X + Y ~ H(n, + n,, n, X+ ).

(Notethat this distribution does not depend on the value of p-)
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The following conclusion based on (4.1), and Lemma 2 is the

first important result since defines the likelihood function:
(4.2) x[ (8, p) ~ x[8 ~ HW, n, 8

From the Bayesian analysis of the multinomial case, we recall

that plx ~ Dlog + Xps voes @ + X ). On the other hand we notice

that the conditional distribution of (6 - Ejlz_may be viewed as a
composition cof the distribution of (6 - 5)[£_~ (6 - 5)[(23 X)
(see (4.1)) by the distribution of p|x. Now, by the definition of

the DM distribution, we have that (6 - 5)[§>~ DM{N - n; @, * X1

o, * X This is the main result of this section and may be

k k)'

summarized as:

THEOREM 2
For the finite population saﬁpling described, if

8 ~ DM(N; a cees ak) a priori, then (6 - §)|§_~

1’
DM(N - n: oy * X,

The next section is devoted to the nonresponse problem in

s Og xk) a posteriori.

finite populations.

5 - NONRESPONSE: THE MULTIVARIATE HYPERGEOMETRIC MODEL

The data for the nonresponse problem is presented in the
"k x 2-tabular form as in (2.7). Instead of (1.4), the population

parameters have the following representation:
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(5.1) R R
A 11 %12 %
A, 871 %52 ®)
A 01 Ox2 Ok
A B T

Now, the parameter of interest is § = (81, e, Bk), and the

likelihood may be written as:
k 8.

e ¢y Y
(5.2) L = 1 ; i 1 . 2
) )

Suppose that, a priori, a DM distribution for

] ,-Bkz) is considered; that is, a priori

110 7 %k 800

(5.3) 0 ~ DM(N; Gygs s Opqs Gqgs cens akz).

An additional notation is introduced below:

e, = (611, cees ekl), and e, = (912, cens Bkz).

Recall that, § = el + 0, 1s the parameter of intereSt,'énd that
X = (xl, cees Xy nz) is the data vector which may also be

represented in the slightly abbreviated form x = (x5 -ees xk).

k
a.j ='i§l aij (3 =1, 2), o, = oy + Ans (i=1, ..., k), and

o = Ifays-
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Writing the parameters in the extended form (v, 81, 02), it is
convenient to describe the prior (5.3) in the following equivalent
form (see Theorem 1):

(1) % ~BB(N; @, a ),

(5.4) (A1) 8 [y ~ DM(Y; apy, .oes @),
0, % ~ DM(N - ; oy

and (iii) e 1 0, v

2, rewy akz)’

The theorem presented below is the main result of this section.
It allows a simple derivation of the Bayes estimator.
THEOREM 3

The posterior distribution derived from the Bayes operation,
when (5.2) is the likelihood and (5.4) defines-the prior, is given
bf the following set of conditions:

(i)' (yp - nﬂlx ~{ - nf]nl ~ BB(N - n; a.l + nl, a_z + n2)
(5.5) (ii)! (@l - 39] (¢, X) ~ DM(y - nl_; 0!.11 + Xl, ceey akl + Xk)s

and (iii)' o 1L ezl(‘f” X)

PROOF

The second condition of (ii)' follows from the fact that the
likelihood does not depend on 62 when Y is known. This fact
together with the prior condition (iii), implies (iii)’'.

To prove (i)' and the first condition of (ii)' we consider

(as in Section 2} the invisible nonresponse sample frequency counts,
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say y = (yl, veey yk). If we had full response, the data would
have been represented by (x, y). From Theorems 1 and 2 we have
that

a) ¢ - nll(§, y) ~ BB(N - nj; a.l + nl, a-z + n2)

b) o - x[(¥, x, y) ~ DM(p - My o * Xy e, g *X,)

From a} and b) it follows that @ - nﬂl(ﬁz y} ~@ - nlﬂnl, and
that @, - (W, x, y) ~ ©, - X (¥, X} which imply (i)' and the first
condition of (ii)' respectively. []

Note that we showed above that ¢ _LL_x|n1; that is, n is
partially Bayes sufficienf to predict ¢. See Basu (1977) for a
more complete discussion of this concebt.

As in the multinomial case, the posterior (5.5) does not define
a distribution in the same class as the pfior was chosen
fiom; that is, (5.5) does mot define a DM distribution. Tt is
easy to check, however, that (811 = Xy oeees ekl - X N -1 - nz) ~

+ xl, ey akl + Xy a.z + nz). A more complete class

DM{N - n; %9
might be considered by taking in (5.4) a B = o 7 for o 9 in (i).

From the posterior (5.5) we obtain the following results:

0.-1+n1
E{lp-nlIX}= (N-n)——a—_‘_——ﬁm
o +1n

%17 %
E{eil - xi|(¢, = - n1) a—;i;j;;
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B _ *i2
E{ei2](¢, X)} = E{eizlw} = (N - 9) 5,

Using now the properties of conditional expectation we have

the Bayes estimators,

D>
i

E{e, [X} = E{o,, + o.,|X}

fl

E{eillx} + E{eizlx}

%17 % )
= x; * E—h—:—ﬁ;-E{¢ - nl[X} * o= E{N - X}
. . .2
. Q.
.o+ N i2 1.
= (X v n, a;;a.+ N -n) ——

Similarly to (2.15), the Bayes estimator of the parameter of
interest § = 91'+ 62 is given by:

a + N N-n
+

6 = E{ofx} =
— - o+ n a + n

@ 5 eees oy )

Using the results (3.4), and (3.5) we finally have:

~. N
E{8} = Sy » ..., @ )
a1 - o+ N2
Cov{g} = (a - n) M' Cov{XIM
which implies that
5.6) Covif,, 8.} = e + 1) (6 e £ A Vil
(5.6) Cov i’ 757 (o + n)(a * Do Cij%il @, B o )s




69

vhere 6ij is the Kronecker delta, and Var{ei} = Cov{ei, ei?.

