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SUMMARY. The theory of conditional independence is explained and the relations
hetween snsillanity, suffisiency, and atatistical independence are diseussed in depth. Some
related concepta like specific sufficiency, bounded completeness, and splitting sets are alse studied
in soms details ky using the language of conditional independence.

1. INTRODUCTION

The notion of conditional independence is a central theme in statistics. In
a series of articles Dawid (1979a, 1979b; 1980), Florens and Mouchart (1977),
and Mouchart and Rolin (1978) have explained at length the grammar of
Conditional Independence as a language of statistics. This article is a further
elucidation on the subject and is in part of an expository nature.

The statistical perspective of this article is that of a Bayesian. A problem
begins with a parameter (State of Nature) € with its prior probability model
(¢, 8, &) that exists only in the mind of the investigator. There is an
ohservable X with an associated statistics model (&, A, {F,: 0 @}).
Writing o = (4, X), (Q, &) = (@Ox2, 8% A), and Il for the joint distribu-
tion of (@, X), there then exists a subjective model (R, &, ) for w. Hidden
behind the wings of the Bayesian probability model (Q, &, II) are the four
models

(i) the prior model (@, &, &),
(ii) the statistical model (@, A, {P;: @ ¢ 8}),
(iii) the posterior model (@, &, {{z: = ¢ @%}),

and (iv) the predictive model (&2, _#, P) where P is the marginal or predic-
tive distribution of X.
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CONDITIONAL INDEPENDENCE IN STATISTICS 325

In statistics the phenomenon of conditional independence manifests
itself in a natural fashion:. The statistical model that is most commonly
in use is that of a sequence X = (X,, X,, ...) of observables that are inde:
pendently and identically distributed (i.i.d) for each given value of §. It was
DeFinnetti (1937) who emphasized that, in view of the fact that € is not fully
known, it is appropriate to regard the sequence of X¢'s not as i.i.d random
variables but as an exchangeable process. The fact that the Xy's are condi-
tionally i.i.d implies that they are positively dependent in the sense that the
covariance (when exists) hetween any pair is non-negative. More specifically,
cov(Xy, X;) = var(E(X,]9)).

Consider for example the particular case where X, X,, ..., X, are i.id
with common distribution N(g,o?) with @ = (x4, 02} not fully known. In

- 1 )
almost every text book of statistics it is proved that X = - ZXyis stochastically

. 1
independent of §* = - %(X;—X)2 Does it mean that X when observed,

carries no information about s> ¥ That the answer cannot be “yes” is easily
seen as follows. Suppose that the sample size # = 25 and that our partial
knowledge about 6 = (¢, 0?) is as follows, g =10 or 1 and ¢2 =1 or 100,
(that is @ = §(0, 1), (0, 100), (1, 1), (1,.100)}). Suppose now that X is observed
and is equal to 2.1. This observation generates the four likelihoods L(0, 1),
I41, 1), I{0, 100) and L(1, 100) where L(0, 1) = ;%? exp {_§2§ (2 1)2} and
so on. The relative likelihoods work out roughly as 1077, 1, 2(10)° and
3(10) respectively. Thus, it is intuitive that the observation X 21 almost
categorically rules out the points (0,1) and (1,1). Then X and ¢, even
though they are conditionally independent given @, are in effect highly

dependent.

The three entities @ = (4,0?), T = (X,s?) and X =(X,,...,X,) m
this order, have the Markov property in the sense that, given # and T, the
conditional distribution of X depends on (¢, 7T) only through 7' This is
the sufficiency property of T' asrecognized by Fisher (1920, 1922). Kolomogrov
(1942) gave a Bayesian characterization of the notion of sufficiency by noting
that irrespective of the choice of the prior distribution  for the parameter 6,
the posterior distribution Zx of 6 depends on X only through 7. Note that
the Fisher characterization of sufficiency is made only in terms of the statis-
tieal model for X whereas the Kolmogorov characterization is made in terms
of a large family of Bayesian models (Q, &,II) for w = (6, X). (See Basu,
1977 and Cheng, 1978 for further details on these characterizations).

372



326 D. BASU AND CARLOS A. B. PEREIRA

Fisher regarded a sufficient statistic 7' as one that summarizes in itself
all the available relevant information in the sample X about the parameter @.
He called a statistic ¥ = ¥(X) ancillary if the conditional distribution of ¥
given & does not involve @ (is the same for all values of §). For example,

o (X=X . .
the statistic X —GT s ancillary, In a series of articles Basu (1955, 1958,

1959, 1964, 1967) studied the phenomena of sufficiency, ancillarity and condi-
tional independence from various angles. In these articles, Basu’s view-
point was non-Bayesian in the sense that he did not introduce a prior distribu-
tion £ for . Mouchart and Rolin (1978) studicd in depth the familiar Basu
theorems on sufficiency, ancillarity and conditional independence from the
view point of the Bayesian model.

In this paper we too review Basu's results and also the two-parameter
problem from the Bayesian perspective. Many results are stated without
proof since the proofs involve standard measure theoretic arguments and can
be found for instance in Loeve (1977).

2. NOTATION AND PRELIMINARIES

Let (Q, &, m) be the basic probability space. By a “random object”
X we mean a measurable map w — X(w) of (Q, &) into another measurable
space (A, ). The sub o-algebra (to be called subfield) of X events
{X-(4); A ¢ A} will be denoted by Fx. The two probability spaces (Q, Fx, )
and (&, A, II1) are indistinguishable in a certain sense, and so we shall,
as a rule, identify a random object X with the induced subfield Fxof & In
that way, one could say that random objects are generators of subfields.
Examples of random objects include random variables, random vectors ete.

For any two subfields & and & of &, &F V & denotes the smallest
subfield of & that eontains both &' and &”. The smallest subfield of & that
contains all null sets of & (a set N is null if #(N) = 0) is denoted by :—9_‘0, and
write &, = {p, Q}, the trivial subfield.

A subfield of & is said to be completed if it contains &, For any sub-
field & of & its completion & is defined by

g’ = g’v\";’:{)'

For 2 random object X, the notation X e & indicates that 7z C &
and X is said to be essentially & measurable. A random variable is a random
object with range (R, &,) where R, is the real line and @&, is the Borel
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CONDITIONAL INDEPENDENCE IN STATISTICS 327

o-algebra, A random variable f is said to be bounded if there exists a € R,
such that 7{w : [f(w)] < a} = 1. In the sequel, all random variables will
be regarded as bounded unless stated otherwise and the use of small letters
shall be restricted to their representation. The notation f(C X indicates
that the random variable f is ess—&x measurable. In the same spirit, for
two random objects X and ¥, we write X (C T to indicate that \;XG éy.
The class of all bounded random. variables on (Q, &, IT) is denoted by L, and
Lo(X) denotes the class of all ess—Fx measurable random variables. Here
and for the rest of this article, equality of two random variable means essential
equality; that is f = g means { : f(w) # gl@)} is a null set.

