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Influence diagrams are used to illustrate how the probability of having a disease can be 
updated given the results from two or more clinical tests. The problem of calibrating a 
register using results from a survey, as discussed by Heldal and Spjotvoll (1988), is 
solved using a Bayesian approach. 

1. INTRODUCTION 

The present article is a natural sequel to Pereira [4]. In that article, the 
problem of predicting (diagnosis) whether a certain disease is present, D ,  or 
absent, D’ ,  based on the result of a medical test was discussed. Here, we 
consider a problem where two clinical tests are available. D is for a severe form 
of the disease, and D‘ is for a less severe form. 

The data in Table 1 and analyzed in this paper are from the Hospital das 
Clinicas, SBo Paulo. The data refer to 100 children with biliary obstruction. 
Biliary obstruction can take two forms: intra-hepatic, D ,  (there were 50 sample 
units) and extra-hepatic, D’,  (also with 50 sample units). If the diagnosis is 
intra-hepatic, then an operation on the liver is required, otherwise not. To help 
discriminate between the states D and D’,  two clinical tests are available. Both 
tests can give either positive or negative results. When the two tests are taken 
by a patient, the evidence can be one of the four possible indicants, represented 
by (+,+), (+,-), (-,+), and (-,-). However, for some of the patients, only 
the response to the first test is obtained, producing either evidence (+,.) or 
(- , .). For five of the children with state D in our sample, only the response to 
the first test was obtained and all had a positive response (+,.). On the other 
hand, for two children with state D’, only negative responses for the first test 
(- , .) were obtained. 

One problem is to determine the sensitivity and specificity of the tests; i.e., 
to evaluate the probability that a test will be positive (negative) when the test 
subject has (does not have) the disease. We are also interested in the problem 
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TABLE 1. Frequencies of indicants in children with biliary obstruction. 

Intra-hepatic, D Extra-hepatic, D' 
2nd y (+,.) (-->.) Sum (+>.I ( - 3 . 1  Sum 

(*,+I 28 01 29 02 02 04 

Sum 40 05 45 11 37 48 
Only 

1st test 05 00 05 00 02 02 
Total 

1st test 45 = x  05 m=50 11 v = 3 9  n = 5 0  

(.,-I 12 04 16 09 35 44 

of prediction, i.e., to evaluate the probability that a new patient, a child with 
biliary obstruction, who either responded to the first test only or to both tests, 
has D (or D ' ) ;  that is, with the experience learned from the data in Table I, 
how can we evaluate the diagnostic probability represented by Pr{Dlevidence}, 
where evidence is the result of a clinical test or tests on a new patient? The 
objective of this article is to answer this question. 

In Section 2, we first discuss the general problem of prediction for a finite 
categorical population when incomplete data is presented. There we discuss a 
situation only slightly more general than the one in Basu and Pereira [2]. The 
probability results used here are in that paper. We use influence diagram 
techniques as in Barlow and Pereira [l]. For a very general and complete 
discussion of the use of influence diagrams in medical situations, see [6]. Algo- 
rithms for influence diagrams are discussed in [5] .  

Probability distributions used in this article are the beta, the Dirichlet, the 
Bernoulli, the binomial, the multinomial, the beta-binomial, and the Dirichlet- 
multinomial. The multinomial probability model follows from judgments of 
partial exchangeability and to this extent may be considered a consensus proba- 
bility model. The Dirichlet is the natural conjugate prior for the multinomial. 
All other distributions are derived from these two probability models. All the 
results needed here can be found in [2]. The following notation is used: 

(i) p - Be(a,b) indicates that the quantity p has a distribution with par- 
ameters a B 0 and b L 0; 

(ii) $ - Dk(2) indicates that the k-vector has the Dirichlet distribution 
with nonnegative parameter vector ii; 

(iii) x ( p  - Be+) indicates that for fixed p the random quantity x has a 
Bernoulli distribution with parameter p ;  

(iv) x(p - bi(m,p) indicates that for fixed p the random quantity x has a 
binomial distribution with parameters m and p ;  

(v) ,?!$ - M,(m,$) indicates that for fixed $ the k-vector (with integer 
coordinates) 2 has a multinomial distribution with parameters m and 

(vi) x - Bb(m:a,b) indicates that x has a beta-binomial distribution with 
parameters m and (a,b); and 

3;  
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(vii) 2 - DMk(m,i;) indicates that the k-vector 2 has a Dirichlet-multi- 
nomial distribution with parameters m and 6. 

