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SUMMARY

By considering a finite population of N items and .S defects, and observing
the way defects should be distributed among the items we provide an inier-
esting motivation to the binomial, negative binomial (geometric) and Poisson
distributions for the number of defects in a sample trom a production line.
The idea is to find out, from physical considerations about the production
process, which configurations of defects in items are equally likely. A uni-
form distribution is assessed on the space gencrated by these configurations.
Then, a distribution for a finite, and subsequently for an infinite population
of items is derived.

Keywords:  DISCRETE DISTRIBUTIONS: EXCHANGEABILITY; FINITE
POPULATIONS: PRINCIPLE OF INDIFFERENCE; MAJORIZATION:
PRODUCTION PROCESS.

1. INTRODUCTION
Statisticians and rescarchers have, over a period of time, become accus-
tomed to the use of “standard” probability distributions that fit “rcason-
ably well” a particular process under analysis. In many cases the choice
of the distribution is motivated by tradition or mathematical tractability,
rather than theoretical justification. Hercin we examine the justification
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for the use of various discrete distributions in the area of quality assur-
ance. Rather than mathematical convenience, the basis of the approach
taken here is to motivate the probability distributions of the number of
defectsin a sample of items, based on physical characteristics underlying
the production processes, and on the knowledge of the quality analyst
in charge of the system. Starting with a finitc population of units and
defects and the judgment of exchangeability for units with respect to
“receiving the defects”, we derive the appropriate probability distribu-
tions to be used in quality assurance. Such distributions will be more
realistic and this should translate into more accurate inferences. Barlow
and Mendel (1992), and Hayakawa (1994) used a similar approach to
develop appropriate probabilistic modcls for aging and lifetimes.

It has been standard practice to use de binomial distribution for
attribute data and the Poisson distribution tor count data. By using our
approach, it can be shown that although the binomial model appears
to be reasonable for modeling attribute data, the use of the Poisson
distribution may not adequately model count data. In some cascs, the
negative binomial model is the most adequate.

2. THE PRINCIPLE OF INDIFFERENCE

The basic idea is to start with a finite population of N items and .S defects
and to think of all possible distinct ways in which the defects could be
distributed among the items, based on physical considerations about
the process that generates the items and defects. Next, also based on the
analyst’s knowlegde about the physics underlying the process, an attempt
is made to identify which configurations of defects in items are cqually
likely. In other words, the analyst’s knowledge about the process will
determine a finite space of configurations of defects in items in which a
uniform distribution should be specified. To assess a uniform distribution
over such a space is to be indifferent among all possible configurations.
This idea is based on the principle of indiference as specified in Mendel
(1989). According to him, by saying that she is indifterent to bet on any
configuration of defects in items, the analyst is saying that she considers
any configuration to be cqually likely, that is, she is specifying a uniform
distribution on the set of all possible configurations. Typically, it is much
easier to asscss and to agree upon a uniform distribution than upon any
other distribution.
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Once this finite space has been indentified, the distributional form for
the random quantity of interest (the number of defects in a sample of size
n) is derived by using counting techniques. In this way, “finite versions”
of the Poisson, negative binomial (geometric) and binomial distributions
are derived. The traditional (infinite) versions of these distributions are
then obtained as limits of the distributions for the finite populations of
defects and items, as the populations increase without bound.

3. THE POISSON DISTRIBUTION
It is possible for a product to have a few minor defects without the entire
product being classified as defective, as noted in Montgomery (1991).
Defects may occur as blemishes in a bolt of fabric, flaws in a blade of
steel, bubbles in the coating of a product, hroken rivets in an aircraft
wing, and so on.

Given the above, assume a population of N items and S defects,
all distinguishable, and suppose that the quality analyst believes that
defect j (j = 1,...,.5) will be located initem & (z = 1,... , N) with
probability N~1. This means that all N items have the same chance
N1 of receiving defect 5.

One could think of a number of production scenarios that would be
consistent with this judgement. For instance:

(a) N aircraft wings will be assembled in an assembly line that uses
rivets coming from a large lot containing S defective rivets. If the
rivets are randomly distributed among the wings, it is reasonable
to helieve that a defective rivet § will be assembled in wing ¢ with
probability N 1.

(b) A weaving machine produces fabric. The production starts in the
morning and lasts the whole day. This results in a continuous length
of cloth that is cut at the end of the day into N picces of the same
length to be rolled onto N bolts. The analyst in charge of the pro-
duction knows that the weaving machine produces small blemishes
in the fabric. Moreover, she belicves that:

1. The process by which the blemishes are generated is stable (station-
ary), that is, the distribution of the number of blemishes which occur
in any piece of cloth depends only on the Iength of the piece.

