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Summary 

This is a review article on statistical identifiability. Besides the definition of the main 
concepts, we deal with several questions relevant to the statistician: parallelism 
between parametric identifiability and sample sufficiency; relationship of identifiabil- 
ity with measures of sample information and with the inferential concept of estimabil- 
ity; several strategies of making inferences in unidentifiable models with emphasis on 
the distinct behaviour of the classical and Bayesian approaches. The concepts, ideas 
and methods discussed are illustrated with simple examples of statistical models. 

Keywords: Bayesian inference; categorical data; estimability; linear model; sample 
information; sample sufficiency. 

I. Introduction 

The  so-called problem of identification occurs in many  scientific areas,  
including some where the physical structure of  the phenomenon  to be mod-  
elled does not involve stochasticity. This diversity justifies the several  for- 
mulat ions and meanings that have been given to the terms identifiability/ 
identification. We shall concern ourselves with the most  relevant concept  to 
statistics which is related to the possibility of  the model  parameters  being 
uniquely determined from the distribution of the observed random variables. 
This concept ,  which sometimes is t e rmed  statistical identifiability or  distribu- 
tion identifiability, will just be called identifiability. 

Al though this problem occurs in various statistical modelling fields, little 
at tent ion has been devoted to it in the statistical l i terature,  and even so, very 
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dispersely. The study and illustration of the identifiability concept are usually 
confined to specific fields like econometric models. Reference to this concept 
sometimes is made in a little incisive way. It is often masked by reference to 
inferential concepts that are not equivalent to it, in general. In our opinion, 
all these aspects have somehow restricted the comprehension of central 
issues of identifiability theory, at least in some sections of the statistical com- 
munity. 

In this article we intend to review the subject matter providing a systematic 
and unified description of the aspects of identifiability theory, for parametric 

models,  of most relevance to statisticians (see, e.g., Koopmans and Reiersol 
[1950] and Basu [1983], for non-parametric settings). Readers most in- 
terested in the topic for econometric models are advised to read the ~,classic- 
al>, book by Fisher (1966) and/or some more recent reference, for instance, 
Hsiao (1983), which devotes a special attention to dynamical models relevant 
to time series and contains an extensive bibliography on the subject. 

We will deal with the following questions: what is actually an identifiable 
statistical model? Is it possible to visualize any parallelism between sample 
sufficiency theory and parametric identifiability theory? What connection 
can one establish between identifiability and sample information? Are identi- 
liability and estimability only synonyms? Which are the limitations on the 
inferential procedures for unidentifiable models? How to make inferences 
possible in unidentifiability situations? If some kind of prior information is to 
be used, how does it act on the model identification? Are the inferential 
implications of the lack of identifiability indifferent to the kind of approach 
(Classical or Bayesian) to be used? 

Illustration of the concepts and results to be presented is made through 
examples, hopefully familiar to the statistician, that describe real situations 
without unnecessary complications. Some emphasis is given to examples of 
categorical data because they constitute a potential source of unidenfiability 
problems stemming from the very genesis of the Multinomial model (from 
Poisson processes), the use of the log-linear structure in frequent data analy- 
ses and, on a less specific plane, from the possible incomplete nature of cer- 
tain observations. Some problems with diversely incomplete data are anal- 
ised in detail to the extent that the identifiability question is an indispensable 
element of the foundations of the incomplete data analysis. 

2. Concepts and basic results of the identifiability theory 

Let us consider the" statistical model (9t, ~ ,  ~)  where 91 is the sample space, 
,~ is a a-algebra defined on it and ~ is a family of probability measures on (91, 
~ )  specified by ~ = {P,~ : 0 e O}, where ~ denotes the parametric space. 
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Definition 2.1. Two points of O, 1)o and 01 are said observationally equiva- 
lent (and we write 0o ~ t~l) if 

Poo(A) = Pa,(A), VA ~ ~. 

