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We explore the concept of information in statistics: information about unknown

quantities of interest, the parameters. We discuss intuitive ideas of what should

be information in statistics. Our approach on information is divided in two sce-

narios: observed data and planning of an experiment. On the first scenario, we

discuss the Sufficiency Principle, the Conditionality Principle, the Likelihood

Principle and their relationship with trivial experiments. We also provide ap-
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and the Likelihood Principle. Finally, the expected values of some measures of

information are calculated.
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1. Introduction

The concept of information is perhaps one of the most controversial in

Statistics. One can find innumerous different measures of the amount of

information an experiment or a given data set brings about unknown quan-

tities of interest — parameters. It is important to explore these measures

because, after all, extracting information seems to be the ultimate goal of

Statistics. More precisely, the goal is to extract — from an observed data or

from an experiment to be performed — information about unknown quan-

tities of interest. The intuitive definition of information which will guide

this paper is given by Ref. 1 and is as follows:

“Information is what it does for you, it changes your opinion”.

This conceptual definition leads one to the following four questions:

• Information about what?
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• Where is the information?

• How is information extracted?

• How much information is used?

We are interested in defining information about a parameter, θ, which

assumes possible outcomes in Θ, the parameter space. Hence, the answer

to the first question is straightforward.

A parameter represents a state of nature which we are uncertain of. For

example, one can be interested in the number of days in which it will rain

next year. For instance, θ can be this number and Θ all natural numbers

smaller or equal to 366.

Next, we try to answer the second question. It is important to note

that when defining Θ we are already using some previous knowledge about

θ. In the example, we have informed that any year has at most 366 days

and, therefore, θ must be smaller than this number. Besides stating Θ, one

might also think that some values are more probable than others. This

kind of knowledge is used to elicitate the prior distribution for θ. Here

the prior distribution represents our description of our present state of

uncertainty about θ. Mainly, the statisticians’ goal is to decrease her/his

uncertainty about this unknown quantity of interest. In order to reach such

objective, (s)he observes data that, in his/her opinion, is related to the

parameter. Consequently, one expects that there is information about θ in

the data to be observed. That is, answering the second question, statistical

(expected) information is contained in the collected data set (experiment

to be performed).

It seems natural at this point to ask: How to extract information con-

tained in the observed data? In order to answer this question properly, the

“scientist” considers a global probability space involving a prior distribu-

tion on θ and the experimental distribution for every possible θ. Next, the

“scientist” uses the Bayes operation to obtain the posterior distribution.

The posterior distribution describes the uncertainty about the parameter

after calibrating the prior by the observed data. Thus, we could say that

the new information also depends on the statistical framework. The act of

observing the data corresponds to a mechanism of transforming unknown

quantities in known ones. We also call such a mechanism an experiment.

The last question which is important in design of experiments is: “How

much information is extracted after the experiment is performed (after the

data is observed)?”. After obtaining an adequate answer, it is possible to

modify the question to a pre-posterior analysis : “How much information do

we expect to obtain in a specific experiment to be performed?”. The heart
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of this paper is to explore possible answers for both questions.

Section 3 analyzes how informative a particular data set is. Section

3.1 introduces common principles in Statistics and their relationship with

the Likelihood Principle. Section 3.2 presents a simple example and three

information functions compatible with the principles of Section 3.1.

Section 4 is related to experimental design and tries to answer the fol-

lowing question: Among the possible alternative experiments, which is our

best choice? Blackwell Sufficiency is a possible criterion to compare exper-

iments. The definition of Blackwell Sufficiency, with examples, is presented

in Section 4.1. The Likelihood Principle and its relationship with Black-

well’s Equivalence are discussed in Section 4.2. We argue that Blackwell

Sufficiency is the best criterion whenever the experiments are comparable

in that sense. Finally, since not all experiments are comparable in Black-

well’s sense, Section 4.3 explores the metrics exposed in Section 3.2 using

the framework of decision theory to compare experiments.

2. Definitions

In the context of experimental information we will always be concerned

with a probability space, that is, a triple (Ω,ℑ, P ) in which Ω is a set, ℑ is

a σ-algebra on Ω and P : ℑ 7→ [0, 1] is a probability function.

A random quantity R corresponds to a function from Ω to some set

ℜ. We define the probability space induced by R, (ℜ,ℑR, PR), where

ℑR =
{

M ⊂ ℜ : R−1[M ] ∈ ℑ
}

and PR(M) = P
(

R−1[M ]
)

. Finally, the

σ-algebra induced on Ω by a random quantity R is called ℑ|R and cor-

responds to
{

R−1[M ] : M ∈ ℑR

}

.

We call an experiment any random quantity which can be observed,

that is, which can be known. The realization of an experiment corresponds

to the observation of this random quantity. It is important to observe that

classifying a random variable as an experiment has nothing to do with the

probability space, but with the limitations which exist in the world.