2. COMBINATION OF SURVEYS AND REGISTERS: A BAYESIAN 
PERSPECTIVE 

In this section, we present a Bayesian solution to the simple problem studied, 
from a frequentist perspective, by Hedal and Spjotvoll [3]. The notation we use 
here permits one to visualize, without much effort, the extension to any larger 
two-way table. In Section 3, the results obtained here will be directly applied 
to our medical problem. 

Let A ,  and A2 be the two possible disjoint states (in general, we can have 
L > 2 states) for any particular unit of a population of finite size M .  In the 
population, each unit is registered as being in one of two disjoint categories, 
B1 or Bz (here also we could also consider K > 2 categories). To fix ideas we 
could consider A,(A,) as disease D(D’) and B1(Bz) as the positive (negative) 
response to a test. In this case, a positive response would correspond, in Hedal 
and Spjotvoll’s language, to registration (wrongly sometimes) of a unit as having 
D. In Section 3, however, we consider the A’s as the results from the first test 
and the B’s as the results from the second test. We return to this point later. 

Suppose that a sample of size m is selected and each unit is classified properly 
as Al or AZ. From these, m sample units m’ I m are also classified properly as 
B1 or BZ,  whereas m-m‘ are not classified with respect to the B categories; 
i.e., m-m‘ observations are incomplete. Table I1 introduces the notation for 
the sample results. 

To analyze the data in Table I1 we need to make additional judgments to 
determine an appropriate probability model. Suppose that in our judgment 
the m,] sampled units are exchangeable, conditional on being in the category 
corresponding to the intersection of categories B, and A]. Then it can be shown 
that the multinomial model corresponding to the parameters in Table I11 is the 
appropriate model (see [2]). It will be convenient to define P = p I 1  + pZ1, p 1  = 

To calculate the likelihood, we need to make additional judgments relative 
to the m - m‘ incomplete observations in Table 11. There are many possible 
ways in which such data could arise. However, we will make the required 
additional judgments relative to the data of Table I, the medical example. Table 
I1 could correspond to the data under the column heading “Intra-hepatic, D” 

p d p ,  and P Z  = p d 1  - P).  

TABLE 11. Sample frequencies, m specified. 

AI  A2 Total of B 

B1 m11 m12 m1. 
B2 m12 m22 m2. 
Sum m11 m 12 m‘ 
Total of A m.1 m.2 m 

rn.l - m:, are in category Al but the B category is unknown. 
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TABLE 111. Multinomial probabilities. 
A i  A2 Marginal of B 

B1 
B2 

Marginal of A 

Pl1 Pl2 

P21 P22 

p = P. l  1 - P  

P1 
P2.  

1 

as well as the data under the column heading "Extra-hepatic, D"' in Table I. 
For the data in Table I, not all the children who took the first test also took 
the second test. The children who took only the first test were too weak to go 
to the second test. Hence, the fact that they took only the first test is not 
informative relative to the second test. Thus, m and m' are fixed and we 
consider only m,l, mj,, mll, and m22 as random a priori. The likelihood using 
the multinomial model and the data in Table I1 is 

Table IV gives the unknown frequencies in the remaining population. For 
simplicity, we consider as population units only the units that were not selected 
for the sample. The population is divided into two groups: the sample (which 
is observed) and the units not in the sample (the unobserved group). 

We have the following probability statements as a consequence of our ex- 
changeability supposition (note that there is a one to one correspondence 
between (p11,p12,p21,p22) and (P,pl,p2) since the sum of the elements of the 
first vector is 1.): 

(i) M.1I(Pgl,p2) is distributed as M.lIP - bi(M,P) and m.ll(P,pl,p2) is dis- 
tributed as m.llP - bi(m,P). 