6 - FINAL REMARKS

(1) There are many follow-up techniques used to obtain
response among some of the n, units that have not responded

initially. For example, from the n, nonrespondents in our sample,

2
we select a subsample of size né ; n, and offeran incentive to

those who now would respond. In that way, information about Q2

in {2.14) or about 82|w in (5.4) might be improved. See Kaufman

and King (1973}, and Singh and Sedrausk (1978) for a more specific
discussion on this two stage sampling.

(1i) Althéugh we have restricted ourselves to the nonresponse
problem, it should be understood that our method applies equally well
to the general problem of categorical aata with missing entries.
Consider, for instance, the categorical data where all but the
first n cell entry data are missing. By using Lemma 1 for the
multinemial case or Theorem 1 for the hypergeometric case, we
would, analogously to (2.6} or (5.4), obtain the posterior distri-
bution for the cell parameters.

(iii) One word about the relevance of the variance of Bayes
estimators as presented in (3.6), and (5.6). Note that we are not
talking about conditional variances (with the parameter fixed) but
the variance of the marginal distribution of the estimator.

Consider the k = 2 multinomial case for instance. It is clear that

Var{ﬁl} = Var{Hl} - E{Var{HIIX}}; that is, the variance of 1 may be

1
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regarded as the expected amount of uncertainty removed, when
uncertainty (De Groot (1962)) about the parameter is measured by
its variance. Thus, the variance of the Bayes estimator is a kind
of a measure of the amount of information in the experiment. The
larger the variance of ﬁl is, the better off we are!

The variance of the Bayes estimator may be used (see Appendix)
to study the amount of information lost when the nonresponse portion

of the sample is neglected as in many classical procedures.
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APPENDIX

The usual non-Bayesian methods for analyzing data with
nonresponse do not use the nonresponse portion of the sample.
The likelihood in this case is defined by the conditional
probability of X = (xl, ceey xk), the nonresponse vector, given
n, = Z?xi. For instance, in the m;ltinomial case this
"conditional likelihood is L_ = i{th;}. Tt is intuitive that, by
considering this rgduction, one is"not using the complete infor-
mation (about the parameter of interest) contained in the data.
In order to clarify‘this peoint we define a reasonable measure
of information and compute, in a particular case, its values for
both the 6rigina1 and the conditional model.

Consider the Multinomial model fqr.the case of two categories
(k = 2). Let the prior be the uniform distribution; that is,
@11 T @y T 0y, = 0y, = 1. By using the variance (see Section 6, iii)
as the uncertainty function, we define the measure of information
as:

I(data) = (Var{Hl})—l Var{E{Hlldata}}.

Considering the original likelihood, the information measure
. . -7 _ n . _ -1
is given by I(X) = I = 204 Ty Since Var{Hl} = (20) ~ and

n

Var{Hl } = m.
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The posterior distribution under the conditional model (and

some prior) is defined by the following conditions:

Q' ~ B2, 2), q}; ~B(l+x, 1+x)

1}

aj, ~ B, 1), andq' || q [] aj,.
The Bayesian estimator in this case 'is given by

1 1
22+ n1

1
+-4—’
and the respective measure of information is
1 +x
I(EJnl) = IC =5 Var{i—:nﬁ;}.
Relative to the uniform prior, the distribution of
(xl, Xy, n21 is DM(n; 1, 1, 2). Considering the particular case

of n = 4 we obtain the following results:

I= %3 IC = 5%%3 and E—%—Es-i .27,
Here we might say that if an inference about Hl is required, then
27% of the information is expected to be lost (relatively) when the
nonresponse portion is neglected.
Note that it is possible to have an analogous analysis for

the Hypergeometric model. However, in addition to the value of n,
we would have to fix a value for N, the population size. Here, the
conditional medel is given by L. = (z )—1 ; (zi). For particular

1 i=1 7§
choices of N, the relative loss of information would appear to be

more extreme.




CHAPTER III. THE INFLUENCE OF THE SAMPLE ON THE

POSTERIOR DISTRIBUTION

1 - INTRODUCTION

As before, € is the parameter of interest and x is the data
on which the inference about ¢ is based. The Bayesian operation
(prior to posterior) supplies the answer to the question of how to
use the information (about 6) provided by the data. In particular,
in Chapter 2 we showed how the nonresponse sample portion (being
a source of information) is incorporated into the analysis. Now, we
shift our attention to another general question: What kind of
information about 8 does the sample possess?

Consider again the population of colored balls separated
randomly into two urns, és described in Section 4 of Chapter 2.
The composition x (the data) of urn 1 is expected to reflect the
composition & of the population in the sense that the larger X3 is,
the larger stochastically will ei be a posteriori. We also
usually expect this relationship (a posteriori) to apply to the
composition § - x of urn 2. This is clearly not true. For example,
if we know in advance the exact value of 61, then 81 - Xy decreases

as x; increases. Whitt (1979) considers the case of two colors

(k = 2}, and restricts himself to the class of exchangeable priors

for Yys soes Yy the incidence vectors described in Chapter 2.

74
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He shows, by using the Monotone Likelihood Ratio (MLR)} oxdering,

that 8, always increases when x, increases, and presents conditions

1 1

on the prior under which el - Xy increases (or decreases) when x

increases. Note that by considering only exchangeable priors, and

i

by using (4.1) of Chapter 2 we may conclude that: The posterior
distribution of 6 - x (the unobserved part of the population)

given x (the data) is independent of the value of x for every sample
size n if and only if the prior distribution of 6 is Multinomial

with fixed pérémeter (N; p). This is the multivariate generalization
of the Corollary presentgd by Whitt (1979).