On the other hand, a parameter is a random quantity of interest. If the

parameter were an experiment, its value could be known and the work of

the statistician would be easy. Nevertheless, in many cases the parameter is

not an experiment. Therefore, it is necessary to learn about it in an indirect

manner, that is, observing those random quantities which are experiments

and applying the Bayes Theorem. Again, classifying a random variable as a

parameter has nothing to do with the probability space, but with an aspect

of the world, our interest.

Therefore, in our representation, experiments and parameters are
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treated essentially in the same way: both are random quantities. The given

names only reflect some aspects of the world not contemplated in the prob-

ability space, that is, the observability of the random quantity and our

interest in it.

Let X be an experiment in X . A function T : X 7→ τ is considered a

statistic of X . Therefore, T (X) is also an experiment. Whenever there is

no confusion, we will use the letter T both to indicate the statistic T and

the experiment T (X).

From now on, we restrict ourselves to random quantities whose prob-

ability distributions are absolutely continuous or discrete. Following this

restriction, pX(x|θ) is the conditional probability (density) function of the

random quantity X given θ. After the experiment is performed we write

L(θ|X = x) for the likelihood function of X at point x. Whenever clear in

the context, we write p(x|θ) and L(θ|x) for the former functions.

Finally, we say that an experiment X : Ω 7→ X is trivial for θ : Ω 7→ Θ

if ℑ|X is independent of ℑ|θ. This condition is equivalent to the assertion

that, ∀θ′ ∈ Θ, ∀x ∈ X , p(x|θ′) = p(x). We use the word trivial to emphasize

that X and θ are not associated. Consequently, X by itself does not carry

“information” about θ.

3. Data Information

3.1. Statistical Principles and Information

At this point, we hope to have convinced the reader that it is an impor-

tant task to define how informative is the observed data of an experiment.

Therefore it seems reasonable to assume the existence of an information

function which has as arguments the experiment, its observed data, and

the parameter. Although this function is still not defined, to make refer-

ence to it we will use the notation Inf(X, x, θ), where X is an experiment,

x the observed data and θ the parameter.

Before establishing an exact form for such a function, we look for proper-

ties, as in Ref. 1 and Ref. 2, which follow from common statistical principles.

A statistic T : X 7→ τ is called sufficient if X and θ are condition-

ally independent given T , that is, X is a trivial experiment for θ given

T . Previously, it was discussed that there are reasonable reasons to be-

lieve that a trivial experiment for θ does not bring information about the

parameter. Therefore, since X is a trivial experiment for θ given T , it

seems that all the information in X is gained by observing only T . This

is the heart of the Sufficiency Principle. The Sufficiency Principle states
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that for any sufficient statistic T , for any x and y in X , if T (x) = T (x′)
then Inf(X, x, θ) = Inf(X, x′, θ). This principle is usually followed by all

statisticians, although not always explicitly mentioned: for inference about

θ the statistician only needs to consider a sufficient statistic.

The Conditionality Principle is another important statistical principle:

it might be seen as the reciprocal of the Sufficiency one. In the latter we

say that the trivial experiment realized after T does not bring information

about θ. Considering X1 and X2 as possible experiments, the Condition-

ality Principle states that a trivial experiment for θ, X1 and X2 does not

bring information about θ. Let Y be some trivial experiment for (θ,X1, X2)

assuming values in {1, 2} and XY a mixture of X1 and X2. XY is observed

in the following way: If the result of Y is 1 then we observe the result of

X1, if it is 2 then we observe the result of X2. The Conditionality Principle

states that Inf((Y,XY ), (i, x), θ) = Inf(Xi, x, θ), ∀i ∈ {1, 2}. In the sequel

we show that this principle is more controversial than that of Sufficiency.

The Likelihood Principle is the object of the last part of this section.

The Likelihood Principle states that any two possible outcomes having pro-

portional likelihood functions must provide the same information about the

parameter. Therefore, for any experiments X1 and X2 and any x1 ∈ X1 and

x2 ∈ X2, if L(θ|x1) ∝ L(θ|x2), then Inf(X1, x1, θ) = Inf(X2, x2, θ). It is

possible to prove that this principle is stronger than the Sufficiency Prin-

ciple and than the Conditionality Principle. Below, we prove that both the

Sufficiency and the Conditionality Principles imply the Likelihood Princi-

ple. Ref. 2 and Ref. 3 also presented proofs of this important result.

Theorem 3.1. The Sufficiency and the Conditionality Principles imply the

Likelihood Principle.

Proof. Consider x1 ∈ X1 and x2 ∈ X2 outcomes of, respectively,

experiments X1 and X2, such that L(θ|x1) ∝ L(θ|x2). The statis-

tic T : {1, 2} × (X1 ∪ X2) 7→ ({1, 2} × (X1 ∪ X2)) ∪ {0} is such that: 1)

T (i, z) = (i, z), if (i, z) 6= (1, x) and (i, z) 6= (2, y); 2) T (i, z) =

0, if (i, z) = (1, x) or (i, z) = (2, y). Define Y ∈ {1, 2} in such

a way that P (Y = 1) = P (Y = 2) and Y is trivial for (θ,X1, X2).