Letting F(y[tg) denote the distribution function of the observed random vec- 
tor Y, we have Oo ~ 01 iffF(y[Oo) = F(y[Ol), Vy ~ ~. In the usual dominated 
case, the likelihood function is, essentially for all data, constant on all obser- 
vationally equivalent points. And for each pair of points not equivalent in 
this sense, it assumes different values at least for one y ~ 0-td. 

It is easy to see that ~ is an equivalent relation, so inducing in 0 a part_ ition 
in the equivalence classes [00] = {01 E O : P~, = Poo}. This partition, termed 
quotient set of O according to --, will be denoted by O/~.  

Definition 2.2.(a): i) The point 00 E O is said (globally) identifiable if 
[00] = {00}. ii) O (or the model P) is said identifiable if [0] = {0}, VO e O, 
i.e., if O / -  is the finest possible partition, O / -  = ({0}, 0 e O}. 

Definition 2.2.(a) ii) shows that O is not identifiable if there is at least one 01 
O such that [01] is not singular (formed by a single element). Thus, it is 

possible that O is not identifiable and there are points satisfying Definition 
2.2.(a) i). Nevertheless, in the usual unidentifiability situations, no equiva- 
lence class is singular. When F(. lO) stands for a family of mixture distribu- 
tions resulting from mixing a given parametric model by a class O of prob- 
ability distributions, the above definition becomes that of identifiability of 
mixtures. See Everitt (1985) for this special case which will not be developed 
here. 

The set O commonly is a subset of a metric space which allows us to define 
the weaker concept of local identifiability. 

Definition 2.2.(b) iii) The point Oo ~ O is said locally identifiable if [0o] N 
V(Oo) = {0o}, where V(Oo) stands for an open neighbourhood of 0o. 

This concept can be useful because in certain unidentifiable models, even 
with no globally identifiable point, a given equivalence class may be singular 
on a certain neighbourhood. This enables us particulary to establish a rela- 
tionship to measures of sample information, as seen in Section 5. 

According to Definition 2.2, the model identifiability is defined in terms of 
the mapping 0--~ F(. I0) being injective. This definition deaf ly  shows that 
the presence or absence of identifiability is a feature of the specification 
adopted for the data generator model, and so, is independent of the inferen- 
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tial procedure to be used. Yet, the limitations of this procedure are strongly 
dependent on that feature, as one will see in Section 6. 

The inferential problems stemming from an unidentifiable model does not 
necessarily imply that nothing can be done. Many unknown aspects of the 
model can be expressed by functions tp(O) : O ~ �9 that are constant over 
each observational equivalence class. This means that one may establish a 
correspondence, not necessarily one-to-one, between O/~ and each q0(O) 
such that distinct values of q~(O) correspond to distinct values of F(yl 0), Vy e 
~.  These functions are thus identified by the data and then unambiguous 
inferences about them can be drawn. 

The argument above shows that the concept of partition, rather than that 
of function, is more fundamental for examining identifiability. For such a 
purpose, the consideration of the following relation between each pair 
(~r~, ~re) of elements of the set of partitions of O is thought of being useful: 

Definition 2.3. ~rl is said to be a reduction of ~r 2 (or that ~ is thicker than 
�9 r2), and one writes ztl < ~2, if every part of ~1 is a union of parts of ~r 2. 

It is easy to show that < is the wide order relation (reflexive, wide antisym- 
metric and transitive) associated to the partial order relation ~Jr 1 is a strict 
reduction of ~r2>>, which in turn expresses the idea that at least one part of ~rl 
is a union of more than one part of ~r2. 

In an unidentifiable parametric space, the finest partition of O, { { 0}, 0 e 
O}, cannot be discriminated by the data. By construction, the finest partition 
which is detectable by the data is ~ / ~ .  If a given partition rc is a reduction of 
O/b ,  it can be identified by the data inasmuch as distinct parts of ~r include 
distinct observational equivalence classes. Every function inducing this kind 
of partition will be constant in each equivalence class. In short: 

Definition 2.4. i) A partition ~r is said identifiable if ~r is a reduction of O/~.  
ii) A function r is said identifiable if the corresponding induced partition 
is identifiable, i.e., V01, 0o e O, 01 e [0o] =~ r = cp(Oo). 