The conditional expectation of f, given a random objeet X, is a random
variable f*X ¢ L,(X) such that

Jfodm = [ f*Xgdn Nge LX)

Another notation for f*X is H(f| X). When the conditioning random object
X is implicit in the context, f* is substituted for f*X. The map f— f* of
Ly to L(X) is linear, constant preserving, idempotent and is a contraction
in the Ly norm if p > 1.

3. CONDITIONAL INDEPENDENCE : DEFINITION, PROPERTIES
AXD THE DROP[ADD PRINCIPLES "

In this section the definition and properties of conditional independence
are briefly discussed.

Three random objects X, Y and Z are being considered and in this
section * stands for *Z operator.

Definition 1. (Intuition) : The random objects X and ¥ are conditionally

independent given Z (in symbols X 11 Y| Z) if for any f € Lo(X)
E(f1Y, Z) =f*¥% = f*

Note that to say X 11 Y| Z is equivalent to say that X|(Y, Z) has the
same conditional disribution as X|Z. This is the intuition behind the
definition. In the case where Z is essentially a generator of &, we obtain
the independence of X and Y in the usual sense. In this case the notation
isXnnYt.

Definition la. (Symmetric) : The random objects X and Y are condi-
tionally independent given Z if for any fe L (X) and g e Lo(Y)

(fg)* =i*g".
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328 D. BASU AND CARLOS A. B. PEREIRA

The following well known theorem gives the equivalence of the two
definitions showing that X 11 ¥'|Z implies ¥ 1y X |Z which i8 not clear by
leoking at definition 1.

Theorem 1: Definitions 1 and la are equivalent.

The concept of conditional independence (ci.) gives rise to many ques-
tions. Ameong them are questions involving the drop and add (Drop/Add)
principles. Suppose that X, Y, Z, W, X, Z;, are random objects such that
XYz X,CX, Z,CZ. What can be said about the relationship |y
if X, is substituted for X, Z, for Z,(Y, W) for Y or (%, W) for Z 7 1n other
words, can Fyx, Fy or Fz be essentially reduced or enlarged without destroy-
ing the c.i. relation ¢ 1In general the answer is no. However for certain
kinds of reductions and enlargements, the relationship will be preserved.

To indicate that the relationship II dees not hold we write not [j.

It is not difficult to find examples showing that arbitrary reductions or
enlargements of &z = the conditioning subfield, may destroy the c.i. property.
With the example of the normal distribution presented in the introduction,
we have X [ s?| 6 but not X 1y s2. In yet another statistical context, suppose
that @ is the unknown (real) parameter of interest and let X and Y be two
iid. random variables with common uniform distribution on the interval
(0—%,04-%). Since £ is unknown, we can only say that Xe/, Y e/
However, after X has been observed equal to z, we would for sure know that
2—1 £ ¥ € a-+t1. This shows clearly that X 1 Y]|2 butnot X3 ¥. To

show that we can have X II ¥ and X not [ Y| Z, let W and Z betwoi.id.
N(0, 1) variables and take X = Z—Wand ¥ = Z+ W.

The above examples may be viewed as cases of Simpson’s paradox (see
Dawid, 1979a). The paradox, however, is much stronger. For instance,
let W and Z be two independent normal variables with zero means. As
before define X = Z— W and Y = Z1LW. The correlation between X and

_ var(W) . "
Yisgiven by p(X, Y) = “1 T3 where § = var(Z) " Given Z, the conditional

eorrelation is clearly equal to —1. On the other band, & may be taken very
small to make p(X, Y) close to . This shows that we can have cases where
X and Y are strongly positive (negative) dependent but, when Z is given,
X and Y turn to be strongly negative (positive) dependent. The problem
of dependence inversion is discussed in depth in Lindley and Novick (1981).
The following example may be of relevance for applied statisticians.

Example : Suppose that an urn contains & (unknown) white balls in a
total of N (known) balls. A sample, without replacement, of » balls is selected
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CONDITIONAL INDEPENDENCE IN STATISTICS 329

from this wrn. Let X be the number of white balls in the sample which
implies that ¥ = #—X is the number of white balls that remain in the urn.
Since p(X, {0} = —1, we have X not I ¥ |§. 1t can be proved (see Whitt,
1979) that X 11 Y iff 6 has binomal (prior) distributions with fixed parameters
N and pe(0,1). On the other hand, if a priori, Pr{@ = 0} = Pr{f = N} = ¢,
then p(X, ¥) = 1 showing an extreme inverted dependence.

The essence of Drop/Add principles for c.i. is contained in the following
propositions.

Proposition I . If X[ Y| Z, then for every X' C X, we have :
i\ X'uvriz
i@ Xpg¥iz xn
(i) (X, 2) 1Y, )| 2.

By way of explanation, if X || ¥Y'|Z, then the relation Jf is preserved
when (i) X and Y are increased (Add) by any essential part of Z, (i} Z is
increased (Add) by any essential part of X or ¥, and (iii) X and ¥ arc arbi-
tratily reduced {Drop).

To end this section we present an extreme case of Drop/Add principles
for the conditioning random object. It appears in Dawid (1980) and it was
originally introduced by G. Udny Yule in terms of collapsibility of contingeney
tables. It must clarify the problems with Simpson’s paradox for contingency
tables.

Proposition 2: Let X,Y and Z be three random objects such that
Fz=1{¢,Q, 4, A€} with 0 <I(4)<1. If X1V and XJj¥|Z, then
either X || Z or Y1 Z.

The proof becomes simple when we recognize the following result.

Lemma: If X11Y and X [y Y|Z, then for every atom A of 7 wiih
II(4) > 0, we have
1
T(4)
Proof of lemma : Let B, C, be two sets such that [sC X, [e C Y
[ BB | Y} = § Blaa| )B(Lc] V)il
= [ E(l48| X)d 11 [ E(I4¢| V)dII = (A B)I(AC)
= [[(A)YPI(B | HIC| 4) = [TI(A)FILBC| 4)
= I(A)(ABC) = II(4) | E(I4|(X, Y))dIl.
BC

B(141 X)BE(1a] Y).