In the present chapter, we show that Whitt's key ideas may be
extended to the case of multivariate absolutely continuous distri-
butions. Our basic notions are multivariate total positivity of
order 2, and multivariate reverse ruie of order 2, introduced and
éxplained by Karlin and Rinott (1980a, b). These concepts are
briefly described in Sectiomn 2.

In Section 3, we present sufficient conditions on the likeli-
hood function and on the prior distribution under which the pos-
terior distribution insures ei be increasing in X, and decreasing
in xj for j # i. .In Section 4, we apply these results to some well

known distributions.

2 - PRELIMINARIES

In this section we present definitions, notation, and basic

facts used throughout this chapter.
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DEFINITION 1

A random vector X is said to be stochastically increasing in a

random vector y if E{¢(§)lx} is increasing in y for every increasing

bounded real function ¢. (A function ¢: Rk + R is said to be
increasing if it is increasing in each of its arguments.)

The following concepts of total positivity of order 2 (TPZ),
reverse rule of order 2 (RRZ)’ and P6lya frequency function of

order 2 (PFZJ may be found in Karlin (1968).

DEFINITION 2

(i) A nomnegative real function f: Rz + R is TP2 (RRZ) if
¥ r
£x, X)E(x, x3) 2(DE0g, xPEE], X,),

L. L
whenever X3 2 xl, and X, pd Xy

(ii) A nonnegative real function r: R+ Ris PF, if
f(xl, x2) = c(xl - xz) is TPz.
The definitions below appear in Karlin and Rinott (1980a, b).

For every X, y ¢ Rk, denote:

szlfxiz}’ivl':l: "')k)J
x vy = max(xy, y), -.., max(xq, y,J),
and X Ay = (min(xl, yl), cee, min(xk, yk)}.

The following is the natural generalization of Definition

2(i) :
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DEFINITION 3

. . . k
Consider a nonnegative real functien £: R <+ R. VWe say that

f(x) is multivariate totally positive of order 2 or MTP2

(muitivariate reverse rule of order 2 or MRRZ) if:

fx vy) f(x A y) 2(2) £(xX)E(y)

for every X, y ¢ Rk.

Karlin and ﬁinott (1980a) show that MTP2 is a concept of
strong positive dependence. They show, however, in their second
report (1980b) that the MRR, property fails to be a good concept
of negative dependence. In the same report they seem to solve the
problem by introducing the following definition. For additional
illustration of its usefulness we refer to Block, Savits, and
Shaked (1980).

Let (il, cee s ik) be any permutation of (1, 2, ..., k).

'DEFINITION 4

An MRR2 function f; Rk -+ R is said to be strongly—MRR2

(S—MRRZ) if for any set of k PF2 functions {Cl, ceny gk}, and

for each j £ k, the function

j .
g, (X 4 eee, x, ) = feeofE T oz (x. ddx,
k=375 iy o B

is MRR2 whenever the integral exists.

The multivariate generalization of the familiar Monotone

Likelihood Ratio property is given by:
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DEFINITION 5

Let f1 and f2 be two probability density or mass functions

(p.d.£.) on Rk. If for every x, yeR k,

vy fix Ay 2 £,(x) £,0),

then we say that f2 is "larger than" fl in the TP, sense, and write

2

£, > f
2 TP2

It is well known thatthe1nondﬁbnelikelihqod ratio ordering implies

1

stochastic ordering. The following result is a generalization of

this fact.

THEOREM 1

Let f1 and f2 be two p.d.f.'s on Rk such that f2 > £

TP2 1

If ¢; Rk -+~ R is an increasing function, then
Joofo £,00dx s [+ [o(0 £, (x)dx.
For a proof of this result, see Karlin and Rinott (1980a).

3 - THEORETICAL RESULTS

In the sequel, let 6 be a parameter taking values in a subset 0
(the parameter space) of Rk, and x € Rn(n > k} be the data Vecfor.
The likelihood function or the sample p.d.f. is represented by
£f(x|8). The prior and the posterior p.d.f.'s are denoted

respectively by £(8) and 5*(§J§J'
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The following result is the TP2 version of Theorem 4 of
Whitt (1979). In the above notation suppose that k = n = 1, 8

denotes the parameter, and x denotes the data.

THEOREM 2
Consider f(x]e) and E*(elx) as bivariate real functions of 8

and x. Then f£f(x|8) is TP, (RR,} if and only if £*(8]x) is TP, (RR,).

PROOF

For [H(x)]_l = ff(xle)a(e)dﬂ we notice that

£*(8]x) = H(x)E(8)£(x|6). Then, %2(5) E:ng;)) holds

£(x[8) fx'fo)

if and only if F(x[87) (%) HCUrDI _

Theorem 2 motivates the results of this section.
: il n-+k .
Let h: R > R and g: .R." > R be two nonnegative. real.

functions.

THEQREM 3

Suppose that

(a) £(x[8) = h(x) g(x, 8), where g is MTP,,
and (b) £(8) is MTPZ.

Then
£x(8]x") > T, £*(8]x)

n
for every x, x' € R such that x' = x.
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PROOF

The posterior p.d.f. may be factored as:
Ex(8lx) = H(x) g(x, 8)£(0),

where 0T = fgx, &)E(e)do.

Consider two sample points x' and x such that x' 2 x, and

denote
£,(8) = £*(8]x) and g (&) = £*(e]x").