2. The number of blemishes which occur in different (disjoint) pieces
of cloth arc independent.
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3. Blemishes never occur simultaneously; there is always some mea-
surablc interval between any pair.

It is worth noting that there are many situations in which these con-
ditions are not met. It the fabric is weaved from threads supplied in
batches, the average number of blemishes produced by the machine may
depend on the kind of thread and consequently vary from batch to batch.
In that case the process will not have stationary increments. Sometimes
the occurence of a blemish will increase (as it will be seen in section 4)
or decrease the probability of occurence of another in the proximity. If
this is true the increments will not be independent.

Whenever all three conditions are met, the analyst is dealing with a
Poisson process. It so, it is a well known result that, given that blemish
J was gencrated during the day, the probability that it was located in bolt
iis N“Li=1,... N.

Now, define the variable x5 as:

1 ifdefectjisinitem; fors =1,2.... N
Tij = andj =1,2,...,8
() otherwise.

Il the S defects and the NV items are all distinguishable, there will
be N* possible configurations of defects in items (see Feller (1957),
chapter II). If the probability that defect ;7 will be located in item 4 is
N1 then all the configurations arc cqually likely, that is, the probability
of cach of them is (N*)~1. In this case, we can write the conditional
probability of the 2;;; given N and S as:

1

In other words, the analyst who believes that the probability of defect
4 being located in item i is N1, is indifferent among all N possible
configurations of defects in items (principle of inditference). Figure |
illustrates the case where N = 2 and S = 3.

Ity = Z?:l x¢; denotes the number of defects in the i-th item,
the joint conditional (on N and S) probability distribution that the
items 1,2,..., N will have y1, v, ..., yn defects respectively (where

N .
Yoy =S)is:

S 1 N
p(:ljl?"-ay]\”Na‘g):( ) -7 ZU’:S

Yr---yn) N° —
1=

})(.’I,‘“, N N T TRUD & DY i) Y DR b U I 1 N | N, S) =
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N=2andS=3 yxxhl
\

12 x12 =1

172 = xe3 =1

xi1 =1 i 1

X13 =

12 T~ —

112 x22 =1

$ x23 =1

12

x12 =1
» 12

All branches of the tree have the same probability: 1/8.

Figure 1. Example, with N = 2and S = 3.

where I(A) is the indicator function, assuming the valuc 1 when A is
true and the value O otherwise. (,’” ‘5',,/ \’) is the number of ways of
distributing the S defects in such a way that the first item has y; defects,
the second item has 1, defects, and so on. The above expression indicates
that more diverse allocations of defects in items will be more probable
than less diverse allocations. In other words, this is a case where it is
more likely that the S defects are evenly spread among the N items.
In terms of majorization, it is said that p(yi,...,yn | NV, S) is Schur-
concave (see Marshall and Olkin, 1979). As an example of the above
consider the case of N = 2 and S = 3 depicted in Figure 1. Although
the number of configurations is 2* = 8, the number of ways in which
item 1 has 2 defects and item 2 has 1 defect is (231> = 3.
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Sampling distribution

Now, suppose we collect a sample of size n. Let p(x|n, N, S) be the
probability of having 2 defects in the sample. If we do not care about
which defects are in which items, then @ defects can be chosen in (3)
ways from the total of S defects. The remaining (S — ) defects can be
placed in the remaining (N — n) items in (N — )" ways. Moreover,
there will be n” different configurations of 2 defects in n items, cach of
them with probability A—fq Consequently:

(1) .
plx|n,N,S) = <‘?> n® (_]\7) (N — )5

)@ -9

This is the “finite version” ol the Poisson distribution (a binomial
distribution with parameters S and ). If the population of items and
defects increases without bound, that is, if N — oo and S — 00 $0
that % = )\ is bounded, we may use the Poisson approximation for the
binomial. Then

(,47))\ (,nl/\):l:

plajn,\) = - .

where X is the average number of defects per item.

4. THE NEGATIVE BINOMIAL (GEOMETRIC) DISTRIBUTION

Here, we also deal with products that might have a number of minor
defects. Inline with this, we consider once more a population of N items
with a total of S defects. However, in this case, the quality analystbelives
that defect j (5 = 1,...,.5) will be located in item 4 with probability
pi (i =1,...,N and Zf\Ll pi = 1), rather than 71\—, In other words, the
chance with which defect j will be placed in item 1 depends on the item
i. Let y; be the number of defects in item 4. If p = (p1,...,pN) were
known, the conditional joint distribution of y = (yi,...,yn) given p,
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N and S would be given by:

Af
S
ply|p,N,S)= ( )Hp’ fory; > 0, pi >0,
Y- YN
N N
Z;l/,: = S and Z])If =1.
i=1 i=1