Y is used to define a mixture XY . Note that T is a suffi-

cient statistic for (Y,XY ). Therefore, using the Sufficiency Princi-

ple, Inf((Y,XY ), (1, x), θ) = Inf((Y,XY ), (2, y), θ). Next, by Condi-

tionality, Inf(X1, x, θ) = Inf((Y,XY ), (1, x), θ) and Inf(X2, y, θ) =

Inf((Y,XY ), (2, y), θ). The Likelihood Principle follows straightforward.
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A “scientist” that follows the Likelihood Principle can perform inference

about the parameter solely based on the likelihood function. However, this

principle is not followed by many statisticians. Ref. 4 and Ref. 5 provide

interesting examples in which some classical statistical methods violate the

Likelihood Principle. In one example, someone observes 3 failures out of 10

trials on two experiments. On the first one, the person would realize 10 tri-

als and therefore, the distribution of the total of failures is binomial. On the

second one the person would realize trials until he observed 3 failures and,

therefore, the distribution of the total of failures is the negative binomial.

Even though the unbiased estimation produces different results, posterior

distributions are the same. This way, since classical statisticians follow the

Sufficiency Principle and do not follow the Likelihood Principle, it is pos-

sible to conclude that they do not follow the Conditionality Principle. On

the other hand, as was also shown in Ref. 6, bayesian statisticians usually

follow all three principles.

In our opinion, it is reasonable to follow both the Sufficiency and Con-

ditionality Principles whenever performing statistical analysis. Therefore,

when looking for a more rigorous definition of the information function in

the remaining part of this paper, the Likelihood Principle will be assumed.

That is, the information given by the observation of some data will not give

different values for data with proportional likelihood functions.

3.2. Information on observed data

Our interest in this section is on a function of the information about θ

contained in a particular observed data. In the last section it was seen that

such a function must not give different values for points with proportional

likelihoods. Nevertheless, this property only gives a vague idea about how

such a function should be. Therefore, we will go back to the definition given

in the introduction in search for intuition: “Information is what it does for

you, it changes your opinion”.

Recall that the opinion one has about the parameter before (s)he re-

alizes the experiment is given by his/her prior distribution for it. On the

other hand, the opinion one has after an experiment is realized becomes, by

the use of Bayes Theorem, his/her posterior distribution. Hence, since the

information should represent the changing in opinion, it seems reasonable

for it to compare prior and posterior distributions. If prior and posterior

distributions are equal, it seems reasonable to assume there is no gain of

information. We will also define that the information given when the prior

distribution is equal to that of the posterior is 0. Since for any posterior
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different to the prior distribution there is some change in opinion, it seems

reasonable to assume that information is always greater or equal to 0.

As discussed before, a trivial experiment should not bring any informa-

tion about the parameter. Therefore, it should be less or equally informa-

tive than any other experiment. Note that prior and posterior are equal for

trivial experiments, and the properties expected of these experiments are

consistent with statement above.

Consider the following simple example: Someone chooses 3 balls among

4 balls, 2 black ones and 2 white. The 3 balls are put in an box. Another

person is offered the possibility of observing one of three experiments; Ex-

periment 1 consists of taking only one ball out of the urn; Experiment 2, two

balls with replacement and; Experiment 3, two balls without replacement.

The objective is to guess the number of white balls in the urn, 1 or 2. The

person, a priori, does not believe any combination of balls is more likely

than others, a uniform prior. Finally, the person assumes that all balls in

the urn have equal probability of being selected.

Let θ be the number of white balls in the urn andXi the number of white

balls observed in the i-th experiment, denote by P (θ|Xi = xi) = (a, b),

for P (θ = 1|Xi = xi) = a and P (θ = 2|Xi = xi) = b. The posterior

probabilities are as follows:

(1) P (θ|X1 = 0) =
(

2
3 ;

1
3

)

, P (θ|X1 = 1) =
(

1
3 ;

2
3

)

;

(2) P (θ|X2 = 0) =
(

4
5 ;

1
5

)

, P (θ|X2 = 1) =
(

1
2 ;

1
2

)

, P (θ|X2 = 2) =
(

1
5 ;

4
5

)

;

(3) P (θ|X3 = 0) = (1; 0), P (θ|X3 = 1) =
(

1
2 ;

1
2

)

, P (θ|X3 = 2) = (0; 1).

Some common information functions applied to these experiments are:

(1) The Euclidean distance:

InfE(Xi, xi, θ) =
√

∑

j

[P (θ = j)− P (θ = j|Xi = xi)]
2.

(2) InfV (Xi, xi, θ) = [E(θ|Xi = xi)− E(θ)]2.

(3) Kullback-Leibler divergence:

InfKL(Xi, xi, θ) =
∑

j

P (θ = j|Xi = xi) log
(

P (θ=j|Xi=xi)
P (θ=j)

)

.