Let 6 and 8' be two points in the parameter space 6. Now, we

can write

£, (9)E,(8') = HOOH(x")g(x, Og(x', 8ME(B)E(D")

S H(OH(')g(x A X', 8 A 8")glx vV x', 8V e )E(R ABTEE V)
since both g and £ are MTP,. Since x' 2 x, we finally have
£,(8)%,(8") < [H(X)g(x, & A 8)E(B A 8")1 x

[H(x")g(x', 8 v 8')E(8 v £")]

go(_e_ A ET)EI(_Q_ v g’)'

Thus, it is equivalent to say that & > g.. O
1 TP2 0

COROLLARY

If conditions (a) and (b) of Theorem 3 hold, then § is

stochastically increasing in X.
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PROOF

The result follows immediately from Theorems 1 and 3. [J

In many cases, conditions (a) and (b) of Theorem 3 are too
strong. A more realistic result is presented below where X is
considered to be the data reduced by sufficiency, and to have the
same dimension of 8; that is, n = k.

Let c: Rk + R, and gt RZ +~ R(i =1, ..., k) be nonnegative
functions. and represent the posterior marginal p.d.f. of Bi

(=1, ..., k) by £2(s,|x).

THEOREM 4
Suppose that

: k
i=1
where, for i = 1, ..., k, g; is TPZ. Then, for every i =1, ..., k,

the following condition (for the posterior marginal density of ei)

holds:
Exo; |x") > sza;(eilz)

for x' equal to x except for the i-th coordinate, where

'(z x,) replaces x..
xl( 1) p i

PROOF

Without loss of generality we assume i = 1. The posterior

marginal p.d.f. of 91 is
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k

where C(8) c(8)£(6), and H(x) is defined as above. Now, define

k

(X 8y = f---IC(g)izzgi(xi, 8,)d8,

[op]

vhich is constant in Xy Thus,

£%(6,1x) = H(X)g, (x],8)6, (x, 8,)

Consider two sample points that differ only in the first coordinate,

say

— | - 1
i" (Xl, Xz: .,xk)’ andi (X,Xz, s x-k),

) L
where xl 1

Define

£19(01) = £3(6,[0)

1l

and £,,(8)) = £3(0, [x").

Since by definition
- t
G (x, 8;) =G (x", 8;),

we thus have

£,1080)  H{x"g (], 0,)
E0(0)  HXg (x;, 8,) 7

which is increasing in 8, by the TP, property of g+ Hence,

1

£11 7 TP2510‘ 0
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REMARKS

1 - Note that the result in Theorem 4 pertains to the posterior
marginal p.d.f. of ©,- Also it holds irrespective of the choice
of the prior distribution.

2 - It follows from Theorems 1 and 4 that E{¢£ei)l§} is
increasing in X4 for every increasing real function ¢: R - R.

In many applications, we noted that the posterior distribution
of ei stochastically decreases in xj for every j # 1. This fact

is included in the following result.

THEOREM 5
Suppose that
k

I

£*(8]x) = H(x)
. -i=1

gi(xi, ei)C(B),
where

(1) g(e., x.) is TP, v i=1, ..., Kk,

(ii) for fixed xi(l =1, ..., k},‘gifxi, ei) is PF2(1n ei),

and (iii) C(6) is S-MRR,.

Then, for every i =1, ..., k,
ex(o;]x) > szgf(ei|5f)

whenever x' 2 x° and the i-th coordinates of x' and X are equal;

that is, x. x! and x. < x! v j#i.
i” i j j

(For k = 2, condition (ii) is not required.)
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PROOQF

Without loss of generality we assume i = 1 and
X = (Xl’ Xy Xgs onn,s xk) and
| - t
E (xl’ xz, xs’ rers xk}a

where xé > X535 that is, x and x' differ only in the second coordinate.
(A} We consider first the case of k > 2.

The posterior marginal p.d.f. of & is

gx(e,1x) = H(x)g; (x;, 8,)fg,(x,, 6,G(01, 85, Xz, ..., x)d0,
where
G(Bys By Xgy «ovy X)) = I---IC(Q)iEIgi(xi, 6.)de. .
Since C{8) is S-MRR2 and gi(ei, xi) is PF2 in Bi, it follows
from Definition 4 that G is RR2 in (el, 82) for every fixed
(xs, ve e xk).
By the basic composition formula (Karlin [1968]) and the fact

that gz(xz, 62) is TP,, it follows that

2)
Gl(el, X) = fgz(xz, ez)G(el, 92, Xzs ones xk)de2

is RR2 in (61, xz) for every fixed (XS’ cens xk). (Notg that G1

is constant in xl.)

As bhefore, let

€080 = £5(0,1x), and £ (8 = £¥(0,[x")
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and note that

£1067) _ H(x') G (8., x')
£10(80)  H® G (6, 1

is decreasing in el since Gl is RR, in (el, x2). Hence,

510 7 szgll'

and by the

(B) When k = 2, from (iii), C(el, 82) is RR2

basic composition formula,
6,(8,, x,) = jgz(ez, x,)C(8,, 8,)de,

. . .
is RRZ' Thus, if x5 > X%,

E700; 1 (xy, x3)) HOq, x5) 6500, x1)
506, (x|, %)) ~ H{x, x;) 6,087, X))

is decreasing in 8, and the result follows. [

REMARKS
3 - Note that Theorem 5 involves conditions on the prior

distribution.
4 - It follows from Theorems 1 and 5 that E{¢(ei)]§} is

decreasing in xj whenever j # i and ¢: R+ R is increasing.