(ii) MllI((P,Pl,P2),M.l) is distributed as M I I I ( ~ ~ , M . ~ )  - bi(M,, ,pl)  and 
mlll((P,pl,p2),mll) is distributed as mlll(pl,mll) - bi(m!l,pl). Anal- 
ogously, the same statements hold if we substitute subscript 2(1) for 
W ) .  
(M.1,M11,M22) and (m.l,mjl, mll,mz2) are conditionally independent 
given (P,pl,p2). This assumption comes from our practical example of 
Section 1. It was decided before the second test that seven (five in the 
D-population and two in the D'-population) of the patients were not 
in sufficiently good health to support the stress of the second test. 

(iii) 

TABLE IV. Unknown frequencies in the unsampled population of units (M specified). 

A1 A2 Total of B 

B1 
B2 
Total of A 

M11 
M21 
M .  1 

M12 

M22 

M.2 

M i .  
M2. 
M 
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To complete our prior assumptions, we only have to assess a joint probability 
distribution for the vector (p11,p12,p21,p22). To obtain an analytical solution for 
our problem, we choose a prior in the class of Dirichlet distributions that is a 
conjugate class of priors for the multinomial. Our objective is to streamline the 
solution. However, the technique used here is not restricted to this class of 
distributions. 

To say that (p11,p12,p21,p22) is distributed as a Dirichlet distribution of 4th 
order with parameter (a11,u12,a21,a22) is equivalent to saying that P = pll + pZl 
is beta with parameter (all + u21,a12 + az2) = ( Q . ~ , U . ~ ) ,  p1 is beta with parameter 
(a11,a21),p2 is beta with parameter (a22,a12), and, finally, P,  pl, and p 2  are 
mutually independent. These are well-known results [ 2 ] .  To illustrate all the 
model restrictions described here, we present the influence diagram of Figure 
1. 

Our main objective is to obtain the conditional distribution of the frequencies 
of that part of the population that was unobserved (not in the sample) 
given the sample frequencies (the frequencies of that part of the population 
that was observed); that is, we must obtain the distribution of 
(M.1,M11,M22)l(m.l,mIl,m~l,m22). To obtain this distribution, we perform the 
usual integration, with respect to the parameters P,  pl, andp2, of the probability 
function of (M.1,M11,M22)I(P,pl,p2) multiplied by the posterior density of the 
parameters, i.e., the density of (P,p1,p2)l(m.l,m.’l,m11,m22). Note that this is so 
because (M.1,M11,M22) and (m.l,mll ,mll,mz2) are conditionally independent 
given (P ,p l  ,p2).  As described by our influence diagrams, the desired distribution 
is a composition of beta-binomial distributions. The derivation of these distribu- 
tions is a direct application of the results described in [ 2 ] .  

Figure 2 is the influence diagram after performing the Bayes operations (arc 
reversals) to obtain the posterior distribution of the parameters. Finally, Figure 
3 presents the influence diagram that solves our problem since it shows the 

FIG. 1. Influence diagram modeling the finite population problem. 
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FIG. 2. 
only the modified distributions. 

Influence diagram generated after reversing some arcs in Figure 1. It includes 

predictive distribution of the frequencies of the unseen population units, M . l ,  
Mll, and MZ2, conditional on the sample observations, m.l,mL, m,,, and m22. 

The quantities of interest are the population frequencies that were not ob- 
served, namely, M.l = M - M.2, M I 1  = M . l  - M z l ,  and MZ2 = M.2 - M12. 
These quantities, as shown in the influence diagrams, are distributed as beta- 
binomials. Their posterior expectations are 

Bb(M ; 

FIG. 3. 
ing nodes corresponding to unknown parameters. 

Influence diagram generated after reversing some arcs in Figure 2 and eliminat- 
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The expressions in (2)-(5) are the alternative Bayes estimators for the quan- 
tities of interest considered by Hedal and Spjgtvoll [ 3 ] .  The interpretation of 
these simple results is very intuitive, contrary to the estimators of Hedal and 
Spjgtvoll. Note that we simply have to multiply the relative sample frequency, 
adjusted by the prior information, by the total of each of the subpopulation. 
These results can be easily extended. By replacing k for the first index and j 
for the second index, we have the results for a K x L table ( K  > 2,L > 2). 
Clearly, in this case, we would replace Dirichlet distributions for betas and 
multinomials for binomials. 