For experiment 1, the information given by these functions for each

vector of possible outcomes is, respectively,
(

18−1/2; 18−1/2
)

,
(

36−1; 36−1
)

and (0.024; 0.024). For experiment 2, (0.424; 0; 0.424), (0.09; 0; 0.09) and

(0.084; 0; 0.084). Finally, for experiment 3,
(

2−1/2; 0; 2−1/2
)

, (0.25; 0; 0.25)

and (0.301; 0; 0.301).

These measures have interesting properties. Nevertheless, they do not

offer a straightforward way of comparing experiments. Next section, this
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problem will be discussed in detail.

4. Information in an Experiment

4.1. Blackwell Sufficiency

A celebrated definition in Statistical Inference is that of Sufficiency. Accord-

ing to the Sufficiency Principle exposed in Section 3.1, any inference based

on data or on a sufficient statistic should be the same. Nevertheless, this

principle is only useful to compare statistics inside the same space. Consider

two experiments, X and Y , that depend on the parameter θ. One usually

wants to choose between X and Y for inferences about θ based solely on

their marginal distributions — the conditional distributions of X given θ

and Y given θ. In this case, clearly the Sufficiency Principle is useless. In

this section we expose the concept of Blackwell Sufficiency7 and show that

it is a natural generalization of the Sufficiency Principle for comparison of

experiments.

From Section 3.1, a statistic T is sufficient for an experiment X , if X

and θ are conditionally independent given T . Consequently, T is sufficient if

and only if p(x|θ) = p(t|θ)p(x|t). After performing T , there exists a simple

“randomization exercise” which produces an experiment like X .

Let X ∈ X (X) and Y ∈ X (Y ) be two statistical experiments. X is

Blackwell Sufficient for Y if there exists a map H : X (X)×X (Y ) 7→ [0, 1],

a transition function, satisfying the following properties:

• For any y ∈ X (Y ), H(·, y) is measurable on the σ-algebra induced by X ,

ℑ|X .

• For any x ∈ X (X), H(x, ·) is a probability (density) function defined on

(X (Y ),ℑ|Y ).
• For any y ∈ X (Y ), p(y|θ) = E(H(X, y)|θ), the conditional expectation

of H(X, y) given θ.

Let X (X) and X (Y ) be countable sets and define for all x ∈ X (X),

Zx ∈ X (Y ) as a trivial experiment such that P (Zx = y) = H(x, y). From

the definition of Blackwell Sufficiency, one can see that the random quanti-

ties (ZX , θ) and (Y, θ) are equally distributed: X is Blackwell Sufficient for

Y if and only if one can obtain an experiment with the same distribution

as Y by observing X and, after that, performing a simple randomization

exercise, Zx.

The structure presented above leads us to conclude that Blackwell Suf-

ficiency is the version of Sufficient Statistics for the comparison of experi-
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ments. Hence, it seems reasonable to state that is better to realize X than

Y . It is not difficult to see that every Sufficient Statistic is also Blackwell

Sufficient.

Having presented the overall aspects of Blackwell Sufficiency, a few ex-

amples are needed. These are related to those found in Ref. 8 and seem to

give support to well known beliefs.

Example 4.1. LetX and Y be two experiments, π a parameter in [0, 1] and

q and p known constants in [0, 1]. Representing the Bernoulli distribution

with parameter p by Ber(p), consider also that the conditional distributions

of X and Y given π are, respectively:

X ∼ Ber(π) and Y ∼ Ber(qπ + (1 − q)p).

If A ∼ Ber(q) and B ∼ Ber(p), either one independent of all variables

considered in this problem, then for Y ′ = AX + (1 − A)B we have that

(Y ′, π) and (Y, π) are equally distributed. Therefore, X is Blackwell Suffi-

cient for Y .

Example 4.2. Let X and Y be two experiments, π a parameter in [0, 1],

q and p known constants in [0, 1] and n ∈ N . Consider also the follow-

ing. Representing the Binomial distribution with parameters n and p by

Bin(n, p), consider also that the conditional distributions of X and Y given

π are, respectively:

X ∼ Bin(n, π) and Y ∼ Bin(n, qπ + (1− q)p).

We know that X has the same distribution as a sufficient statistic for

a sequence X1, . . . , Xn conditionally independent identically distributed

given π with X1 ∼ Ber(π). Thus X is Blackwell Sufficient for X1, . . . , Xn.

From example 4.1, we know that the sequence previously considered

is Blackwell Sufficient for a sequence Y1, . . . , Yn conditionally independent

given π and such that, conditionally to π, Y1 ∼ Ber(qπ + (1− q)p).

Finally, Y1, . . . , Yn is Blackwell Sufficient for Y , since it has the same

distribution as a sufficient statistic for Y1, . . . , Yn. Thus, since Blackwell

Sufficiency is a transitive relation, X is Blackwell Sufficient for Y .

Example 4.3. Next, we generalize the example of Section 3.2. Consider

an urn with N balls. θ of these balls are black and N−θ are white. n (≤ N)

balls are selected from the urn.

By stating that (X1, . . . , Xn) is a sample with replacement from the

urn, we mean:
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(1) Conditionally to θ, X1 ∼ Ber
(

θ
N

)

;

(2) Conditionally to θ, X1, . . . , Xn are identically distributed;

(3) Xi+1 is conditionally independent of (Xi, . . . , X1) given θ,

∀i ∈ {1, . . . , n− 1}.