4 - APPLICATIONS

In this section, we show how the results of Section 3 apply to

some important probability distributions.
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EXAMPLE 1 - MULTIVARIATE NORMAL DISTRIBUTION

Let x be a k-dimensional random vector whose coordinates,
x. (i=1, ..., k), are independent. Suppose that for
i=1, ..., k, 6, = E{xi} is unknown and og = Var{xi} is known.
Then, whatever appropriate prior we choose, Theorem 4 applies, and
by Remark 2, E{¢(8i)[§} is increasing in X5 for every increasing
real function ¢.

Suppose that our prior opinion about & is represented by a
nonsingular k-dimensional normal distribution, with mean vector n
and covariance matrix V_I, which is a conjugate prior. Let vij
(i, 3 =1, ..., k) be the (i, j)-th element of V. If Vis < 0 for
every i # j, then £(8), the prior p.d.fi, is MT]'P2 (Barlow and
Proschan [1975]). Thus, Theorem 3 and its corollary apply yielding
the conclusion that § is stochastically increasing in x,

If the prior £(8) is negatively dependent in the S—MRR2
sense, then Theorem 5 applies, and by Remark 4, for every
i=1, ..., k, E{¢(ai)]5} is decreasing in xj('e'j # i) for every

increasing real function ¢. A normal prior is S-MRR2 if

V_l =D - a'a-

where D is a positive definite diagonal matrix, say

D = diag(dl, vy dk) with di > 0, and a = (al, e, ak) with

a, 2 0 and Z¥a§d;1 < 1 (Karlin and Rinott [1980bJ). In particular,

if the correlation matrix for the normal prior distribution is
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where p < 0, then the prior p.d.f. is S—MRR2 (Block, Savits, and

Shaked [19801). O

EXAMPLE 2 - MULTIVARTATE BERNOULLI TRIALS

Let Y1 Yos -n- be a sequence of i.i.d. k-dimensional vectors

with common multinomial distribution with parameters n = 1 and

k .
p = (p;s ---» P), where lei = 1. That is, y, 1 Yy 1] ... and
Y~ M(1, p) vi=1,2, ... . Note that for any finite sequence

Tt - - .

Yis wees Yo the vector x = Zlyi = (xl, cens xk) is a sufficient
statistic since the probability mass function of Yis wees Y is

k x,

L= 1p  I(p)
i=1

where I{p) is the indicator function of Z?pi = 1. C(Clearly,

£(x|p) = h(QL.
X

We notice now that Theorem 4 applies since pii is TP2 in
(xi, pi). Hence, by Remark 2, fo; i=1, ..., k, E{¢(pi)|5} is
increasing in X5 for every increasing real function ¢.

Suppose that a Dirichlet distribution with parameters each
no smaller than unity is chosen to represent our prior opinion about
p- With this choice, the prior p.d.£f. for P is S-MRR2 {see Karlin
and Rinott [1980b] or Block, Savits, and Shaked {19801). Thus,

X,
since pi1 is PF2 in Ps (i =1, ..., k), Theorem 5 applies and by
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Remark 4, for i =1, ..., k, E{¢(pi)|§} is decreasing in xj

whenever j # 1 and ¢ increasing. [

REMARK
5 - Note that Example 2 includes both the multinomial and

the negative multinomial models,

EXAMPLE 3 - MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION

The probability mass function in this case may be expressed as
5 :
£(x|9) = hx 1 $h) 100,
i=l1 73
where I(8) is -the indicator function of Z?Gi = N, Again, Theorem 4
applies since (g%) is TPZ' Thus, for i =1, 2, ..., k,
E{¢(Si)|§} is increasing in xi whenever ¢.is an increasing function.
Suppose that a Dirichlet—Multinomial distribution (see Chapter
2) with shape parameters, ai's, each no smaller than unity is
chosen to represent our opinion about 6. In addition, note that (i%)

1

is PF2 in Bi for every fixed X - Thus, Theorem 5 and Remark 4 apply.

To conclude this example, recall that the posterior distribution of

+ X.5 se., 0 + X

1 1 k k)

whose component means are given by (Z?(aj + xj))—l(ai + xi) for

8 - x (the unsampled population) is DM(N; a

i=1, ..., k. Thus, for every i = 1, ..., k, E{Bi - xi|§} is

decreasing in X v j#i.l

REMARK
6 - The above Example may be viewed as a natural generalization

of Theorems 2 and 3 of Whitt (1979).
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EXAMPLE 4 - UNIFORM DISTRIBUTION

Suppose that t t, is a random sample from a uniform

12 e
distribution on the real interval (el, 62). Let (xl, xz) be the

usual sufficient statistic; that is, x, = min(tl, ey tk) and

1

X, = max(tl, R Suppose that a bilateral Pareto distribution

2 k)'
with parameter (rl, Tys o)} represents our prior opinion. This
distribution is a conjugate prior for the uniform distribution case

(De Groot [1970], pp. 62-63 and pp. 172-174). The prior p.d.f.

is given by

£(0,, 8,) = ale + D(r, - rD%6, - 637 1ce , 0,

1’
where o > 0, £y < T, and I(el, 82) is the indicator function of

61 <1 and 8, > 1, The likelihood function may be expressed as:

= , o o
L= (82 - el) Il(xl, el)Iz(xzs 62),
where I. and 12 are the indicator functions of x, > 8. and x_ < 8

1 1 1 2 2

respectively. Since Il and 12 are TP2 functions and (82 - 81)

RR2 for b > 0, Theorems 4 and 5 (k = 2) apply. Then by Remarks 2

is

and 4, we conclude that E{¢(81)|(x1, xz)} increases in xl,and

decreases in X, for every increasing function ¢. The analogous

result for 62 is obvious. [

EXAMPLE 5 - THE EXPONENTIAL FAMILY

This application is of a general nature. Consider that the
distribution of z_belongs to the exponential family. With a proper

reparametrization we may consider & such that
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£(x[8) = h(x) exp{8'x}c(p).