From Figure 3 we can conclude that the conditional distributions of M I 1  and 
M22 given the data and M , l  do not depend on the values for the missing data. 

To obtain the Bayes’ predictions for the cell frequencies without conditioning 
on the column marginals, M,l  and M.2, we only use the fact that E { X }  = 
E { E { X \ Y } }  and expressions (1) and (2). The final expressions for the cell 
frequencies are as follows: 
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3. SOLUTION FOR THE MEDICAL PROBLEM 

In this section we apply the results of Section 2 to the medical data presented 
in Table I. Note that we have two samples, one for each of the subpopulations 
of interest, D and D’. To distinguish between these two kinds of populations 
and samples, we use m’s, p’s ,  and a’s for the D subpopulation (as we have 
done in Section 2) and n’s, q’s, and b’s for the D’ subpopulation; that is, for 
the D’ population, the data are represented by the parameters, 
by Q, ql, and q2 [or equivalently by (qll,q12,q21,q22)]; and the prior parameters, 
by (bll,b12,b21,b22). Hence, it is enough to replace 11’s for m’s, N’s for M’s, q’s 
for p’s ,  Q’s for Ps, and b’s for a’s in Section 2 to obtain analogous results for 
the D’ population. We also could construct similar influence diagrams (Figs. 
1-3) to obtain the predictions for the D’ population. 

The novelty here, since the interest is in a new patient who comes to the 
clinic, is that the number of untested population units (of interest) is one; i.e., 
either { M  = l ,N = O} or { M  = 0,N = l}. Recall that in the beginning we do not 
know whether the new patient has D or D’. Also, note that Bb(l;a,P) is the 
Bernoulli distribution with probability parameter a/(& + p);  i.e., Bb(l,a,P) = 
Ber (&/(a + p)) .  

Consider now the following indicators, related to the new patient: 

0 if the new patient has D‘;  { M  = 0; N = 1) 
1 if the new patient has D ;  {M = 1; N = 0). 

d = {  

0 if the result for the new patient is negative in the first test and 
1 if the result for the new patient is positive in the first test. 

t 1 = {  

and 

0 if the result for the new patient is negative in the second test and 
1 if the result for the new patient is positive in the second test. 

t 2 = {  

To relate the results of the present article with the ones of Pereira [4], we 

The results of Section 2 permit us to write the conditional predictive distribu- 
let m.l=x and n.2 = y in Table I. 

tions of tl given d and of t2 given tl and d as follows: 

Bb(1; I Z . ~  + b.1,n.2 + b.2) = Ber (y++bq;) if d = 0 

tiId .- 
(Bb(1; m.l + ~ . ~ , m . ~  + a.z) = Ber (;++::) if d = 1 
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m12 + a12 
(m:2+o.2)  

Bb(1; m12 + u12,m22 + u22) = Ber 

Bb(1; mll + all,mzl + azl) = Ber (7;: 1 :::) iffl = 1 . 
M l , d  = 1) - 

Considering a priori the simplest Dirichlet distributions, i.e., ai, = bjj = 1, 
j , i  = 1,2, and using all the data in Table I, we can write 

47 13 
Pr{tl = Ild} = - d + - (1 - d)  and 

54 54 

29 2 3 3 
42 7 13 39 

Pr{t2 = l(d,tl} = -df1 + -d(l - t l )  + -(1 - d)tl + -(1 - d)(l - tl) 

To complete our formulas, we have the following posterior probabilities, where 
6 is the prior probability that d = 1: 

47 
-6 
54 

47 13 
54 54 

Pr{d = llt, = l} = 

- 6 + - (1 - 6) 

and 
47 6 

476 + 13(1 - 6) 
- - 

7 -Fi 
76 - - 54 " 

-6+-(1-6)  
Pr{d = llt, = O} = 

7 41 76 + 41(1 - 6) ' 
54 54 

13636 Pr{d = lit* = l,t, = 1) = 
13636 + 126(1 - 6) ' 
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I 

~ 

Bed.24) 
Bed.87) 

Ber(.69) 
Ber( .29) 
Ber( .23) 
Ber(.08) 

I 

if d=O 
i fd= l  

if t1=1 & 
if tl=0 & 
if tl=l & 
if t l d  & 

d=l 
d= 1 
d=O 
d d  

FIG. 4. 
patient with biliary obstruction. 