A 3-10
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330 D. BASU AND CARLOS A. B. PERKIRA

Since sets of the form BC generate Sypy a standard argument completes
the proof.

Proof of proposition : Let p = II(A). From lemma we have

E(Ia| X)E(14]7Y)
2

[I—B({a] X)][1 —E(I4] ¥)]
1—p

E(lal(X, Y)) =

and B o)(X, Y)) =

and consequently

(I_E(I,;lX) )(I_E(Ly ¥) ) =0

Bince XII ¥, this equation holds only if E(I—J];LX—) = 1or —E—YSL;El = 1.

4. BAYESIAN INFERENOE : SUFFICIENCY, ANCILLARITY AND INDEPENDENCE
As discussed in Dawid (1979a, 1980) many of the important Statistical
Concepts are simply manifestations of the concept of conditional independence.
In this section we use the framework of conditional independence to describe
the Bayesian version of those statistical concepts and their properties. First
we review some of the structures involved.

Let (&, A) be the usual Sample Space and {Py: 6 ¢ B} be a family of
probability measures on (&, ) where @ is the usual parameter ‘“‘Space”.
In addition the Bayesian considers a (prior) probability space (@, &, £) where
& is a o-algebra of subsets of @ such that Pg(4) is a S-measurable function
for every fixed 4 e A Clearly, the choice of the prior model is not com-
pletely arbitrary, since it has to match the statistical structure on the &-

measurability of Pg(4).

We then consider the probability space (Q, &, Il), where now Q = @X &L,
&F = 8% A and I is defined by

I(F) = [ Po(F)de(do)
)

where F8 = {x: (¢, x) ¢ F}. The marginal on 4 is defined by
Pd) =1(®@x A) for every 4 ¢ A.
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CONDITIONAL INDEPENDENCE IN STATISTICS 331

Let X and Y be two random objects on (Q, &). We say that X represents
the sample and Y represents the parameter if

Fx—{0xA4, Adec A
Fy ={BX X, Be &}

and

In addition to X and Y defined above, consider two random objects
X, and X, such that (X,, X,) G X. The Bavesian version of the concepts
of sufficiency and ancillarity is contained in the following.

Definition 2 :
() If X O Y| X; we say X, is sufficient for X with respect to Y.

(b If X, I ¥ we sav that X, is ancillary with respect to Y.

The classical concept of statistical independence between X, and X,
nas its Bayesian version as

() X,ppX,lY.

Basu (1955, 1958) speculates under what conditions two of the three
relation (a), (b) and (e) imply the third. Tn this section we study Basu’s
theorems under the Bayesian framework. The next result which is Basu’s
first conjecture presents conditions to have (b) and (¢} implying (a).

Proposition 8: If in addition to X, Y and X, X,|Y we have
X Y|(X;, X,) then X 17 Y[ X,

Proof : Note that X,71 Y and X,y X,|Y implies X,y Y}X,, also
X011 Y| X; and X 11 Y |(X;, X;) implies X 1] Y| X,.

Arguing similarly it is easy to see that if X, jj X,, then (a) implies (b)
and (¢). The meaning of X, 11 X, in classical statistics however is void.,

Note that Proposition 3 gives conditions for reducing (Drop) the condi-
tioning random object. Actually all of Basu’s theorems are cases of Drop/
Add principles.

Basu (1956) stated that any statistic independent of a sufficient statistic
is ancillary. Later on Basu (1958) presented a counter example and recognized
the necessity of an additional condition (connectedness) on the family
{£,y : 0 € O} of probability measures. Koehn and Thomas (1975) strengthened
this result by introducing a necessary and sufficient condition on the family.
More recently Basu and Cheng (1979), generalizing results of Pathak (1975)
showed the equivalence between these two conditions in coherent models.
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332 D. BASU AND CARLOS A. B. PEREIRA

The following theorem is a Bayesian version of the result of Koehn and
Thomas (1975).

Theorem 2 : Let X, X be a sufficient random object (i.e. X 1 Y| X,).
The random object Y A X, is essentially a constant (ie. Fy AX, = Fy iff

X, 11 Y whenever Xy C X and X, 1] X,] Y (i.e. X, ts ancillary if X, and X, are
statistically independent).

Proof : E(I41Y)= E(I4| Xy, Y} =E(4| X)) by X1 Y|X,. Now since,
X, AN Y = F, 1t follows that E(I4]Y) is a constant. Take X, such that
X, =Y A X,. Since X,C Y, X, X;|Y. Then by hypotheses X1 ¥,
which implies that X, 11 X, sinee X, C Y; that is X, = ¥ A X| is essentially
a constant.

Remarks : The condition introduced by Koehn and Thomas (1975) is
the non existence of a splitting set. A set 4 in the sample space is a ‘splitting’
set if Py(4) = 0 or 1 for all 6, and at least for a pair {,, 0,}¢0, Pa, (4) =
PGE(AC) = 1. In the Bayesian framework, an analogous definition is as

follows: A set A such that 74 C X is a splitting set if 0 <IN(4) < 1 and
B(I41Y) =F¥14]Y). It is easy to see that if A is a splitting set then 74, C
Y A X. We conclude that the non existence of a splitting set is equivalent
to ¥ A X being essentially a constant.

Basu (1955) proved that any ancillary statistic is statistically independent
of any bounded complete sufficient statistic. The Bayesian analogue of the
concept of boundedly completeness is the concept of strong identifiability
(Dawid, 1980 and Mouchart and Rolin, 1978). The main objective of this
section is to study this concept and present Basu’s result under the Bayesian
framework.

Definition 3 : The random objects X and Y are said to be measurably
separated conditionally on Z if (X, Z) A (Y, Z)= Z. When Z is essentially
a constant we simply say that X and ¥ are measurably separated.

A large list of results related with this concept appears in Mouchart and
Rolin (1978).

Let X and Y be two random objects. We shall study some aspects of

the linear maps L,(Y) L, (X)and L (X) :-)L,(Y) where » is for E(-| X)
and -+ for E(|Y).

Definition 4: We say that X is strongly identified by Y and write
X & Y if the map LX) 5 L,(Y) is essentially one-one.
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CONDITIONAL INDEPENDENCE IN STATISTIOS 333

Proposition 4: If the map Lo(Y)-> L (X) is essentially onto then
XZEY.