8,x.
Since e T 1 is TP2, Theorem 4 applies and for any increasing ¢,

E{¢(ei)|§} is increasing in X; - With a suitable choice for the

prior, Theorem 5 and Remark 4 apply.
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CHAPTERIV. ON THE CHARACTERIZATICN OF DISTRIBUTIONS IN
TERMS OF SUFFICIENCY AND COMPLETENESS

1 - INTRODUCTION

The discussions in this chapter are motivated by the Bayesian
analysis of samples from finite populations discussed in Section 4
of Chapter 2.

As beforé, we have a finite population P = {1, ..., N} of N
units which is partitioned into k categories Cys =res € The
incidence (k-dimensional) vectors, yl; “ens YN’ associated with
the populafion units,.indicate the category allocation of each unit.
In order to select a sample of size n < N, P is divided into two
disjoint subsets S and S where S u S = P, and the number of units
of § is n. The parameter of interest and the data are respectively
8 = Z?yi and 5_=-X Y When the choice of the prior distribution
of (yl, cees yN);Eg restricted to the class of ethangeable distri-
butions, by considering a pseudo parameter p = [pl, ey pk) with

p, 20 (i =1, ..., k) and le‘pi = 1, if a priori 8|p ~ M(N; p), then

(i) xi{p ~ M(n; p),
and (ii) x|(6, p) ~ x|6 ~ H(N, n, 8).

First we notice that the conditional distribution of x|8 (the

sample model) 1is independent of the method used to partition P
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into S and S; that is, the sample model is independent of the sample
design. This fact supports an often repeated slogan of D. Basu
(1969, 1570) that the nature of sampling randomization has no place
in data analysis. The basic argument is that two samples containing
the same units must give exactly the same information about 6, no
matter how different the selection methods were.

Finally, we notice that the distribution of x|(8, p) is the
same for every value of p and it must be a Multivariate Hyper-
gedmetric distribution. The likelihood then is completely defined
by our choice of the prior distribution. This fact shows the
intuition behind a characterization of the Hypergeometric distribution
discussed by M. Skibinsky (1970). The following statement is the
original version of Skibinsky's characterization:_

"A family of N + 1 probability distributions (indexed, say,
by j =0, ..., N), each supported on a subset of {0, 1, ..., n}
is the Hypergeometric family having population and sample size
parameters N, n, respectively (the remaining parameter of the j-th
member being j), if and only if for each number p, 0 < p < 1, the
mixture of the family with Binomial (N; p) mixing distribution is the
Binomial (n; p) distribution.”

In Section 2 we introduce some notation and briefly review
the notions of transition functions and sufficient experiments
(Blackwell and Girshick [19547). Ey applying these concepts to
our sampling problem, we obtain an elegant proof of Skibinsky's

characterization, and introduce its multivariate version. In
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Section 3 we use the same technique to obtaln analogous charac-
terizations of the Binomial, the Multinomial the Beta-Binomial, and

the Dirichlet-Multinomial distributions,.

2 - CHARACTERIZATION OF THE HYPERGEOMETRIC MODELS

In this section we present definitions, notation, and basie
facts used throughout this chapter. Although we restrict ourselves
to the discrete case, the aiscussion can be extended to other cases,

Let A be an unknown parameter taking values in the parameter
space A. A random variable (or random vector) Y, taking values y
in a countable space Y, and having probability functions g(-]|a)
for every A € A, characterizes an (statistical) experiment. Consider
a second experiment X taking values x in the set X with probability

functions f(-|A) for every A e A

DEFINITION 1

A real function q: X x ¥ » [0, 11 is said to be a transition
function from ¥ to X if, for every y .Y, q(., y) is a probability

function on X.

REMARK

1 - Note that if X and Y are defined as random variables
(random vectors) on a common sample space where the conditional
distribution of X]Y does not involve A, then the conditional

probability function of X|Y is a transition function from ¥ to X.
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DEFINITION 2

The experiment Y is Blackwell sufficient for the experiment X

(in symbols Y } X) if there is a transition function from ¥ to X

such that
£(+|2) = Ja(+, ydely|r) v 1 e A.
y .
EXAMPLE 1

In the sample problem described in Section 1, let k = 2. Then
for 0 <p <1, el ~ B(N: p), X~ B(n; p) and xllel ~ h(N, n, 61).

Here x, = n - x and 6, = N - .. By Remark 1, we have that

1 1
n, N-n
(x)(e )
(2.1) q(x, 8) = ———
)
5]
is a transition function from {0, 1, ...; N} te {0, 1, ..., n}.

If £(+|{p) and g('lp) are respectively the probability functions of

B(n; p) and B(N; p), then

(2.2) £(-|p) = Ja(-|8)g(elp), v 0 <p < 1,
' 3]

since g(-, -) is the conditional probability function of xllel.

: AN
That is, 8, > X, 0

REMARK
- 2 - Note that (2.2) is a relation between the functions f, g,

and g. It does not depend on the stochastic relationship between Xy

and 91 This shows that if any two experiments X and Y are such
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that for n < N, X ~ B(n; p) and Y ~ B(N; p), 0 < p <1, then Y }-X.

