CHAPTER 15

Influence Diagrams and Medical Diagnosis

Carlos A. de B. Pereira, Universidade de Séo Paulo, Brazil

ABSTRACT

Influence diagrams operations are used to solve the following problem:

A patient consults with a specialist who is going to start a search to discover
whether the patient has a disease, D, or its absence, D'. Before collecting any
further information, a prior probability, d =Pr{D}, for the presence of the
disease is assessed. Looking for more information, the physician observes an
indicant (E = positive response or E' = negative response), which is a new
evidence associated with the patient. The experience of the physician is in part
represented by the data (x, y), where x(y) is the number of positive (negative),
respondents among all former patients having D(D’). The objective is to evaluate,
for the new patient, the conditional probability of D (D’) given that the patient
responded positively (negatively) and also that the data (x, y) have been observed.
Note that the likelihood depends upon the sensitivity, 7 = Pr{E|D}, and the
specificity, 6 = Pr{E'|D’}. However the parameters of interest, the diagnostic
probability, are p=Pr{D|E} and ¢ = Pr{D'|E'}. In another context the same
problem is discussed by Pereira and Pericchi (1990).

151 THE PROBLEM

In the search for a new indicant of a disease D, doctors in a certain clinic selected
150 patients known to have the disease and 150 patients known not to have
the disease. Here D is the event that a patient has the disease D, while D’ is
the event that a patient does not have the disease D. To each patient they apply
a test obtaining a response E ™ for positive evidence or E~ for negative evidence.
The results of the experiment are presented in Table 15.1.

A new patient comes to the clinic and is Jjudged, by the doctors, to have the
disease with probability 0.1. The doctors apply the same test to this patient
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Table 15.1 Reslts of the clinical experiment

Patient’s response

Patient’s Sample
state E, E- size
D 60 90 150
D’ 9 141 150

and obtain response E*. How does this evidence change their probability that
the patient has the disease? What would be this change if the response is E~?

15.2 DIAGNOSTIC MODEL

To present a solution for this problem we define the following quantities which
we think are the elements of the model:

13

2

The sensitivity of the test is 7 = Pr{E*|D} and the specificity of the test is
0=Pr{E”|D'}.

The sampling quantities are x|m ~ bi(150,7) and y|0 ~ bi(150, 6). That 1851
and y are binomial random quantities with parameters (150, 7) and (150, 0),
respectively. Here x is the number of positive responses among the 150
patients having D and y is number of negative responses among the 150
patients not having D. We have observed x = 60 and y = 141.

. The state of the new patient is

o { 1 ifthe patient has the disease, D
0 otherwise.

The prior diagnostic probability is Pr{é = 1} = 0.1. 6 ~ ber(0.1) indicates that
d is a Bernoulli random quantity.

. The result of the test for the new patient is

ol { 1 ifa positive response obtains,ie. E*
0 ifanegative response obtains,ie. E~.
Note that Pr{t=1|d=1}=n or that Pr{t=0[6=0} =0 if we judge,
respectively, the new patient as we have judged the sample patients having

D or the sample patients not having D. See Lindley and Novick (1981) for
a complete discussion on exchangeability.

. The posterior diagnostic probabilities, the object of the analysis, are

Pr{6=0[t=0, x=60, y=141} and Pr{d=1[|t=1, x=60, y = 141}. Note
that the quantities on the right of the bar are observable and the ones on
the left of the bar are the quantities of interest which at this stage are not
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observable. The other quantities, = and 0, that are neither observable nor of
interest, are eliminated during the analysis.

To construct the probabilistic influence diagram relating the nodes
representing the above quantities we need to state the conditional independence
relationships that we have judged to be relevant. The first and most important
is (x,7) LL(y,0); ie. (x,7) and (y,0) are independent. This is because (x,m) and
(,0) are quantities related to two distinct and independent populations, D and
D'. (We could think of two different urns having balls of two colors.) Since our
interest is directed to a new patient (a different individual), his/her state ¢ is
independent of the other patients in the sample. However, the response to the
clinical test, ¢, given to a new patient depends on the value of 7 or 0 and his/her
state J. With these restrictions in mind, Figure 15.1 presents our probabilistic
influence diagram for the problem. To stress the fact that the clinical test is
being given for the first time, we judge = and 6 to have independent uniform
distributions in the unit interval. Recall that the uniform density in the interval
(0,1) is the beta density with parameters a = b = 1. The beta distribution with
parameters a and b is denoted by Be(a, b).