Proof . Let (f, k) X and f+ = 0. Since « is essentially onto 3¢9 (C Y
such that ¢* = h. Then

B(fh) = E(fy*) = E(f*g) =0
since A is arbitrary f = 0.

Let Xy, be the random object that generates the smallest subfield that
contains all functions ¢* where g (C Y. The following result shows that
X|y; may be viewed as a Bayesian minimal sufficient statistic.

FProposition 5: (i) X1 Y|Xy
(ii) If X, C X is such that X I Y| X, then Xy, C X,.
Proof :  The proof is easy and hence omitted.

Remark : From Proposition 5 it is easy to see that a Burkholder type
theorem on intersection of sufficient subfields is true in the Bayesian framework.
Precisely, if X [ Y| X, and X [[ ¥ [ X, then X II ¥ | X, A X,.

When Xy = X, X is said to be identified by ¥ (Dawid 1980, and Mou-
chart and Rolin 1978). The name strong identification was motivated by the
following result.

Proposition 6 : If X €Y then Xiy)= X.
Proof : Note that X [ ¥'|X(y;. Thus & fC X
B{B(f| Y, Xir)| ¥} = B{E(f| X)) | T,
For f+ = E(f| X(y)). Since X €Y we have that
Bt =0-f=f
Then &+ fC X, fC Xy and X = Xy,
The Bayesian version of Basu’s theorem is contained in the result below.

Theorem 3 : Let X, Y and Z be three random objects. If XI11 Y, XI1 ¥ |Z
and Z LY then XU Z|Y.
Proof : Sinee X1I Y| Z we have, for any f(C X

E(f| Y, Z) = E(f| Z)
and since
Xy Y, E(f| ¥) = E(f)

E{E(f| Z)~E()}| Y] = 0.

Therefore
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334 D. BASU AND CARLOS A, B. PEREIRA
Now gince Z < Y E(f| Z) = E(f) we thus have E(f| Y, Z) = E(}).

Note that to obtain Basu’s theorem, we consider X as the sample, ¥
as the parameter, and X, and X; two random objects such that
(Xp, X)C X, Xoll ¥, X[ Y|X, and X; 7. CQlearly X, Y}X, and
the result X1 Xy} Y follows.

T.ehman and Scheffe (19560) proved that if a sufficient statistic is boundedly

complete, then it is a minimal sufficient statistic. The proposition below
is a Bayesian version of this result.

Proposition 7: Suppose X; (X and Xy YiX, If X;<Y then
Xl = X[Y].

Proof : From Proposition 8 Xy)(C X, and X1 Y| Xy

Let fC X, then E(f|Y)= E[B(f|X\y)| Y] or
E(f|Y) = BIE(f| Xiyy, V)| T
= B(E(f| Xy} Y)

since X; € ¥ we conclude that f = E(f| X\v)) C X(vy)-

Remark : The coneept of strong 1dentifiability may be generalized as
follows. X is strongly identified by Y conditionally on Z (X <K Y|2) if
for every f C (X, Z), B(f| Y, Z) = 0 implies f = 0. Analogously, X is identi-
fied by ¥ conditionally on Z if

X, Z)y, 2y = (X, Z).

All the results of this section may be easily generalized by mtroducing
& oconditioning random object Z tc each relation stated. For our future work
we intend to relate these general results with the work of Dawid (1979c¢),
Ferreira (1980) and Godambe (1980).

5. THE TWO PARAMETER PROBLEM

We now briefly discuss sufficiency in the presence of a nuisance parameter.

Suppose that the parameter Y is such that ¥ =(Y,, Y,). Let X re-
present the sample, X, X be specific sufficient with respect to Y, and
X, C X be specific sufficient with respee; to ¥,. That is, X ¥,|(X;, ¥;)
and X11Y, (X, Y,). (See Basu, 1978 for details on the notion of specific
sufficiency). The question here is under what conditions does the specific
sufficiency of (X,;, X,) imply the sufficiency of (X, X,) ?

Proposition 8 : If (X3, ¥;) A (X, ¥y) C (X, X,) then X(jY,|(X,, ¥,)
and X11Y,|[(X,, ¥,) imply X1 Y |(X,, X,).
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CONDITIQNAL INDEPENDENCE IN STATISTICS 335

Proof : We hawe
XU Y|X, Yy

XUY (X, Yy
and a simple argument yields
X1 Y (X, YIA(X, Yy).
The following related result may also be of interess.
Proposition 9 : If X11 Y, |(X,, ¥,) and X1 ¥,|(X,, Y,) then
X Y(Xy, X,) if and only if X1 ¥ {(X,, X,).

Note the condition X1 Y,|(X,, X,) does not have an interpretation in
classical statistics since distributions depend on both parameters ¥, and Y,.

and

The following example is again relevant. Note that the parameter space
@ is variation independent (if the parameter space is the cartesian product of
the domain ¥; by the domain of ¥,; see Basu, 1977 and Barndorff-Nielsen,
1978).

Take
6 = {(0,0),(0,1),(1,0), (1, 1}}
Then @ = &, X O, where ©, = @, = {0, 1}
X ={(0,0),(0,1),{1,0), (1, 1)}
Py = dy the point mass at 6.

Then T = I g - @, op(®) is specific sufficient for &, and for ¢, but is not
sufficient. This example Shows that variation independence on (6;, 6;) ard
specific sufficiency of X,, an1 X, does not imply that {X,, X,) being sufficient.

Acknowledgement. Thanks are due to the referee for helping in improv-
ing presentation of the paper.
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A NOTE ON BLACKWELL SUFFICIENCY AND A
SKIBINSKY CHARACTERIZATION OF
DISTRIBUTIONS

By D. BASU* and CARLOS A. B. PEREIRA®**
The Floridn State University, Tallahassee

SUMMARY. A Skibinsky (1970) characterization of the family of hypergeometric dis-
tributions is re-examined from the point of view of sufficient experiments and a number of other
distributions similarly characterized.

1. InTRODUCTION

Consider an wrn containing N balls  of which are white. If a simple
random sample of # (n < N) balls is drawn from the urn, then the number of
white balls in the sample has the hypergeometric distribution with para-
meters N, n, and x [denoted by AW, n, z)]. Skibinsky (1970) introduced the
following characterization of AN, n, x) :

“A family of N+1 probability distributions (indexed say by
z=0,1,...,N), each supported on a subset of {0,1,...,n} is the hyper-
geometric family having population and sample size parameters N and n
respectively (the remaining parameter of the x-th member being z), if and
only if for each number 8, 0 << 8 < 1, the mixture of the family with binomial
(¥, @) mixing distribution is the binomial (x, #) distribution.”