This example and remark are generalized as follows:

EXAMPLE 2

Consider now the general case of our sample problem; that is,
k = 2. Recall that for every p = (pl, cees pk),where
p, 20 (i=1, ..., k) and Zpi = 1, we had 8 ~ M(N; p),

X ~ M(n; p}, and EJE.N H(N, ﬁ, 8). Then by Remark 1,

n N -n
caes xk 81 SR STRETE Bk - xk
(N
Tt

is a transition function from @ (the domain of §) to X (the domain of

s,
(2.3} a(x 9 =

x). If f(-IE) and g(-]g) are respectively the probability functions

of M(n; p)} and M(N; p), then

(2.4) £C-1p) = JaC-, 8)g(8]p)
. 13}

for every p = (pl, cees pk),where P; 20 (1=1, ..., k) and

Jp; = 1. That is, 8 > x. [l

REMARK

3 - Again note that (2.4} is a relation between the functions
f, q, and g. It does not depend on the nature of 8 and x. This
shows that if any two experiments X and Y are such that for n < N,
X ~ M(n; p) and Y ~ M(N; p), where P = (pl, e, pk), 1 =0

i

n

1, ..., k) and Zpi = 1, then Y'>*X.
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Let ¢: X + R be a bounded function.

DEFINITION 3

The experiment X is said to be boundedly complete if for every

A e h,
Fo(x)E(x[r) = 0
X

implies ¢ = 0.

The following remarks are well known results:

REMARKS

4 - If£fY ~B(N; p), 0 < p <1, then Y is boundedly complete.

5 - If Y ~ M(N; p), where p = (pl, cens Pk)’ p; 2 0(i=1, el k),
an& Zpi,= 1, then Y is boundedly complete.

The following result is the statistical version of Skibinsky's-

characterization. Let f(j]p) and g(-|{p) be respectively the
probability functions of the experiments (n < N} X ~ B{n; p) and

Y ~B(N; p), 0 <p < 1.

THEOREM
A transition function q(-, -} from {0, 1, ..., N} to
{0, 1, ..., n} satisfies the relation

£(-

P) = }a(-, Yglylp) v0o<p <1
y

if and only if for each y ¢ {0, 1, ..., N}, q(-, y) is the Hyper-

geometric probability function (2.1) with parameters N, n and y.
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PROOF

+ This follows from relation (2.2} and Remark 2.

+ Suppose that q*(-, -} satisfies the relation

£(+|p) = Ja*(-, Yglyip).
y

Since Y is complete, q*(., ¥) = q(-, y) for every
ye{0,1, ..., N} O

To conclude this section we state a generalization of the
aﬁove.fhéorém.- ft'followé difectiy from Example 2 and Remarks 3
and 5. Here X and ¥ are two sets of integer vectors

X = (xl, e xk) and y = (yi, ceey yk)‘respectlvely, such that
kx
171

X ~ M(n; p) and Y ~ M(N; p), wvhere p = (pl, cens pk), Py 20

=n < Xky. = N. Consider two multinomial experiments
17i

(i=1, ..., k) and }p, = 1. Let f(- p) and g(-.p)'be respectively
l = —

the probability functions of X and Y.

PROPOSITION 1

A transition function q(-, ) from ¥ to X satisfies the relation
£(-[p) = lal-, Yely|p

for every p = (pl, cens pk), P; 20 (i=1, ..., k) and Zpi =1,
if and only if for each y ¢ ¥, q{-, y) is the Multivariate Hyper-

geometric probability function (2.3) with parameters N, n, and y.

3 - CHARACTERIZATION OF OTHER DISTRIBUTIONS

In this section, the techniqueé illustrated in Section 2 is

applied to some important discrete distributions.




99

We write Y ~ Poi(A), A > 0, to indicate that the experiment Y
has Poisson distribution with parameter A > 0. That is, if g(-|a)
is the probability function of Y, then fory ¢ N = {0, 1, ...}

-A LY
e A
gly|ry = 71 ¥ A >0,

In this case it is well known that Y is complete. Consider now
two experiments X and Y such that for a fixed number r ¢ fo, 11,
X ~ Poi{rd) and Y ~ Poi(X), X > 0. Then the following result shows

that Y >—X and characterizes the Binomial distributions.

PROPOSITION 2

A transition function q(-, :) from N to N satisfies the

relation

=AT X o -Ay
€ A e A
(3.1) s T oa, ) &
: y=0 :

for every x ¢ N and X > 0, if and only if for every y N,
q(*, y) is the Binomial probability function with parameters y

and r.

PROOF

If q(x, ¥) = D ~ 1)V  for x < y

0 othexrwise,

then for every x e N,
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lAy _ (Ar]xn-kr E £(1 - r)A]y_x e—i(lur)

1 - ~ 0
y! x! yex (v x)!

T ax, »E
y=0

o -ar
x! €

Since the Poisson experiment Y is complete, for x ¢ N, q(x, -)
is the only solution for (3.1). 00
To generalize this result to the multinomlial case we consider

the experiment X = (X ces Xk) with independent components where,

1)
for a fixed nonnegative real vector r = (rl, eeey rk) with Zri =1
and for each i =1, ..., k, Xi ~ Poi(kri), X > 0, The following

result shows that if Y ~ Poi(A) A > 0, then Y X, and it character-

izes the Multinomial distribution. Here Nk is the Cartesian product

N xNx.,.. x N (k-times)}.

PROPOSITION 3

s . k e s
A transition function q{-, -) from N to N satisfies the

relation

X,
k (ir.) 1 ar. o y
A A
II '-'_ll_ € T Z q(i: Y) - e
=1 % y=0 I+

for every x = (xl, ceey xk) € Nk and A > 0, if and only if for
every ¥y € N, q(+, y} is the Multinomial probability function with
parameter (y; ).