This definition obviously includes, as a particular case, Definition 2.2 ii) and 
shows that any singular partition (or any constant function) is trivially iden- 
tifiable. The existence, in unidentifiable models, of an identifiable non- 
singular partition (non-constant function) makes it possible to define further 
identifiable partitions (functions), on the basis of the following easily demon- 
strable theorem: 

Theorem 2.1. i) If ;r2 is an identifiable partition and ~rl < ~r2, then partition 
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atz also is identifiable, ii) If q0 is an identifiable function and ~V is a function of 
9, then ~p also is identifiable. 

This theorem shows that an unidentifiable partition, atz, cannot be a reduc- 
tion of an identifiable partition, say at2, which does not mean that :t~ neces- 
sarily is strictly finer than at2 (recall that the partitions of O are only partially 
ordered by the reduction relation). Under an unidentifiable model, this 
theorem implies that any identifiable function cannot be one-to-one. 

The definition of an identifiable function does not imply that it assumes 
different values in distinct equivalence classes. Barankin (1960) names every 
function with such a property as sufficient in the sense that it is ~,sufficient- to 
identify identical measures into @. In the same direction, we will say that a 
partitition is sufficient if each observational equivalence class is a union of 
parts of such partition. That is to say, 

Definition 2.5. i) A partition at is said sufficient if e / -  is a reduction of at. ii) 
A function q0(~9) is said sufficient if the partition induced by it is sufficient, 
i.e., 

W l ,  ~o ~ e :  ~ ( ~ )  = q~(~o) =,  ~ ~ [Oo]. 

Examination of the parametric sufficiency can be advantageously made 
through the following characterization (Barankin [1960], Picci [1977]): 

Theorem 2.2. A function q0(tg) is sufficient iff there exists a function P*( .  ) 
defined in ~(O) x ,~/such that Pa(A) = P*~o)(A), VA ~ M, VO ~ O. 

This result states that the distribution function depends on 0 only through the 
sets of a sufficient partition. As a consequence, all values of O belonging to 
the partition part containing Oo necessarily are observationally equivalent to 
00. It must be emphasized that this does not mean that the above mentioned 
element of the sufficient partition contains all of the points of [~90]. It suffices 
to think of the partition { { O}, 0 ~ O} that is always trivially sufficient. 

Taking account of Definition 2.4 and 2.5 and properties of the reduction 
relation, one proves easily that 

Theorem 2.3. i) If a partition atz is identifiable, then :rl is a reduction of every 
sufficient partition, ii) If a function tp is identifiable, then q~ is a function of 
every sufficient function. 

129 



C. D.  M. P A U L I N O  �9 C. A .  D E  B R A G A N ~ A  PEREIRA 

Because of the wide antisymmetry of the reduction relation, O/-- is the only 
partition which is simultaneously identifiable and sufficient. Using Kadane's 
(1974) terminology, we shall call it identifying partition. So 

Definition 2.6. A function ~p(O) is said identifying if it induces the identifying 
partition. 

Therefore an identifying function is: 

- both a sufficient function that is function of every sufficient function - 
hence, the designation minimal sufficient used by Barankin (1960); 

- and an identifiable function that corresponds to the greatest discrimination 
of O allowed by the data - hence, the designation maximal identifiable by 
Picci (1977). 

Putting Theorems 2.1 and 2.3 together, Kadane's (1974) identifiability char- 
acterization is obtained and the designation identifying is justified: 

Theorem 2.4. Let ~p(O) be an identifying function. A function qo(0) is iden- 
tifiable iff it is function of ~p(t~). 