Writing (N, §) for the binomial distribution over {0, 1, ..., ¥} and the

symbol ~ for “distributed as”, we may restate Skibinsky’s characterization
as follows :

TLet X ~b(N,0),0 <8 <1,and let {r,: 2 =0, 1, ..., N} be a family of
probability distributions on {0, 1, ..., n}, where n < N. Consider the random
variable Y such that the conditional probability distribution of ¥ given
(X =u}is 7, for all @ (i.e, Y|X =a~u7,). Then ¥ ~b(n, @) for all & in
(0, 1) if and only if 7, is A{N, n, «) for all z.

Skibinsky (1970) proved the above result in several interesting ways,
but somehow the perspective of Blackwell sufficiency eluded him. Written
for its pedagogical interest, this note is an elucidation on the notion of Blackwell
sufficiency and an unification of a number of results analogous to Skibinsky’s
characterization of the Hypergeometric distribution.

*Resef;.rch partially s{ipported by NSF Grant No. 79-04693.
**Research supported by CAPES and USP—DBrazil.

A. DasGupta (ed.), Selected Works of Debabrata Basu, Selected Works in Probability and Statistics,
DOI 10.1007/978-1-4419-5825-9_33, © Springer Science+Business Media, LLC 2011
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100 D. BASU AND CARLOS A. B. PEREIRA

2. BLACKWELL SUFFICIENCY

A statistical experiment related to a parameter 8 ¢ © is idealized as an
observable random variable (or vector), X, associated with a sample space
&L and a family {p,:0¢ @} of probability functions (distributions) on &
indexed by 8. We avoid all measurability difficulties by restricting ourselves
only to discrete sample spaces. Given two spaces & and %, a transition
function 7, from 2 to %, is a family

T=1{1,: 26}

of probability functions, 7, on indexed by z ¢ &2 Thus, the family of Hyper-
geometric probability functions {A(N,n,x):x=0,1,..., N} is a transition
function from {0, 1, ..., N} to {0, 1, ..., n}.

Let X and Y be two experiments with models (@, {py: 0 ¢ ®}) and
(¥, {¢s : O € O}) respectively.

Definition (Blackwell) : The experiment X is sufficient for (at least as
informative as) the experiment ¥ and write X > Y if there exists a transition
function 7 = {7, : x ¢ @} from @ to 2 such that

2(y) = fn(y)pa(y) ol (2.1)

for all ye ¢ and G ¢ O,

A transition function 7 satisfying (2.1) is called here a Blackwell transition
function. It is easy to check that the relation >> defines a partial order on
the family of experiments related to 4.

If T = T(X) is a sufficient statistic in the classical sense of Fisher (ie.,
the conditional distribution of X given {7 = ¢} does not involve #), then it
follows at once that T' is sufficient for X in the sense of Blackwell (1" > X).
Of course, X is sufficient for 7' in either sense.

The intuitive content of the relation X > Y is as follows :

If we perform the experiment X, note its outcome #, and finally carry
out a postrandomization exercise that chooses a point y e % in accordance
with the probability function 7, then the experiment Y™ of such a choice
of ¥ is in a sense indistinguishable from the experiment Y in that both are
endowed with the same model (%,{g, : 0€®}). Any decision rule related
to 2 that is based on the experiment ¥ can therefore be perfectly matched
(in terms of their average performance characteristics) by a randomized rule
based on X,
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OHARAQOTERIZATION OF DISTRIBUTIONS 101

For two fixed integers ¥ and = (n < N), consider now the simple case
where X ~b(N,0) and Y ~a(n,8), 0 <@ <<1. To prove that X > Y
we consider an experiment W = (W, ..., Wy) where its components Wy,
¢ =1,..., N, are i.i.d Bernoulli variables with parameter . Note that since
X* = W,+...+ Wy is sufficient for W in the classical sense, X*> W. On
the other hand, for Y* = W,+...+W,, W > Y*. Therefore, X*> Y*.
Since X and X* (Y and Y*) are indistinguishable in their models, X > Y.

To conclude our version of Skibinsky’s characterization we note that
Y*| X* =x~H(N,n, ).

Then a Blackwell transition function {r,} for our problem is the family of
Hypergeometric probability functions. That is,

PR(Y = y|0} = I 7,(y)PriX = |0} . (22)

for every y ¢ % and every 0 ¢(0,1) where 7,(-) is the Hypergeometric pro-
bability function with parameter (¥, n,«). Finally, the uniqueness of {r;}
as a Blackwell transition function follows from the fact that the family
{b(N,0):0 < <1} of probability distributions is complete. If {77} is
another transition function satisfying (2.2), then

= [oy) —Toy) 1P X = 2|6} = 0

for every y e % and. therefore 7,(y) = 7,(y) for every x ¢ g2 and y ¢ 2.

3. FURTHER CHARAOTERIZATIONS

Jonsider now an urn with N balls of & (k < N) different colors. Let
® = (@, %y, ..., vx) be the vector of frequency counts for the colors; that is,
wg (¢=1,2, ..., k) is the number of balls with the ¢-th color. If a simple
random sample of n balls is drawn from the urn, then the sample vector of
frequency counts has the multivariate Hypergeometric distribution with
parameters, N, n,and ®. This distribution is denoted by H(N,n,®) and
its support by

Zﬁ - {(‘rls vers :17]‘) T e Z, ESC‘ = N}

where Z ={0,1, ...}.
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102 D. BASU AND CARLOS A. B. PEREIRA

Writing M(N, 0) for the Multinomial distribution over Z ¥, we state the
natural extension of Skibinsky’s characterization. Here the parameter space
is the simplex

S = {(pb o PE) D Dy . O:Zpi = 1}'

Proposition 1: Let X~ M(N,0), 8¢ 8, and let {rz: ® ¢ Z%} be a
family of probability distributions on ZE where » < N. Consider a random
vector Y|X =&~ 7o for all & ¢ Z% Then Y ~ M(n,0) for all 8¢ § if
and only if e is H(N, n, ®) for all ® ¢ Z%.

The proof follows the same steps of the univariate case discussed in
Section 2. Here, we consider the experiment W == (Wy, ..., Wy) where the
components are iid. with the common distribution being M(1, 8).