Suppose that, with no further information, the analyst assesses a
uniform distribution to the vector p over the simplex

S={p=(p1,...,pN) :pi >0 fori=1,...,N and Zpi =1},

that is, Dirichlet distribution with parameters @y = --- = ay = 1. In
other words, f(p|N) = (N — 1)! for p € S. Hence, considering the
average of p(y|p, N, S) over the simplex S, we obtain the unconditional
distribution of the vector y:

p(y|N, S) = / . /'mylp, N, 5)f(p|N)dp

/ /< ’/N> H”Ul — Dldp

In fact, if the S defects are viewed as the same in severity (i.e.,
they are not distinguishable) and if we are interested only in the numbcr

of defects in each of the NV items, it is possible ot obtain { V*5™!

different configurations (sec Feller, 1957, chapter IT). Under the scenario
just described, all configurations will be equally likely. This means that,
if the analyst believes that a production process could be characterized
as above, she should be indifferent to bet on any of such configurations
(principle of indifference). Figure 2 illustrates the indifference sets tor
N = 2and S = 1,2,3. Note from this figure, that more diverse
allocations of defects to items (even spreading of defects over the items)
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number of defects in item 1

Indifference Sets

number of defects in item 2

All points in each indiffercnce set are equally likely.
For S=1, e¢ach point has probability 1/2.
For S=2, cach point has probability 1/3.
For $=3, each point has probability 1/4.

Figure 2. Indifference sets.

are just as likely as less diverse allocations of defects to items (uneven
spreading of defects over the items). In other words, p(y|N, S) is Schur-
constant (see Marshall and Olkin, 1979).

A realistic situation that could result in an assessment like this would
be the case in which the S defects were actually proceeding from many
different sources, each having its own characteristic vector p, which
gives rise to a uniform spread over all possible p vectors.

An intuitive feeling about the type of production process that would
generate such a space of equally likely configurations arises when we
think of a process in which the defects are sequentially assigned to the
items. In this case, we may compute the conditional probability that the
(k + 1)-th defect is placed in item 4 given that this item already has d
defects. This can be written as:

p(iper =1, D))

X - :1 D1 = ]
I'(lz.,k+1 | D) ])(D,t)

where D; = { d defects out of k were assigned to item i}.
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Recall that, if p has a uniform distribution over the simplex S,
then the marginal distribution of p;, f(pi). i = 1,..., N, is Beta with
parameters 1 and N — 1.

Fp) = {(N —D)@—p)N? for0<pi <1
0 otherwise.

Hence:

Ja plainer =1, Di | p) f)dpi _
Jo (D | pi) (i) dpi
Jo pi (f}) P —p)* f)dp a1

Jo <(Al) p{(L = pa)*f (pi)dpi k+N

(_l k +l k
k\k+ N E\k+N/

This suggests a type of production process in which the defects are
assigned to the items scquentially and a given defect’s chance of being
assigned to an item increases as the fraction of defects that were already
assigned to that item, d/k, increases. In other words, the presence
of a large fraction of defects in an item will “atract” the next defect,
increasing the chance that it will be assigned to that item. This “positive
correlation” among defects is realistic in many production scenarios.

p(@ip1 =11Dy) =

Sampling distribution

We have seen that, when applying the principle of indifference in the

space of (N +§ ‘1> different configurations, the analyst obtains:

N
1
pyt, - yn | N, S) = -(_1\7_;—15 I (Zlh = 5> .
S i=1
Suppose that a sample of size n = 1 item is selected. Let ply|ln =
1, N, S) be the probability that the chosen item has y defects. Since y
defects must be placed in one item and the remaining S — y defects can
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be placed in the remaining (N — 1) items in (N"l;‘i;"” *l) different
AT v -1
ways, cach of them with probability ("\ *: '71) , it follows that:
(1\'%*5*’}/*2>
S—y
plyln=1N,S) =

N+S—1)
i

This is the “finite version” of the geometric distribution.

If the population of items and defects increases without bound, that
is,if N — oo and S — o0 so that T:, = # is bounded, we may write:
(N+S—y—2)! S{UN—-1)!

(S — )N =2 (N +S5—-1)!
gy
_— —,

(1+ )t
as N — oo, S — oo and —'{—, = ¢. Here # is the average number of
defects per item.

In other words, when the population of items and defects increases
without bound so that Al = ¢, the probability distribution of the number
of defects on the chosen item, ¥ is given by a geometric distribution with
parameter (1 4 6) 7L

plyln=1N,5) =

Y
ply|n=1N,5)= W cy=0,1,2,...
Now, consider a sample of size n. Let p(y1, 2. - - - yn | N, S;n) be

the probability that the first item has gy defects, the second item has 42
defects, ..., and the n-th item has y,, defects, and let s = S iy yi be the
number of defects in the sample.