Every identifying function is one-to-one correspondence to any other iden- 
tifying function. In this way, the elements of O/~ may be defined through 
any identifying function ~p(- ) by [0o] = {t9 E O : ~p(O) = ~p(Oo)}. A general 
example can be given by the complex-valued function derived from the char- 
acteristic function of y, Wt(O) = E(eit'YtO), where t is a real vector with the 
same dimension as y. 

If O is restricted by 2(0) = 0, the model is identifiable iff any identifying 
function lp(O) is one-to-one when its domain is the restricted parametric 
space, say O..  In other words, iff 00 is the unique solution to the system ~p(O) 
= ~p(Oo), 2(0) = 0 for all do e O. Hence, investigation of identifiability 
becomes a problem pertaining to uniqueness of the solution to a system of 
possibly non-linear equations. When O is a Euclidean space, the linearization 
of ~p(. ), assumed to be well-behaved functions, enables us, in the light of this 
argument, to obtain a necessary and sufficient condition for local identifiabil- 
ity. This condition, expressed through the rank of the matrix of the deriva- 
tives of ~p(-) and 2(. ), becomes one for global identifiability if both func- 
tions are linear. Tliese results, often used in econometric models (see, e.g. 
Rothenberg [1971], theors. 5 and 6) may thus be viewed as a consequence of 
Theorem 2.4 above. 
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3. Illustrative examples 

The identifiability problem has been amply illustrated in the literature by 
models of interest for several applied areas-factor analysis models, linear 
models with errors in variables, simultaneous equations models and time 
series models (see, e.g., Koopmans and Reiersol [1950], Rothenberg [1971], 
Drrze  [1974], Hannan [1971]). Our purpose, here, is to illustrate the notions 
and results of the proceeding section through statistical models structurally 
less complex than many econometric models. We will restrict ourselves to 
situations with complete and/or incomplete data generated by Normal and 
discrete distributions. 

Example  1 (Normal linear model). Let us consider the univariate linear 
model,  y = X/3 + u, where X is a n x p design matrix of rank r < p < n,/3 is a 
vector of unknown parameters, and u, the unobservable vector of errors, has 
a Normal distribution with parameters E(u)  = 0 and E(uu ' )  = 02 In (In de- 
notes the identity matrix of dimension n). Define 0 = (fl 02) e O = { 0 e ~p+l :  
/3 ~ ~P, 02 e JR+). Since the distribution of y depends on 0 through Xf l  and 
02, and X is not of full rank, there exist several distinct values of fl compatible 
with the same mean vector of y. So,/3 (and afor t ior i  0) is unidentifiable. 

Typical examples of this king of model include the linear regression model 
with extreme multicollinearity and the A N O V A  models in their usual for- 
mulation. For instance, let us briefly consider the no-interaction A N O V A  II 
model for a situation with one observation per cell, yq = uii, i = 1 . . . . .  a; 
j = 1 . . . . .  b; (a, b > 1), where #q = ri + ai + flj. The vector of cell means 
# = (#q) = Xfl, where fl = (r 1 al "'" aa )'1... )'b)', belongs to the subspace of 
J~q ( q  = ab) spanned by the p (p = a + b + 1) columns of X. This subspace, 
denoted by & ( X ) ,  has dimension r = p - 2, which implies that the observa- 
tional equivalence class represented by 00 = (flo ~ ) '  where flo = (rio a~ ... 

)'0 ... )'o), can be defined by 

[Oo1 = ( o  e : Xo/3 = Xo/3o, 02 = 020) 

= { ~  O : r i =  r l~  c +  d ,  a i =  ~ -  c, Vi, 
D = y ~  d, Vj, o2 = ~ ,  c, d e lR }. 