We write X ~ Poi(¢), @ > 0, to indicate that X has Poisson distribution
with parameter @ ¢ (0, 0). Consider an additional experiment ¥ such that
for a known number r e (0,1), ¥ ~Poi(d), 0 > 0. To prove that X > ¥
we consider an experiment W = (Wy, W,) where its components W, and W,
are independent with distributions Poi(rd) and Poi((1—r)d) respectively.
Since W > W,, X* = W,--W, is sufficient for W in the classical sense, and
X and X* (¥ and W) are indistinguishable in their models, it foliows that
X>7.

Since W,|X* = x~b(z, r) for all » ¢ Z, a Blackwell transition function
{7. is the family of Binomial probability functions. That is,

e~ fr(gryy e~06°
= ET )~

for every y e Z and all ¢ ¢ (0, o) where 7,(-) now is the Binomial probability
function with parameter (z,7). The uniqueness of this family {r,} of Bino-
mials as a Blackwell transition function follows from the completeness of the
family {Poi(f) : 0 € (0, oc)} of probability distributions on Z.

The above result in its extended form may be summarized as :

Proposition 2 : Let X ~Poi(@), # > 0, and let {r,: v ¢ Z} be a family
of probability distributions on the set Zk = {(y,, ..., yx) 1 y4 € Z}. Consider
a random vector ¥ = (Y, ..., T) such that Y|X =w~~7, for all xe Z.
For a known vector ¥ = (ry, ..., 7%) € &, the components, ¥; (: =1, ..., k), of
Y are mutually independent and ¥;~ Poi(r;#), 8 > 0 if and only if 7, is
Mz, v) for all z ¢ Z.
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CHAKACTERIZATION OF DISTRIBUTIONS 103

We end this section with a parallel characterization of the Dirichlet-
Multinomial distribution. In Basu and Pereira (1980) we studied in details
this distribution and indicated its use in statistics. We define the Dirichlet-
Multinomial DM(N; «y, ..., ag) on Z% as the mixture of the Multinomial
family {M(N, p); p ¢ 8} with p distributed as Dirichlet (on &) with para-
meter (ay, &y, ..., ax). Its probability function is given by

_ NIT() E (o)
fzy, - 2p) = INCAN)) il;ll 2 Dag)

k
for all (2, ...,2k) € Z& where a = X a. When k=2, in place of
1

(Zy, Zoy ~ DM(N, oy, a,), we write Z, ~ BHN; ay, @,) to indicate that Z;
is distributed as Beta-Binomial with parameter (¥; a4, o).

Jonsider & sequence of Bernoulli trials with probability of success 8 ¢ (0, 1).
If X+a is the number of trials needed to obtain a fixed number « of success,
then X is said to be a Negative Binomial experiment with parameter (x;8)
and we write X ~ nb(x; @), 0 << @ < 1. Its probability function is

0e10) = [ - OU—0F . (3)

for every w ¢ Z and all #¢(0,1). Note that

g Tefx) . oa
E Tager (-0 =0 for every ac(0,c0) and all 0e(0,1).

Then the following results hold not only for @ ¢ Z but in general for any
a e (0,00). In this case, we still write X ~ nb(a; ), 0 << & < 1, to indicate
that the family of probability functions associated with the experiment X is
(3.1). It is easy to check that this family is complete.

For @ > a; > 0, let X and ¥ be two experiments such that X ~ nb(a; 8)
and Y ~ nb(e;; 8), 0 << 8 < 1. To prove that X > ¥, consider the experi-
ment W = (W,, W,) where now W, and W, are independent with distributions
nb(oy; 0) and nb(a—ay; @) respectively. Following our previous chain of
arguments, one can easily check that (1) W -+Wy~ X, (i) W +W,> W > W,
(i) X > Y, (iv) Wi| W+ W, =~ Bb(z; 2, x—a,), and (v) the family
{Bba; oy, a—a,) 1 x € Z} of probability functions is the unique Blackwell
transition function, and thus arrive at a Skibinsky type characterization of the
Beta-Binomial.
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The following is a summary of an extended version of the above results.

Proposition 3: Let X ~nba;f), 0 << <1, and let {r,:xe¢ Z} be a
family of probability distributions on the set Z¥. Consider a random vector
Y = (Y, ..., Yy} such that Y| X = x~ 7, for all ze Z. For a fixed vector

k
(g, ..., ax) where 0 < oy < o0, t=1,2,...,k, and & = X oy, the components
1

Ys ¢=1,...,k) of Y arc mutually independent with ¢~ nb(oy, ),
0 <0< l,if and only if 7,is DM(x; &y, ..., ag) for all x ¢ Z.
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Learning Statistics from
Counter Examples: Ancillary
Statistics

D. Basu !

Abstract

Bayesian objection to the analysis of data in frequency the-
ory terms is amplified through several counter examples in
which an ancillary statistic exists and there is a temptation to
choose a reference set after looking at the data. It is argued that
Fisher insisted on conditioning by an ancillary statistic, because
conditioning the data x by an ancillary ¥ does not change the
likelihood. In this sense Fisher discovered the supremacy of the
likelihood function.

Key words and Phrases: Ancillary statistics; Conditional fre-
quentist inference; Information; Liklihood principle; Reference
set; Sufficiency principle.

1. INTRODUCTION

This paper is especially addressed to the statisticians who have not yet
fully grasped the Bayesian objection to the analysis of data in repeated
sampling terms. Let x be the sample, f(x|8) the model and § the parameter.
A statistic ¥ = Y'(x) is ancillary if the sampling distribution of Y, given 6,
is f-free (is the same for all values of #). A statistic T = T'(x) is sufficient
if the distribution of the sample x, given T and 8, is ¢-free. An ancillary
statistic Y by itself contains no information about the parameter, whereas
a sufficient statistic T is fully informative in a sense. R.A. Fisher's attempt
to make sense of the notion of information in the data led him to these two
important concepts in Statistics.

Let L{#) = f(x|@) be the likelihood function determined by the sample x
and let 8 be the mazimum likelihood (ML) estimate of 8. If & is a sufficient
statistic then, according to Fisher, there would be no loss of information
if the performance characteristics of ¢ as an estimate of § is sought to be
evaluated in terms of the sampling distribution of #. We shall repudiate
this in the end with an example.