Analogously, (Y1, . . . , Yn) corresponds to a sample without replacement,

that is:

(1) Conditionally to θ, Y1 ∼ Ber
(

θ
N

)

;

(2) Yi+1|(yi, . . . , y1, θ) ∼ Ber

(

θ−∑i
j=1

yj

N−i

)

,

∀i ∈ {1, . . . , n− 1}, ∀(yi, . . . , y1) ∈ {0, 1}i.

Next, we prove that (Y1, . . . , Yn) is Blackwell Sufficient for (X1, . . . , Xn).

Define X∗
1 = Y1, ti =

∑i
j=1 yj and ∀i ∈ {1, . . . , n − 1} two random

quantities Ai+1 and Bi+1. These two quantities are such that:

(1) Ai+1 ∼ Ber
(

N−i
N

)

, and is independent of all other variables;

(2) Bi+1|ti ∼ Ber
(

ti
i

)

;

(3) ∀i ∈ {1, . . . , n}, Bi, conditionally to ti, is independent of

((A1, . . . , An); (B1, . . . , Bi−1); (Yi+1, . . . , Yn); θ).

Define:

X∗
i+1 = Ai+1Yi+1 + (1−Ai+1)Bi+1.

We obtain that, conditionally to θ, X∗
i+1|ti ∼ Ber(θ/N), ∀ti ∈

{0, . . . , i}. Therefore, X∗
i+1 ∼ Ber(θ/N) and is conditionally independent of

(Yi, . . . , Y1) given θ. Finally, since (X∗
i , . . . , X

∗
1 ) is a function of (Yi, . . . , Y1),

(Ai, . . . , A2) and (Bi, . . . , B2), we conclude that X∗
i+1 is independent of

(X∗
i , . . . , X

∗
1 ) given θ.

By the previous conclusions, we know that (X∗
1 , . . . , X

∗
n, θ) is identi-

cally distributed to (X1, . . . , Xn, θ). By construction, we also know that

(X∗
1 , . . . , X

∗
n)|(Y1 = y1, . . . , Yn = yn) is trivial, ∀(y1, . . . , yn) ∈ {0, 1}n.

Therefore, it is proved that sampling without replacement is Blackwell Suf-

ficient for sampling with replacement.

Example 4.4. A simple corollary of the above result is now presented.

First we recall that Tn is a sufficient statistic for (Y1, . . . , Yn), the sam-

pling without replacement presented in Example 3, and that, conditionally

to θ, Tn is Hypergeometric with parameter (N,n, θ); Consequently, Tn is

Blackwell Sufficient for (Y1, . . . , Yn). We know that (Y1, . . . , Yn) is Black-

well Sufficient for (X1, . . . , Xn), , the sampling with replacement presented
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in Example 3. Also (X1, . . . , Xn) is Blackwell Sufficient for
∑n

i=1 Xi = Sn

and, conditionally to θ, Sn ∼ Bin(n, θ/N). Using the transitive property of

Blackwell Sufficiency we conclude that Tn is Blackwell Sufficient for Sn.

Example 4.5. In many inferential problems we are concerned with an

experiment Y and a parameter µ such that Y |µ ∼ N(µ, s), a normal random

quantity. We commonly think of this model as Y = µ + ǫ, ǫ ∼ N(0, s).

We interpret ǫ as some random noise on a measure of µ. The larger the

value of s, the more intense the noise is. Therefore, it seems reasonable

that if X ∼ N(µ, s′) and s < s′, then Y is more informative for µ than

X . It is possible to prove that this intuitive idea is preserved by Blackwell

Sufficiency. Let Z ∼ N(0, s′−s) independent of Y , then (Y +Z, θ) is equally

distributed to (X, θ).

Example 4.6. Other two important distributions are the Poisson and

Exponential. We show that if, conditionally to θ, X1 ∼ Poisson(θ) and

X2 ∼ Poisson(pθ+k), k ∈ R+, p ∈ [0, 1], then X1 is Blackwell Sufficient for

X2. Using the same technique we will also prove that, conditionally to θ, if

Y1 ∼ Exp(θ) and Y2 ∼ Exp(pθ+ k), k ∈ R+, p ∈ [0, 1], then Y1 is Blackwell

Sufficient for Y2.

Conditionally to θ, let Z ′ and A be independent Poisson Processes in

[0, 1] with rates respectively θ and k. Define a new process, Z, in which we

choose, independently and with probability (1 − p), points of Z ′ to be dis-

carded. Conditionally to θ, Z is still a Poisson Process in [0, 1] with rate pθ

and Z∪A is a Poisson Process in [0, 1] with rate pθ+k. If n(Z ′), n(Z), n(A)

and n(Z ∪ A) are the number of occurrences in Z ′, Z,A and Z ∪ A, then

n(Z)+n(A) = n(Z∪A). Since (n(Z ′), θ) has the same distribution of (X, θ)

and (n(Z ∪A), θ) has the same distribution of (X2, θ), then Blackwell Suf-

ficiency is proven.