(1) 

Taking the definition of 0 / -  into account, one may conclude that ((Xfl) '  02) ' 
and ((X'Xfl) '  02)' are identifying functions whereas Xf l  and X ' X f l  are iden- 
tifiable but not sufficient (they are so if 02 is known). The parameter 0 and 
any bijective function of it are examples of (trivial) sufficient and unidentifi- 
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able functions. The function ( ~" ai, 02) ' illustrates an unidentifiable function 
which is not sufficient, i=l 

The lack of identifiability caused by overparametrizat ion of the f reedom 
equation formulation of the model may be eliminated through reparamet-  
rization to the identifying function #. Denot ing by W' any (q - r) x q matrix 
of full rank such that W ' X  = 0 and by W ( W ' )  its null space, the known identi- 
ty between ~t (X)  and .~ (W' )  allows us to define alternatively the linear mod- 
el as y = # + u with # ~ dr 

The identifiability of the cell means restricted model in designs with at least 
one observation per cell may disappear in unbalanced designs with missing 
cells. As a mat ter  of fact, once the restricted model is redefined in terms of 
f reedom equations by reduction of the parametric  dimensionality (see, e.g.,  
Murray and Smith [1985]), its identifiability is not ensured because this is 
highly dependent  on both the kind of restrictions and the number  and loca- 
tion of the unobserved cells. 

E x a m p l e  2 (Log-linear model). In essence, the above discussion can be ap- 
plied to the log-linear model for categorical data. Let  y be the vector  of 
counts in the q cells of a contingency table, with mean vector # e / R  q.  The 
ordinary log-linear model is defined by In ~ = Xf l ,  where fl ~ ~R p is a vector of 
unknown paramters and the matrix X, of rank assumed equal to r < p ~< q, is 
such that ~ ( X )  includes the vectors indicating the possible partition of the set 
Q of the q cells induced by the experimental  design. 

In the case where y represents the simultaneous realization of q indepen- 
dent Poisson processes, the probabilistic model is defined by the probability 
function 

f (y l l . l )  = 1"7 (yi,l) -1  exp[y'  In ~ - 1'#], y ~ into, In # ~ At (X) .  (2) 
i~Q 

Suppose now that Q is partioned as {QI,, k = 1, ..., s} and let C = (ci, "", cs) 
be a q x s matrix such that Ck stands for the vector indicating the cells of Qk, 
n = 1, ..., s, in a way that the experimental  design is defined conditionally to 
{c~ y = Nk,  k = 1 . . . . .  s}.  Denoting by {Yk} and {/~k} the partitions of  y and 
/~, it is known that the resulting probabilistic model is defined by 

iE Q, 

(3) 
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where vg = (NklC'kl~)#k is the conditional mean vector of y~. Since 

In v-----ln(v'l, ..., v')' ln l~+ ,~  (In N---~k l = Ck (4) 
k = l  \ cZt~ / 

and ~t(C) C ~t (X)  by assumption, the same log linear model for # can be 
applied to v. The only difference lies on the fact that the range of the In v is 
the set ~t(X)  restricted by c'~v = Nk, k = 1 . . . . .  s. 

In any case, the distribution of y depends on/3 through the function X/3, 
which highlights the unidentifiability of the statistical model and the identify- 
ing nature of the functions X/3 and exp(X/3), as well. This model constitutes a 
typical example of an identifiability problem which does not prevent some 
relevant inferences. In fact, many questions of interest can be alternatively 
expressed only in terms of the identifiable functions/~ (under (2)) or v (under 
(3)), which allow us to apply the maximum likelihood methodology without 
any trouble. Nevertheless, under the weighted least squares approach one 
has to deal with the same problems that arise in the Normal linear model 
analysis, when unrestricted to identifiable functions. 