The proof follows the steps of the previous one and

therefore is omitted.
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Consider néw a sequence of Bernoulli trials with probability
of success p(0 <p <1). If Y is the number of failures needed to
obtain a fixed number o« of successes, then Y is said to be a
Negative Binomial experiment with parameter (o; p)} and we write

Y ~ NB(a;.p), 0 <p < 1. The probability function of Y is

. Jlo + y) a(l _ )y

(3.2) 8rIP) = iy

Z R

for every y € N and 0 < pl< 1. Note that
for every @ > 0. Then, the following results hold not only for
- a ¢ N but in general for-any o ; 0. In this case, we still write
Y ~ NB(a; p) to indicate that the probability function of Y is
{3.2). It is easy to check that Y is complete,

For a'zval > 0, let X and Y be two experimenté such that
X~ NB(al, p) and Y ~ NB{a, p), 0 <p < 1. The following result

shows that Y }-X and characterizes the Beta-Binomial distribution.

PROPOSITION 4

A transition function q(-, -) from N to N satisfies the

relation
?[al + x) o ' (e +y) o y
(3.2) TTEITET——'P 1-p~ yz q(x, Y)ftaij“'P 1 - p)7,

for every x ¢ N and 0 < p <1, if and only if for every y ¢ N,
q(+, y) is the Beta-Binomial probability function (see Chapter 2)

with parameter (y; ¢y az),where o, =@ - a,.
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PROOF

(e, + x) T(a, + ¥y - X)
vIT(a) 1 2
Let g(x, y} I@ +y) XIT(a) & - DI (a,)

for x <y

0 otherwise.
Then,

© (e, + X} « o [la, +y - x} «
= 1 1 _ X 2 ~ ¥-X
yEOQ(X’ ylg(y|p) ;753513——-p (1 - p) yzx(y TG, p ‘(1 - p)

= F(al * X) al(l-_ )x
EEBICh PJ-
Since the Negative Binomial experiment Y is complete, for
every x € N, q(x, -} is the only solution of (3.2}. 0
To generalize this result to the Dirichlet-Multinomial dis-
tribution case, we consider the experiment X = (Xl, ey Xk) with
independent components, where for a fixed nonnegative real vector:
. k .
(ul, e ak) with Zlui = g and for each 1 =1, ..., k,
Xi ~ NB(ai; P), 0 < p < 1. The following result characterizes the

Dirichlet-Multinomial distribution and shows that Y > X,where

Y ~ NB(a; p), 0 <p < 1.

PROPOSITION 5

A transition function q(-, -) from N to Nk satisfies the

relation
k I'fo. + X} o« X, @
i i i F(a + ¥y} o Y
I p (1 - p) * = } a(x, Vgryor— P (1 - p),
i=1r(ai)xi' y=0 T{a}y!
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for every x = (xl, Cees xk) € Nk and 0 < p <1, if and only if

for every vy € N, q(-, v) is the Dirichlet-Multinomial probability

function (see (3.1) Chapter 2) with parameter (y; s vees ak).
The proof is omitted since it follows the steps of

the previocus omne.

REMARK

As in the Hypergeometric case, these results are intuitive.
For instance recall that if X1; eees Xk are k ihdependent-PoiSson
1r e kk respectively, then the

conditional joint distribution of (Xl, N Xk) given the sum

random variables with parameters X

Z?Xi = N is Multinomial with parameter (N; r ves rk),where

1,
17 e Xk are k indepen-

dent Negative-Binomial random variables with parameters

k., -1 .
r. = Ai(zlkj) . On the other hand, if X

(al; P)s .- (ak; p) respectively, then the conditional joint
distribution of (Xl, cees Xk) given the sum Z?Xi =N is
Dirichlet-Multinomial with parameter (N; o s .}.,.ak).

To conclude this chapter we present another interesting appli-
cation of the concepts of transition function and Blackwell
sufficiency.

Let A € A be the unknown parameter and consider two parametric
functions a: A - [0, 1] and b: A > [0, 1]. Suppose that X and Y
are two Bernoulli experiments with success probabilities a(A) and
b(}) respectively. The objective is to find a necessary and

sufficient condition to have X‘?‘Y.
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First note that a transition function q(-, -) from {0, 1} to

f0, 1} can be expressed in a tabular form as

0 1
0 1-p P 0 <p<1
1 I -q q 0<gqg<1

Now, if X;> Y we are able to express b(A) in terms of a(A) and

q(-, )} as follows:

b(}) a(M)g + [1 - a(d)]p

p+ (q - pla(r).

This clearly shows that: X‘P‘Y if and only if there are two numbers
a and B, where 0 <a <1 and 0 <a + B <1 such that b(A) = o +Ba(})
for every X € A. To illustrate this fact, consider the plane Rz.
Then X;> Y if and only if there is a line L (see figures beiow)
intersecting the line x = 0 between the points (0, 0) and (0, 1),

and intersecting the line x = 1 between the points (1, 0) and (1, 1)

such that the set

{{a(x), b(A)); A € A}

lies on L. The following figures show two possibilities for L.
Note that there are many ways a line may intersect the square

inside the points (0, 0), (0, 1), (1, 1) and (1, 0). However,

to have X >>Y the line L must intersect (through the square) both

side lines x = 0 and x = 1.
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A A
1f--mr-mm-mm-- 1 1{--rmemeee--- 1
0+ B pr-mmmm e . .
i I .
; .s a
ul X o +B .
I e
0 1 X 0 1™ X
Figure 1 Figure 2
A case of X}Y . A. case of X>Y
with q > p. (B > 0) ' with g < p. (B < 0)

For an application of this result (see Lehmann [1958] pp. . 75-77)
take A = [0, 11, a()) = A and b()) = rA for a fixed v ¢ (0, 1). This
example shows that the relation X }-Y is not related to the

variances of X and Y as one might think.
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