Here, conditionally to θ, let Z ′ and A be independent Poisson Processes

in R+ with rates respectively θ and k. Again, Z is the process which is

obtained by disregarding points with probability (1−p): Z ∪A is a Poisson

Process in R with rate pθ + k. If T ′
Z , TZ , TA and TZ∪A are the waiting

times until the first occurrence, respectively, in Z ′, Z,A and Z ∪ A, then

T ′
Z ∼ Exp(θ), TZ ∼ Exp(pθ), TA ∼ Exp(k) and TZ∪A ∼ Exp(pθ + k).

Since, TZ∪A = min(TZ , TA), it is proven that Exp(θ) is Blackwell Sufficient

for Exp(pθ + k).
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4.2. Equivalence relation in experiment information

In this section, Ω is a countable set and F = ℘(Ω), that is, the set of all

subsets of Ω. Therefore, for any random quantity X : Ω 7→ X , FX = ℘(X ).

It will also be assumed that ∀θ ∈ Θ, ∃x ∈ X , P (x|θ) > 0.

Blackwell Sufficiency was introduced in the last section. Using it, it is

possible to define an equivalence relation between experiments: X and Y

are Blackwell Equivalent if any one is Blackwell Sufficient for the other,

X ≈ Y . We show that this equivalence relates to the Likelihood Principle,

Section 3.1. In the sequel, we prove the following result:

Theorem 4.1 (Blackwell likelihood (BL)). Let X ∈ X1 and Y ∈ X2

be two experiments. X ≈ Y if and only if P ({x ∈ X1 : LX(·|x) ∝ L(·)}|θ′) =
P ({y ∈ X2 : LY (·|y) ∝ L(·)}|θ′), ∀θ′ ∈ Θ and all likelihood function L(θ)

derived from either X or Y .

For simplicity, we use a special notation that reduces the algebra in-

volved. Since all sets are countable, we consider an ordering inside them.

Let, ∀θ ∈ Θ, P (X = x|θ) be a probability function, then we define that

p(.|θ) is a vector such that in its i-th position the value assumed is P (xi|θ);

xi is the i-th element of the ordering assumed in the set of values of X . If F

is a map from ξ1×ξ2 into [0, 1], then we also use the symbol F as the matrix

which has in its j-th row and i-th column position the value of F (xi, yj); xi

is the i-th element of the ordering in ξ1 and yj is the j-th element of that

in ξ2. Finally, we recall that a transition (transposed) matrix is a matrix in

which all elements are greater or equal to 0 and for any column the sum of

its elements is equal to 1.

Proof. (⇐) Let S : X1 7→ [0, 1]Θ and T : X2 7→ [0, 1]Θ, such that S(x)

and T (y) are likelihood nuclei of x and y - a likelihood nucleus is a chosen

likelihood between all of those which are proportional. Recall Ref. 3 that S

and T are, respectively, minimal sufficient statistics for X and Y . There-

fore, S ≈ X and T ≈ Y . By the hypothesis, (S, θ) and (T, θ) are identically

distributed, therefore they are Blackwell Equivalent. By the transitive prop-

erty of Blackwell Equivalence S ≈ T , since S ≈ X ≈ Y ≈ T .

(⇒) Consider the above statistics, S and T . For simplicity, we call

S(X(Ω)) = ξX and T (Y (Ω)) = ξY . We also call P (S(X) = lx|θ) = pX(lx|θ)

and P (T (Y ) = ly|θ) = pY (ly|θ). Clearly, by construction, for every two

points in ξX or in ξY , if their likelihood functions are proportional, then

they are the same point. Since S and T are minimal sufficient statistics,

S ≈ X , T ≈ Y and, therefore, S ≈ T .
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Since S is Blackwell Sufficient for T , there exists a map

A : ξX × ξY 7→ [0, 1] such that A is a transition matrix and:

ApX(.|θ) = pY (.|θ), ∀θ ∈ Θ.

On the other hand, T is also Blackwell Sufficient for S and, similarly,

there exists a map B : ξY × ξX 7→ [0, 1] such that B is a transition matrix

and:

BpY (.|θ) = pX(.|θ), ∀θ ∈ Θ.

From these two equations, there exist two other transition matrices,

M = BA and N = AB, such that:

MpX(.|θ) = pX(.|θ), ∀θ ∈ Θ,

NpY (.|θ) = pY (.|θ), ∀θ ∈ Θ.

Since M and N are transition matrices, respectively, from ξX to ξX
and from ξY to ξY , we consider the Markov Chains associated to them. All

probability functions in the family {pX(.|θ) : θ ∈ Θ} are invariant measures

for M . Note that there are no transient states in M . If there were, let x be

a transient state in M , consequently P (x|θ) = 0, ∀θ ∈ Θ. However, such a

state cannot occur by the definition in the beginning of this section; there

is no transient state in M .