Example  3 (Models for discrete data under truncation or censoring). Even 
without introducing log-linear constraints, expression (3) has an underlying 
unidentifiability feature deleted by reparametrization from/~ to v. For sim- 
plicity, let us consider the case where q = 2 and s = 1. The parametric space 
at, associated to model (2), defined by the first quadrant of the plane (#1, Y2), 
is clearly identifiable. However, the same no longer occurs in model (3) char- 
acterized by the distribution Bi(N, I~1/(1~1 + lz2)), for Yl- It is easy to see that, 
for #o = (~u ~ ~ ~ 

= {u at : = (5) 

The identifying partition a t /~  is the set of the half-lines of the first quadrant 
proceeding from the origin, and so, each observational equivalence class 
could be indexed by the slope of the respective half-line. One example of an 
identifying function is given by O(l~) = (t~t(#) ~2(1~))', where Oi(l~) = I~i/(gl + 
1~2), i = 1, 2. The graphical representation of its range allows us to see how 
each class of at/-- becomes singular. It is an identifying reparametrization of 
this kind that expression (3) embodies. Now it is easy to get other examples 
of identifiable functions, e.g., E(y1IN, I~) and var(yllN, I~) of which only the 
firt one is sufficient (apply Definition 2.5 or Theorem 2.2). 

A similar situation occurs in conditional multinomial models reflecting 
truncation or absence of reporting in certain categories. Consider, for inst- 
ance, a 2 x 2 table of counts y = (Yij, i, j = 1,2) and let n be a vector repre- 
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senting the observable counts {Yij, (i, j) ~ S}, where Y. Yij = N. The result- 
(i,])ES 

ing multinomial model for n, with probabilities {Oi~iLsOiJ}__,_ is clearly uniden- 

tifiable. Let us now introduce restrictions on the parametric space (9 = {(0H, 
012, Oel) : Oij > O, OH + 012 + Ozl < 1} defined by the independence structure 
in the full table. It is easy to check the identifiability of the marginal probabi- 
lities (and hence of ~ = (~i/, i, j = 1, 2)), when S = {(1, 1), (1, 2) ,  (2, 1)}. 
Nevertheless this is not true if S = {(1, 1), (2, 1)}. This result is a concrete 
indication, now in a set-up of categorical data, that the identifiability of the 
parameter indexing the complete data distribution, in problems with missing 
observations, depends on the number and location of these observations, as 
well as on the structural model at hand. 

In some cases, certain cells are considered as having probabilities known 
beforehand and so they are excluded from the analysis. This situation fits in 
the above framework but now the sum of probabilities of the observed cells is 
known. As a consequence, the saturated model describing the so-called in- 
complete tables (with structural zeros) is identiable. However, under re- 
duced structures (e.g., quasi-log-linear models) problems of unidentifiability 
can appear. Examples of this are given by the 22 x 3 tables, where S = {(1, 1, 
1), (1, 2, 2), (2, 1, 2), (2, 2, 3)}, and by the table 2 x 32, where S = {(1, 1, 1,), 
(1, 2, 2), (1, 3, 2), (2, 1, 2), (2, 2, 3), (2, 3, 3) I , both under  quasi- 
independence structure. 

An identical argument can be applied to situations where categorical data 
are censored either deterministically (by design) or randomly due to an un- 
controlled deficient reporting process. The genetic problem of the ABO 
blood system is an example of the first case, where the unidentifiability of the 
saturated Multinomial model vanishes under, for instance, the Hardy- 
Weinberg equilibrium assumption. The second case, when every sample unit 
is only partially categorized, can be analysed similarly under appropriate 
assumptions concerning ignorability for the reporting process (see, e.g., 
Paulino [1991]). Example 8, described in Section 8, is a simple illustration of 
this case. 

4. Parametric sufficiency versus sample sufficiency 

The concept of parametric sufficiency has a close analogy to that of  sample 
sufficiency. To show it in the context of a classical statistical model, let us 
consider shortly the Fisherian concept of sufficiency in specific situations of 
the dominated case. 
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Let 9 ~ = {Po : 0 e O} be defined on the measurable sets of subset 0t0 of a 
euclidean space and dominated by a a-finite measure m, with O being also 
euclidean. Denote by f(y] 0) a density function of Po relative to m. Suppose 
that for every 0 ~ O, f(ylO) > 0, Vy e ~ and, in the case of ~ being uncount- 
able, that f(ylO) is continuous in ~ .  