The diagram of Figure 15.1 (in our particular case m=n= 150) has four
distinguished nodes. Three represent random quantities that have been observed
and one represents the unknown quantity of interest, 5. The remaining nodes,
m and 0, are the modeling parameters (i.e. are neither observable nor of interest)
and must be eliminated. The directions of the arcs are also determined by the
problem. The sample results, x and y, depend, respectively, on the chances of
positive and negative responses, namely 7 and 6, in their respective populations
D and D'. Analogously, the response of the new patient, ¢, depends on &, the
state of the patient, and on the accuracy of the test measured by 7 and 6.

bi(m, )

Be(1,1) a Q Be(l,1)

n ifd=1
Pr{t=115,1,0} =
1-6 if 8=0

ber(.1)

Figure 15.1 Probabilistic influence diagram for
the diagnosis example.
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15.3 THE ‘IDEAL’ SOLUTION

Figure 15.2 shows the probabilistic influence diagram after reversing arcs [, x]
and [0, y]. After reversing these arcs, we use Bb(m, 1, 1) and Bb(n, 1, 1) to indicate
that x and y are distributed as beta-binomial random quantities with parameters
(m,1,1)and (n, 1, 1), respectively. (See Basu and Pereira, 1981, 1982 for a complete
discussion on these distributions.) Arc reversal and node elimination, the
diagram operations used here, are discussed by Barlow and Pereira (1987). After
reversing arcs [7,t] and [0,t] we obtain the diagram of Figure 15.3. For
simplicity, we give only the probability function of ¢ since the distributions of
x,y, and d are given in Figure 15.2. Clearly the distributions of 7 and 0 changed.
Since 7 and 6 are going to be eliminated (they are barren nodes in Figure 15.3),

their probability functions do not appear in Figure 15.3. In fact we obtain:

1. m|(5,t,x,y) ~7|(J,t,x) ~Be(l + x + dt,1 + m+ d — x — dt); and

Bb(m,1,1) Bb(n,1,1)

Be(1+x,1+m-x) Be(1+y,1+n-y)

n ifd=1
Pr{t=118,n,0} =
1-6 if 6=0

ber(; 1)

Figure 15.2 Prolabilistic influence diagram after revers-
ing arcs [#, x] and [0, y].

& (D
(™) (0)

if =1
@ m+2
Pr{t=113,x,y} =

O

Figure 15.3 Probabilistic influence diagram.
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2. GI((S,I,X,_)})NOH(S,[,_V)N Be(l +y+(1 _5)(1 —[)7
T4+n+(1—8)—y—(1-8(—0).

Althoughh these expressions look complicated they only reflect the fact that
the new patient has to be added to the sample of D(D') if 6 =1 (§ =0) and, in
this new sample, either x(y) increases to x -+ 1 (¥ + 1) if his/her response was
positive (negative) or m — x increases to m— x + 1 in the case of a negative
(positive) response. In addition, since the first (second) expression does not
involve y(x), we do not have to consider either arc [x,6] orarc[y,n] orarc[6,x].

Figure 15.4 is our diagram after eliminating nodes = and 6. Since all the
nodes are distinguished we did not shade them. The probabilistic influence
diagram that permits us to evaluate the diagnostic probabilities for all possible
values of the observable quantities, ¢, x, and ¥, is presented in Figure 15.5. The
answer to our problem is given by the probability functions attached to node §.

Bb(m,1,1) Bb(n,1,1)

—_ ifd=1
o m+2
Pr{t=113,x,y} =

n-y+1
n+2

ber(.1)

Figure 15.4 Probabilistic influence diagram after
eliminating nodes = and 0.