To proceed with the proof we use the following result stated in Ref. 9:

Lemma 4.1. Consider a Markov Chain on a countable space X with a

transition matrix A and no transient states. Let A have irreducible compo-

nents C(1), . . ., C(n), . . .. Then, there exists an unique set of probability

functions {pj(·) : j ∈ N}, with pj(x) defined in {1, . . . , |C(j)|}, such that

all invariant measures (µ) of A can be written as the following:

If ck,i is the i-th element of C(k), then µ(ck,i) = pk(i).q(k) and q is a

probability function in N .

To interpret the above result, we consider the sub-matrix Ak associated

to C(k). Since the Ak is irreducible, it only has one invariant measure,

pk. Now suppose that at the initial position (X0) of the Chain each compo-

nent C(k) has probability qk of being chosen. As n increases the law of Xn

converges to the one provided by the lemma.

Using the lemma, since C(1), . . . , C(n), . . . are irreducible components

of M and c(k, i) is the element of number i of C(k), then p1(c(k, i)|θ) =

pk(i)qk,θ . Consequently,

p1(c(k, i)|θ) = p1(c(k, j)|θ)

(

pk(i)

pk(j)

)
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If two states are in the same irreducible component then their likelihood

functions are proportional. The same proof holds to matrix N .

The i-th element of ξX is said to connect to the j-th element of ξY if

A(i, j) > 0. Similarly, the i-th element of ξY is said to connect to the j-th

element of ξX if B(i, j) > 0. Note that every state in ξX connects to at least

one state in ξY and vice-versa. This is true because A and B are transition

matrices.

For all x1 ∈ ξX , if x1 connects to y ∈ ξY then y only connects to x1.

If there were a state x2 ∈ ξX such that y connected to x2, then x1 and

x2 would be on the same irreducible component of M . Therefore x1 and

x2 would yield proportional likelihood functions and, by the definition of

S, x1 = x2. Similarly, if a state y ∈ ξY connects to a state x ∈ ξX then x

connects solely to y.

Finally, we conclude that every state in ξX only connects to one state

in ξY and vice-versa. Also, if x ∈ ξX connects to y ∈ ξY , then y con-

nects to x and vice-versa. This implies that if x connects to y, then

P (X = x|θ) = P (Y = y|θ), ∀θ ∈ Θ. Since S and T are sufficient the

Theorem is proved.

Applying the above Theorem and the Likelihood Principle one obtains

the following result: if X is Blackwell Equivalent to Y ,

Ae = {x : Inf(X, x, θ) = e} ⊂ X1;Be = {y : Inf(Y, y, θ) = e} ⊂ X2,

then P (Ae|θ) = P (Be|θ), ∀θ ∈ Θ, for all possible e — the value of informa-

tion.

For any information function, Inf , satisfying the Likelihood Prin-

ciple — if x and y yield proportional likelihood functions, then

Inf(X, x, θ) = Inf(Y, y, θ) —, X is Blackwell Equivalent to Y , if

and only if, the distribution of (Inf, θ) for X and Y are the same.

4.3. Experiment Information Function

In the last section, we did not define any information function but a rep-

resentation of it, Inf . Now, we are interested possible functions capable of

describing the information of a statistical experiment. A possible approach

to this problem is considering that the information gained is an utility func-

tion10 which the researcher wants to maximize. This way, by the results in

decision theory Inf(X, θ) = E (Inf(X, x, θ)). Since we consider the data
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information function as non-negative, the utility function is concave, see

Ref. 11 for instance.

Proceeding with this approach, we compare the different information

functions presented in Section 3.2. Recall the example in Section 3.2 and

remember that, for any of the information functions introduced, the maxi-

mum possible value is obtained when the posterior distribution is such that

P (θ = 0|x) = 0 or P (θ = 0|x) = 1. Therefore, to compare those information

functions, we divide all of them by these maxima.

For the three possible experiments described in Section 3.2, X1, X2, X3,

the information vectors using euclidean distance are:
(

18−1/2; 18−1/2
)

,

(0.424; 0; 0.424) and
(

2−1/2; 0; 2−1/2
)

. Since the maximum possible informa-

tion is 1√
2
, in the first experiment, with probability 1 the gain of information

is 33%. That is, a small gain with a small risk. On the second experiment,

with probability 56% the gain is 60% of the maximum and with probability

44% it is 0% of the maximum, moderate gain with moderate risk. In the

third experiment one can get 100% of the maximum possible information

with probability 33% and can get 0% of the maximum possible information

with probability 67%, maximum gain with great risk. In conclusion, if one

uses the Euclidian’s “utility”, then he/she would have no preference among

the three experimnents, since, for all of them, the expected information gain

is of 33%. This is surprising as the third experiment is Blackwell Sufficient

for both the others.

Consider the second information function, Inf(X, x, θ) =

[E(θ) − E(θ|X = x)]2. In the three possible experiments, the information

vectors using this function are,
(

1
36 ;

1
36

)

, (0.09; 0; 0.09) and (0.25; 0; 0.25).