Let us define in ~ the equivalence relation 

Yt * y o ' ~  f (yz lO)  = c(y l ,  yo) f (yolO),  V O  ~ 0 (6) 

where c(yz, Yo) > 0 is independent of O. The class [Y0] e ~/* is formed by the 
sample points whose likelihood functions, l(z?ly), are proportional to l(Olyo). 
Fix Oo ~ O and consider ln[l(O[y)/l(OolY)] as a function of y indexed by O, 
denoted by To(y). It is easy to see that 

[yo] = {y ~ ~a : 7".(y) = Vo(yo),  v o  ~ o}. (7) 

That is, the minimum sufficient partition 0-g/. (recall the Lehmann-Scheff6 
method) is induced by the family {To(')  : 0 ~ O}. So, any sample partition 
finer than 0/d/. is sufficient. Let us call necessary any partition thicker (or 
coarser) than ~ / . .  

Now returning to the parametric space and keeping the assumptions about 
f(y]O) in mind, the elements of O/~ can be defined by 

[~0] = {o  ~ o :  flytO) = f(ylOo), y ~ ~}. (8)  

Fixing Yo E ~ and defining V/y(tg) = ln[f(ylO)/f(yo[O)] one has that 

[Co] = {o  ~ e : V,yO) = ~,y(Oo), Vy ~ aa}. (9) 

Comparing the concepts of sufficiency and necessity for a sample partition 
and the expression (8) with the definitions 2.5 i), 2.4 i) and the expression 
(10), a close parallelism is displayed, which particularly helps to understand 
the reason of the designation parametric sufficiency. This analogy can be 
developed and made rigorous in the set-up of a Bayesian model (see Picci, 
1977; Paulino, 1988). In the specific situation above, and using a prior densi- 
ty, q(O), strictly positive in O, the definition of [Y0] is equivalent to 

[yo] = {y ~ ~ : q(Oly) = q(Olyo), VO E O} (10) 

where q(O[y) stands for the posterior density. The comparison of (11) and (9) 
already shows the duality between the identifying partition, O/~,  and the 
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minimum sufficient partition, ~/ . ,  within the framework of a dominated 
Bayesian model. 

5. Identifiability versus sample information 

Inspection of identifiability of many parametrically complex models is not an 
easy and straightforward task. Often it is the confrontation of the researcher 
with anomalous results when one is making inferences that leads him/her to 
reanalyse at length the model structure. 

On the other hand, most of the early results on the unidentifiability prob- 
lem were related to specific models, which tended to hide tt/e general nature 
of the problem, as properly pointed out by Koopmans and Reiersol (1950). It 
was the acknowledgement of this fact that led Rothenberg (1971) to attemp- 
ting to derive general criteria of identifiability. Realizing that unidentifiabil- 
ity is consequence of the lack of enough information to discriminate among 
alternative parametric values in the model specification, Rothenberg 
approached the problem in terms of the Fisher information measure. Bow- 
den (1973) generalized this approach through the Kullback-Leibler informa- 
tion measure which we shall discuss now. 

Let O0 be a given value of the parameter 0 ~ O indexing the family of 
distribution F(y[t~). The Kullback-Leibler information function for discrimi- 
nating F(y[Oo) against F(y[O) per observation of F(y[Oo) is the real-valued 
function defined on O x O by 

I(0o, O) = E[ln dF(ylO~ ]0o] 
dF(y]O) " 

(11) 

Its range is [0, +oo] (see Kullback, 1959, pag. 11) and takes only finite values 
if the measures Po and P~o are mutually absolutely continuous (Wilks, 1962, 
p. 347). This condition, assumed henceforth and denoted by Po ~ Poo, is 
satisfied for the dominated case models with support independent of ~. 

Following the reasoning of Bowden (1973) it can be shown that 

Theorem 5.1. Letting O~ 4:~0 be two points of 69 for which Po, ~- Pao, then 01 
[0o] iff I(t~o, t~) = O. 