!Indian Statistical Institute and Florida Statc University

A. DasGupta (ed.), Selected Works of Debabrata Basu, Selected Works in Probability and Statistics,
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218 D. Basu

If the ML estimate § is not a sufficient statistic then Fisher sought to
recover the information lost in the sampling distribution of ¢ with the help
of an enciliary complement ¥ to the estimator 8. The ancillary statistic ¥
has to complement # in the sense that the pair (8,Y) is Jointly sufficient.
The Fisher Information I; 1 (9) in the sufficient statistic (8,Y) is then the
same as the full information

1(6) = log L(#)]

[5‘6'2
in the sample x. (Note that I(f) does not relat.e to the particular sample
x but is obtained by averaging the quantity — aaz log L(8) over the sample
space.) The Fisher Information in the statistic & is less than the full infor-
mation I{#). The cornerstone of the Fisher argument lies in the identity

1(8) = 1; y(9) = ELL{8|Y )],

where {;(#]Y} is the conditional information in the statistic 8, given Y,
and the expectation on the right hand side is with respect to the ancillary
statistic Y. Thus, the conditional information in ¢, given ¥, depends on
Y and can be, for a particular value of the statistic ¥, much less or much
greater than the full information I{f). The conditionality argument of R.A.
Fisher rests on the proposition that the performance characteristics of the
estimator § ought to be evaluated conditionally, holding the ancillary statis-
tic Y fixed at its observed value y. As Fisher argued, the event Y — y, even
though uninformative by itself, has a lot of latent information about ¢ in
the sense that it helps us discern how good or bad the estimate @ is in the
present instance. The set S(y} = {x: Y (x) = y} defines what Fisher called
the reference set. Sir Ronald was trying to cut down the sample space S to
size, We illustrate the conditionality argument with several examples.

2. EXAMPLES

Example 1: Let x = (z1,23,...,%,) be iid observations on a randorn
variable that is uniformly distributed over the interval [@, 26], where 6 > 0
is the unknown scale parameter. With

m = min z; and M = max z;,

the likelihood function L(f) equals 1/6" over the interval [M/2, m] and
zero outside the interval. The ML estimator 8 = M /2 is not sufficient, the
minimal sufficient statistic being the pair (m, M). Since the two statistics
m and M are stochastically independent in an asymptomatic sense, it is
clear that there will be a substantial loss of information if we marginalize
the data to the ML estimator M/2. Comparing the mean squared error
(MSE) of M/2 with that of m as estimators of #, we find that the former is
exactly four times better than the latter. Consider, therefore, the estimator
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T = (2M +m}/5 which is the weighted average of M/2 and m with weights
4 and 1 respectively. Both M /2 and T are equivariant estimators of the scale
parameter #, and so their MSE’s are constant multiples of 62. It works out
that the ratio of the two MSE’s tends to 25/12 as the sample size n tends
to infinity. The ML estimator ¢ can hardly be called an efficient estimate
of & in the usual sense of the term. Over thirty-six years ago, when | came
upon this counterexample, it was pointed out to me by C.R. Rao that
the ML estimator ¢ ought to be judged conditionally after holding fixed
its ancillary complement ¥ = M/m at its observed value. That Y is an
ancillary statistic follows from the facts that ¥ is scale invariant and that ¢
is a scale parameter. As we noted before, the likelihood mass is spread over
the interval [M /2, m] pinpointing the parameter # within that interval. The
statistic ¥ = M/m varies over the range [, 2] and is indeed a measure of
how good the sample is - the nearer ¥ is to 2 the better the sample is.
While evaluating the ML estimate § we ought to take note of the observed
value y of the statistic Y. That is, instead of referring @ to the full sample
space S, we ought to refer it to the reference set S(y).

In terms of the full sample space .S the ML estimator M /2 is not sufficien-
t. But when it is conditioned by Y it suddenly becomes fully informative
(sufficient, that is). Note that the other two estimators mn and 7" also become
fully informative when they are referred to the set S(y). Indeed, the three
statistics M /2, m and T become functionally rclated when conditioned by
Y.

This example beautifully illustrates what Fisher meant by recovery of
anctllary information. The next example illustrates how a weak pivotal
quantity can be strengthened by proper conditioning with an ancillary s-
tatistic.

Example 2: Let x = (21, 23,...,Z,) be n iid observations on a random
variable with pdf f(z—#), where f is known but & (the location parameter)
is unknown. Consider the statistic #; and s ancillary complement D =
(29 — z1, 23, —21,...,25 — x1). The statistic z; by itself carries very little
information about £, but it becomes fully informative (sufficient) when
conditioned by D. The conditional pdf of 21, given I3, has 6 embedded in
it as a location parameter. Fisher derived the fiduciel distribution of the
parameter § by inverting the pivotal quantity xy — # after conditioning it
by the ancillary statistic 1.

The previous example raises many questions. Some sample questions and
answers are listed below.

Question: What is the status of the ancillary statistic D7 Is it the mazi-
mumn enctllary in the sense that every other ancillary statistic is a function
of D7

Answer: No. 2 is never the maximum ancillary. However, in some situa-
tions D> will be a mazimal encillary in the sense that no larger (with respect
to the partial order of functional relationship) ancillary statistic exists. A
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multiplcity of maximal ancillaries is a fact of life in this situation.

Question: s the fiducial distribution of # in Example 2 critically depen-
dent on the choice of the pivotal quantity #,; — 87

Answer: No. Another pivotal quantity like, say, x — , when conditioned
by D, will result in the same fiducial distribution of 0. This is because
7=+ (% —z1) and 7 — z; is a function of D.

Question: Can we interpret the fiducial distribution of ¢ probabilistically?

Answer: It was pointed out by Harold Jeffreys that the fiducial distri-
bution of the location parameter (as derived by Fisher) coincides with the
posterior distribution of # corresponding to the uniform prior (over the
entire real line) for the parameter.

In the presence of multiple ancillaries, the choice of the proper reference
set is a problem. The dilemma is best exemplified by the following example.

Example 3: Let {z1,1),7 = 1,2,...,n, be n 1id abservations on (X,Y)
whose joint distribution is Bivariate Normal with zero means, unit variances
and covariance @, which is the parameter of interest. In this case both
x={z1,...,%s) and y = (w1, . .., n) are ancillary statistics. Note that the
pair (x, y) is the entire data and therefore is sufficient. Holding the ancillary
x as fixed and regarding y as the variable, we may want to estimate § by
S_ziy/ Y z? and then regard the estimate as unbiased with variance (1 —
82}/ . 2. But how about holding y fixed and reporting that 3 z:pi/ 3 2
is an unbiased estimate with variance (1 —#2)/ 3 7 Tt is tempting to opt
for the ancillary with the larger sum of squares. But would it not be a
statistical heresy to choose the reference set after looking at the data?!