Bb(m,1,1) Bb(n,1,1)

Prit=1ixy} =.1 22, g Dy+l
m+2 n+2

x+1 .
Vo £ m +Pr{t=1Ix,y} if t=1
Pr(d=1ltxy) =

m-x+1

i

hid )+Pr{ t=0Ix,y} ift=0

Figure 15.5 Probabilistic influence diagram after
reversing node [6,t].
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Using now the experimental data displayed in Table 15.1 we obtain the
following results:

1. The posterior distributions of 7 and 0 are

Be(62,91) ifo=1,t=1
nl(é,t,x=60)~{Be(61,92) ifo=1,t=0 and
Be(61,91) ifd=0.

Be(142,10) ifo=1
0l(,t,y= 141)~{Be(143,10) fo=0,t=0
Be(142,11) if6=0,t=1.

2. The predictive distributions of x, y, and ¢ are

(@) Pr{x=i}=Pr{y=i}=1/151, where i=0,1,...,150. That is, x ~y~
Bb(150,1, 1); and
(b) Pr{t=1|x=60, y =141} =0.1(62/152) + 0.9(10/152) = 15.2/152 = 0.1, i.e.

t|(x =60,y = 141) ~ ber(0.1).
3. The diagnostic probabilities are

Pr{6=1|t=1,x=60,y=141} =61/152 =040 and
Pr{5=0[t=0,x=060,y= 141} = 0.93.
Hence,
(a) if £ =1 the probability of {6 = 1} changes from 0.10, a priori, to 0.40, a
posteriori, and
(b) if t =0 the probability of {6 =0} changes from 0.90, a priori, to 0.93, a
posteriori.

The fact that the change observed in (a) is bigger than that observed in (b)
suggests that the diagnostic test in the study is more sensitive than it is specific.

15.4 DISCUSSION

15.4.1 Discussion by David Heckerman

The analysis of this simple medical problem by Professor Pereira is accurate
and well presented. Moreover, the analysis has several important applications
including the updating of probabilities by data in expert systems. My only
concern with the analysis is whether it can be applied to larger, more realistic,
problems. The extension of the analysis to problems with many variables is
straightforward if all variables (e.g. J in his model) are observed in repeated
trials. In such situations, the sampling parameters (e.g. # and 6) can be updated
independently. However, if one or more variables remain unobserved in certain
trials, the parameters become dependent and updating becomes difficult.
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To understand this point, consider a situation that is slightly more complicated
than the one presented in the chapter. Suppose the outcome of the test depends
on some intermediate variable, called i, where i can be absent (i=0) or present
(i =1). For simplicity, consider only those patients with the disease D. An influence
diagram for two patients is shown in Figure 15.6. The nodes subscripted with 1
and 2 represent the observable events for the first and second patient respectively.
The nodes labeled 6(i), 0(t|i), and 6(¢|7) represent the sampling parameters. If the
intermediate variable for each of the two patients is observed, the sampling
parameters can be updated independently. However, if the intermediate states
remain unobserved, then the influence diagram reduces to the one shown in
Figure 15.7. The parametes are no longer independent and updating becomes
difficult when many patients are considered.

An approach to circumvent this difficulty is suggested by Ross Shachter in
Chapter 14 of the volume. Suppose an additional parameter 6(¢) is introduced,
where 0 is a deterministic function of the original three parameters:

0(t) = 6(¢|)6G) + 6(t|7)(1 — 6()).

Conditioned on this new parameter, observations for t, where i remainsunobserved,
are independent. With the introduction of 6(¢), inference becomes straightforward.
When i is observed, either 6(¢|i) or (¢|7) is updated. When i is unobserved, 6(t) is
updated. The probabilities of interest for a new patient can be computed from the
parameters using a Monte Carlo approach, discretization, or other approximate
approaches.

This method works well when there are a small number of observationclasses.
(In the example above, there are three classes corresponding to i absent, i present,
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and i unobserved.) Unfortunately, the approach becomes intractable as the
number of observation classes ncrease. For example, suppose there are tests -+ ¢,
for which i is relevant, and suppose that any combination of test outcomes can be
observed. In this situation, even if the test outcomes are conditionally independent
given i, the method will require on the order of 2" additional parameters. Therefore,
it appears that approximate or heuristic approaches will be necessary to extend
the analysis in this chapter to large, real-world problems.

15.4.2 Reply

I would like to thank the discussant for his comments. Also, I would like to
say in a reply that, when we construct the right diagram for censored data
problems, the solutions for the cases introduced by him could be obtained.
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