Influence diagram representing the doctor’s information model for the new 

611s 
Pr{d = l J t ,  = l,t* = O} = 

6116 + 420(1- S )  ’ 

Figures 4-6 are the influence diagrams related to the above calculus. Here, 
we consider S = Pr{d = l} = 0.7, representing the doctor’s opinion about the 
new patient, before the test results. 

Note that, depending on the combined results of the tests, the probability of 
the quantity of interest, d, can change dramatically. Depending on the costs of 
misdiagnosis and of wrongful treatment, follow-up procedures may depend 

FIG. 5. Influence 
patient with biliary 

Ber(.681) 

Ber(.641) if t l= 1 

Ber(.894) if tl=1 
Ber(.285) if tl=0 

diagram representing the doctor’s information model for 
obstruction, after the observation of the first test results. 

Ber(.681) 

Ber(.641) if t l= 1 

Ber(.894) if tl=1 
Ber(.285) if tl=0 

the new 
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Ber(.962) 
Ber( ,772) 
Ber(S97) 
Bed.236) 

Ber(.641) if tl= 
Ber(.316) i f t l =  

if t l= l& a=1 
if t l = l &  a=o 
if tl=0 & t2=1 
if 1l=O & t2=0 

. I  
:O 

FIG. 6. 
patient with biliary obstruction, after the observation of the two tests results. 

Influence diagram representing the doctor's information model for the new 

strongly on the test results. Clearly, follow-up procedures may also depend on 
the doctor's prior opinion, 6 = Pr{d = l}. To evaluate the quality of the tests 
results, we consider various cases and calculate the difference between the 
posterior and the prior probability of d for all possible values of its prior 
probabilities. Consider then the functions f ( ~ , l ~ ( 6 ) 7 f ( ~ , ~ ~ ( 6 ) , ~ ~ , l ~ ( 6 ) ,  and f(0,0)(6) 
defined as f( in(6) = Pr{d = l J t l  = i,t2 = j }  - 6, for ij = 0,l. Also, let fci,.)(6) = 
Pr{d = llt, = i} - 6, for i = 0,l. Figure 7 presents these six functions showing 

L 
0 .- 
L n 
I L 

0 

Q 

CD 
0 

I 

L 

.m 

o. 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 I I I I I 

P r i o r  

FIG. 7. Change in the probability, due to test results, of a patient belonging to D. 
The first (2nd) sign is the result of the first (2nd) test. To indicate the curve corresponding 
only to the first test, we use a "." for the 2nd sign. 
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0.50 

0.25 

L 
0 
.I 

4 O.OO 
Y 

a 

-0.25 

-0.50 ! I I I I 

1 .o Prior 0.0 0.2 0.4 0.6 

FIG. 8. 
the missing result. 

Change in the probabilities due to results of one test only. We use a “.” for 

for each choice of prior, 6, which test result produces the greatest change from 
prior to posterior. Figure 8 presents functionsftj,.)(6) and&.,,)(S) = Pr{d = llr, = 
j }  - 6, for i,j = 0,l. The differences in probabilities as a measure of “test 
quality” is a surrogate for value of information in the absence of utility infor- 
mation. Comparison of these two figures suggests that the first (second) test is 
better than the second (first) test for D’(D). 

4. SUMMARY 

We have shown how test data such as that given in Table I can be used to 
“calibrate” a test procedure. Using (conservative) Dirichlet priors, we are able 
to make use of all the previous test data even though some test results are 
missing. The formulas in (l), Section 3, give the updated (calibrated) probabilit- 
ies of disease for a new patient given only the first test result. The formulas in 
(2), Section 3, give the updated (calibrated) probabilities of disease for a new 
patient given the results from two tests. 

As Figures 7 and 8 (based on Table I) show, a test on a new patient can be 
very informative in the absence of strong prior information if the test is well 
calibrated. 
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