3. COX ON ANCILLARIES

D.R. Cox (1971) suggested a way to deal with the problem of multiple
ancillaries. Looking back at the Fisher identity I(#) = EI(#|Y ), Cox argued
that the basic role of the conditioning ancillary Y is to discriminate between
samples with varying degrees of information. So in the presence of multiple
ancillaries we should choose that Y for which I(#|Y) is most variable in
Y. So opt for the ¥ for which Var J(#]Y') is maximum. One snag in the
Cox argument is that Var I(#]Y') is a function of § and so there may not
exist a Y that maximizes the function uniformly in 8. Also note that in our
Example 3 the Cox method fails because, in view of the perfect symmetry
between x and y, Var I{#|x) = Var I(8]y).

But the real snag in the Cox argument is the meaninglessness of the
notion of Fisher Information as a measure of the evidential meaning of
the particular data at hand. Fisher’s preoccupation with the elusive notion
of information in the data led him to the likelihood function which he
recognized as the carrier of all the information in the data. The likelihood
was then partially summarized in the two statistics 8§, the ML estimate, and
Z{(#), the second derivative of —log L(f) at § = §. Note that Z(§) is the
reciprocal of the radius of curvature of the log likelihood at its mode, the
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larger the value of Z(8) the sharper is the fall of the likelihood function as
@ maves away from §. We have to stretch our minds a little to regard Z ()
as a rough measure of the concentration of the likelihood mass around §.
The greater the concentration the more informative is the likelihood. The
Iisher Information £(#) is obtained from Z(#) by first replacing # by ¢ and
then taking the average value of Z(8) over the whole sample space 5. But
how can we regard I(6) as information in the data?

Why did Fisher insist that the conditioning statistic ¥ has to be ancil-
lary? Becanse, conditoning the data x by an ancillary ¥ does not change
the likelihood. Fisher discovered the supremacy of the likelihood but got
carried away by his amazing craftmanship with sample space mathematics.

4. E.L. LEHMANN ON ANCILLARIES

Eric Lehmann (1981) finally recognized the conditionality argument. And
now he has to cope with the disturbing presence of ancillary statistics.
Invoking the Sufficiency Principle, Eric would reduce the data x to the
minimal sufficient statistic T = T(x). Since 7' is sufficient, all reasonable
inference procedures ought to depend on x only through T'(x). This data
reduction sweeps away much of the ancillary dust under the rug. But, as
in Example 1, some functions of the minimal sufficient statistic T may still
be recognized as ancillary statistics, Eric has yet to come out openly on
the question of how to deal with such persistent ancillaries.

From what Eric writes in his 1981 article, it seems that he feels quite
comfortable with statistical models for which the minimal sufficient statis-
tic T is complete. In such cases no nontrivial function of T can be ancillary.
Furthermore, thanks to the so called Basu Theorem, every ancillary statis-
tic ¥ is stochastically independent (conditionally on ) of 1", Therefore, no
T- based decision procedure can be altered by conditioning with an an-
cillary Y. So who needs to think of the conditionality argument when we
have a complete sufficient statistic? Remember, Fisher locked for an ancil-
lary complement to the ML estimate 6 only when the statistic f was not
sufficient. So in the most favorable set up where € is a complete sufficient
statistic, can anyone object if we evaluate the estimate # in terms of the
sampling distribution of the estimator? We give an example to prove both
Fisher and Lehmann wrong on this question.

Example 4: Consider a sequence of Bernoulli trials with parameter p that
results in a finite sequence w = SFFS& .. FS of successes S and failures F',
Let X (w) and Y(w) denote, respectively, the number of S’s and the number
of s in the sample sequence w. We picture w as a sample path, the locus
of a point that begins its journey at the original and travels through the
lattice points of the positive quadrant, moving one step to the right for each
S and one step up for each F. The lattice point with coordinates X (w) and
Y (w) is where the sample path w ends. Our example relates to a particular
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sampling (stopping) rule R. Writing (X, Y") for the location of the moving
point, the rule is described as:

Rule R: Continue sampling as longas (I ¥ <2X + 1, (IDY > X - 2,
and (I1II) X + Y < 100. Alternatively, the rule may be defined as: Stop
sampling as soon as the sample path hits one of the three boundary lines
(I y=2zx+1,(ii)y=z—2 and (i1i) z + y = 100.

As always, the likelihood does not recognize the stopping rule and comes
out as

L(p) = F(w|p) = p*W)g¥ ()

where ¢ = 1 — p. The pair X(w), Y(w) constitute the minimal sufficient
statistic. The ML estimate is § = X/(X + Y}. The range of the sufficient
statistic (X,Y) consists of the boundary points

0,1), (1,3), ..., (33,67) online (),
(34,66}, (35,62), ..., (b0,50) online (#i),and
(51,49), (50,48), ..., (2,0) on line  (t1).

The ML estimator § = X/(X +7Y) monotonically increases from zero to
unity as (X,Y) moves through the above set of boundary points. Hence
P itself is minimal sufficient. Let us assert here without proof that 3 is a
complete sufficient statistic in this case and that no nontrivial ancillary
statistic exists.

Sir Ronald is no longer with us. So let me address the following questions
to my good friend Eric Lehmann who is a living legend among us for his
unparalleled erudition in Statistical Mathematics. The questions relate to
Example 4.

Question: What should be our criterion for the choice of an estimate of
p?

{The unbiasedness criterion is sort of vacuous in this case. There is only
one unbiased estimator, which is zero or unity depending on whether the
first trial results in an F or an S.)

Question: If ML is the chosen criterion, then how should we evaluate the
estimate p = X/(X + Y)? Does it make sense to evaluate p in terms of
some average performance characteristics?

Question: Are all sample paths w equally informative?

(Even though there are no ancillary statistics in this case, we can still
detect major qualitative differences between different sample paths, For
instance, short sample paths like F' or 55 have very little to say about the
parameter, whereas long paths that end on line (iii} are clearly much more
informative.)

Question: Why do we need to decipher what the sample w has to say
about the parameter p in terms of a sample space? Does the sample F
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obtained following the rule R say anything different from the statement: A
single Bernoulli trial has resulted in a failure?

Question: Do sample space ideas like bias, variance, risk function, etc.,
make any sense in this case?

Question: Why not act like a Bayesian and analyze the particular likeli-
hood function generated by the data? Isn’t is quite clear in this case that
all that the data has to say about the parameter is summarized in the
likelihood?
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