Since y; defects must be placed in the first item, ..., ¥, defects must
be placed in the n-th item, and the remaining (S — s) defects can be
N-n+8S-s—1

placed in the remaining (N —n) items in ( < ) different ways,

T o -1
cach of them with probability (5"} it follows tha

N+S5--n—s—1
S-—s

N4S-1
)

Py, Y2s - Y | n,N,S) = (
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This means that all kinds of allocations of the s defects in the n items
are equally likely. Here p(y1,v2, ..., yn | INV,S) is Schur-constant (sec
Marshall and Olkin, 1979).

If we are interested in the distribution of s, the number of defects in
the sample, we obtain:

N—%—Si—n—s—l)

n+s—1 ( S—s
s N+5-1
P

) is the number of different vectors (yi, 42, - - ., yn) such

o(s |, N, §) — (

since ("‘J“:*l

that Zle y; = s. This is the “finite version” of the negative binomial
distribution. When N — oo and S — oo so that 1% = # is bounded,
then

S

, fn+s—1\ (N+S-n-—s=1! SN -1)!
"(Sl”’N’S)“< )(S—.s-)!(N—’n,—~1)!(N+S—1)!

n+s—1 7"
— —_—
s (14 6)+n
for s = 0,1, 2,..., which is the probability function of a negative bino-
mial distribution with parameters 7 and (1 4 6) L.

5. THE BINOMIAL DISTRIBUTION

Assume a population of NV items which may be classificd as defective or
non defective and, in addition, assume that S items in the population are
defective (S < N). There are (f) different arrangements of defectives
in the population. If all arrangements are judged equally likely, then each
will have probability (].:T ) l

If y; (yi = 0 or 1) is the number of defects in the ¢-th item, the
probability that the items 1,2,..., N will have yi,y2,. .., yn defects
(where Y | yi = S) is:

N
Pyt yn | N, S) = (i—) I (Zm - s) .
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This expression indicates that all kinds of allocations of defects in
items are equally likely, that is, p(y1, ..., yn | IV, S) is Schur-constant
(see Marshall and Olkin, 1979).

Sampling distribution
Now suppose we select a sample of size n. Let p(x | n, S, N) be the
probability that the sample has 2 defective items, where, obviously,
max{0,S +n — N} < & < min{n, S}. Since x defective items can
be selected to be in the sample in () ) ways and (S — ) defective items

can remain among the (N — n) items in (g:j}) ways, we may write:

() (571
(%)

for max{0, S +n — N} <z < min{n, S}, which is a hypergeometric
distribution, the “finite version” of the binomial distribution.

If the population of defects and items increase without bound so that
N—»oo,S—»ooandif\—,zp,(pg 1), then
n) (N —n)!
a) (S — o) [N —n—(S—a)
SN — S)! n\ .

—_ P =)' = plaln,p) ,
Wi (w>1 (1-p) p(xln, p)

which is the probability function of a binomial distribution with parame-
ters n and p, where p is the chance that an item is defective.

ple|n,S,N) =

])(IL‘|’I’L, S, N) = (

6. FINAL REMARKS

This paper illustrates the natural way of assessing probabilistic models
for a number of different production scenarios. Instead of choosing tra-
ditional probability distributions and looking for a situation that “fits”
the distribution, a probability model is constructed based on physical
characteristics underlying the production process. According to this
approach, the parameters of interest, A, #, and p, are not abstract en-
tities. On the contrary, they are defined operationally, that is, they are
measurable functions of quantities that can be observed (IV and S).



Discrete Distributions in Quality Assurance 193

7. ACKNOWLEDGMENT

This research was done while the first author was visiting the depart-
ment of Statistics of the University of Sdo Paulo. It was supported by
the National Science Foundation under Grant #DDM-9209344 and by
FAPESP: Fundagio de Amparo a Pesquisa do Estado de Sdo Paulo,
under Grant #91/3527-9.

REFERENCES

Barlow, R. E. and Mendel, M. B. (1992). De Finctti-type representations for life dis-
tributions. J. Amer. Statist. Assoc. 87, 1116-1122.

Feller, W. (1957). An Introduction to Probability Theory and its Applications 1, 2.cd.
New York: Wiley

Hayakawa, Y. (1994). The construction of new bivariate exponential distributions from
a Bayesian perspective. J. Amer. Statist. Assoc. 89, 1044-1049.

Marshall, A. W. and Olkin, L. (1979). Inequalities: Theory of Majorization and Its
Applications. San Diego: Academic Press.

Mendel, M. B. (1989). Development of Bavesian Parametric Theory with Applications
to Control.

Montgomery, D. C. (1991). Introduction to Statistical Quality Control. 2 ed. New York:
Wiley