Dividing by the maximum, we obtain the following vectors:
(

1
9 ;

1
9

)

,

(0.36; 0; 0.36) and (1; 0; 1). Therefore, the expected information gain is,

respectively, 11%, 20% and 33%. Thus, the third experiment is more in-

formative than the second which is more informative than the first. It is

interesting to note that the information of an experiment using this metric

is: Inf(X, θ) = V (E(θ|X)).

Finally, considering the Kullback-Leibler divergence, the informations

vectors are: (0.024; 0.024), (0.084; 0; 0.084) and (0.301; 0; 0.301). Dividing by

the maximum, .301, we obtain: (0.081; 0.081), (0.278; 0; 0.278) and (1; 0; 1).

The expected gain of information is respectively, 2.4%, 4.6% and 33%.

Again, the informativeness order,X1, X2, X3, is in complete agreement with

the ordering induced by Blackwell Sufficiency.
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5. Final Considerations

Our main objective in writing this note was to reflect on the concept of

information. It seems that there is no universal concept of information. The

reader might have noticed that we follow an approach different from the one

provided by Information Theory. As a matter of fact, we were not concerned

with the old and important concept of information of a (prior) distribution.

Another possible approach is related to Fischer Information. In this case,

the value of the information depends on the value of the parameter, which

is unknown and the object of the inference. It must be recognized that

Fischer Information is one of the most important tools for the construction

of Modern Statistical Inference. What could be questioned is the title given

for this measure: Information. In fact, we do not know how to answer the

questions presented in Section 1 when using this measure.

We used Basu’s concept of information to develop our reflection. To

operationalize Basu’s concept, we had to strongly use the Statistical Prin-

ciples. We alert the reader that we presented these principles with Bayesian

“eyes” while, frequently, those principles are presented under a frequentist

perspective. For instance, the definition of the Conditionality Principle that

we presented is slightly different from that of Ref. 2 and Ref. 3. We are

convinced that trivial experiments (or ancillary statistics) should not bring

information about the parameter and, therefore, one should follow the Suf-

ficiency and Conditionality Principles. Consequently, one must follow the

Likelihood Principle and abandon approaches based on sample spaces: the

frequentist way. One of the most celebrated hypothesis test is the asymp-

totic likelihood ratio test that does not depend on stopping rules. Conse-

quently, it also does not depend on the sample spaces. The three Statistical

Principles, although created by frequentist statisticians, are intrinsically

considered whenever using the Bayesian operation.

On trying to understand the concept of information, we were leaded

to the problem of comparison of experiments — a pre-posterior analysis.

When comparing statistics in different sample spaces, a known alternative

to the classical sufficiency definition is that of Blackwell Sufficiency. A prin-

ciple can be naturally induced by Blackwell Sufficiency. Let X and Y be

two experiments such that X is Blackwell Sufficient for Y . If you are re-

stricted to chose only one, it should be X ! This principle was used in some

important cases, for example, to show that sampling without replacement

is preferable than that with replacement. Blackwell Sufficiency is also useful

for characterization of distributions, for instance Ref. 12.

The main achievements of this paper are the examples of the use of
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Blackwell Sufficiency and the theorem of Section 4.2. Looking at the ex-

amples, some of the preferences were expected — the ones in the sampling

and the normal distribution. Other examples, such as 1, 2 and 6, surprise

the authors. An important question related to all of these examples is: Are

the experiments Blackwell Equivalent? The answer is no: for Example 1,

see Ref. 8. The general proof for the negative answer uses the BL Theorem,

discussed below.

BL Theorem states that two experiments are Blackwell Equivalence,

if and only if, the two likelihood-function statistics are equally distributed

conditionally to θ. Two applications of this Theorem are as follows. i. If one

believes in the Likelihood Principle and that two experiments are equally

informative if the distribution of the information functions are equal, then

the person believes in the information equivalence between experiments

induced by Blackwell Equivalence. ii. To prove that an experiment is not

Blackwell Sufficient for another is, in general, difficult: one must show that

there is no transition function from one to the other. However, if X if

Blackwell Sufficient for Y , using BL Theorem, if the likelihood-function

statistics, conditionally to θ, are not equally distributed, then Y is not

Blackwell Sufficient for X . We leave to the reader to check that, in all the

examples of Section 4.1, Blackwell Equivalence does not hold. Recall that

we did not prove BL Theorem for the absolutely continuous cases.

In the first example, discussed in Section 3.2, we try three measures of

information. The first one, based on the Euclidean distance, did not differ-

entiate the experiments. This seems incoherent since there is a strict order

of preference induced by Blackwell Sufficiency. The second and third mea-

sures of information both satisfy the strict order of preference induced by

Blackwell Sufficiency. An important distinction between these two measures

is that, while the Kullback-Leibler divergence does not take into account

the possible values of the parameter space, the variance of the posterior

mean does strongly depend on these values. Another difference is that the

latter may not be defined, although the former always can be computed.

We end this paper by evoking the memory of D Basu who, among other

teachings, inspires the authors with the illuminating concept of information:

“Information is what it does for you, it changes your opinion”.
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