Relying on this result, Bowden gets as corollary the identifiability criterion: 

Criterion I. Assuming that Pa ~ Poe VO e O, t~o is globally (locally) identifi- 
able iff O0 is the unique solution of the equation I(Oo, O) = 0 in 6) (in an open 
neighbourhood of 00). 
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Note that if this criterion is satisfied for an arbitrary Oo e O, a necessary and 
sufficient condition for identifiability of O is obtained when the family of 
distributions is self-dominated by any of its members. This criterion, when 
applicable, has the advantage of putting together examination of both local 
and global identifiability and allowing us to define the identifying partition 
since [t~o] = {0 ~ O : I(0o, t~) = 0]. 

However, for many models it is not easy to determine all the solutions of 
the equations l(Oo, 0) = 0 in a direct way. When I(0o, O) is a continuous 
function of 0 whose domain is an open set of euclidean space, this problem 
can be solved through mathematical optimization methods. For illustration, 
let us consider the following example: 

E x a m p l e  4. Let us consider the distribution (2) under the log-linear model 
for the mean vector of the q cells. Letting ~ -- bt(/3) = exp(X/3) and denoting 
the image through/~(.  ) of a given/30 e ~P  by go, one can check that 

I(/3o, /3) = I/o[ln go - In U(/3)] - lq[go - I.t(/3)]. 

The critical points,/3*, of I --- I(/3o, /3) satisfy the equation 

o-3 8" = o - g o l  = o 

(12) 

(13) 

as a consequence of 0I _~ 0/~ = O'-~ = - D  ~'(t3) go + lq  and ~-~, Dt,(t~ ~ X ,  where Da de- 

notes a diagonal matrix with the elements of the vector a along the main 
diagonal. In the usual log-linear models, lq ~ al&(X) implying that /q[go - 
U(/3*)] = O. Thus 

[/3o] = {/3" ~ /R p : ~'o[ln go - In/~(/3")] = 0} (14) 

= { / 3 " .  a p :  x /3*  = X/3o}, 
showing that the domain of fl is decomposed in classes defined by the (p - r) 
dimensional linear manifolds {/30 + JC(X)} (see, e.g., Nering, 1964, p. 183-4). 
This is a result analogous to the one obtained for the Normal linear model, a 
formally identical result is obtained for the Multinomial model (3). [] 

One must emphasize that the absolute continuity assumption in criterion I 
excludes the nonregular cases where ~ depends on t~. However, by analysing 
the proof of the Theorem 2.5, it follows that: 

- Condition 109o, O) = 0 is always necessary to the observational equivalence 
of 0 and 0o; 
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- Condition I(0o, 0) > 0 is necessary for 0 and 0o not being observationally 
equivalent, provided that I(0o, 0) is finite. 

For illustration of the applicability of these conclusions in the nonregular 
cases referred to, consider the following example: 

Example 5. Let ~ be the interval of JR, L(O) = [q)t(O), cp2(0)) where cpi(O), 
i = 1, 2, are continuous functions of 0 e JR, with qgs(O) < cp2(0), VO e JR, and 
let ~ be the family of uniform distributions in L(O). 

From the expression of F(ylO ) it is easy to conclude that, for every 00 e JR, 
[0o] = {0 e JR : cpi(O), i = 1, 2}. So, the model is identifiable iff both ends of 
L(O) are one-to-one functions. It is clear from (12) that I(0o, 0) = O, VO 
[0o], as would be expected. 

On the other hand, for every pair (00, 0) such that L(Oo) is not included in 
L(O), I(0o, 0) = oo. That is, a finite value of 1(0o, 0) implies that L(Oo) C 
L(O), assuring that Poo is dominated by Po, and in these circumstances 

I(0o, 0) = In cp2(O)-cPt(O) 
q~2( Oo)-qJ,( Oo) 

That is what happens, e.g., when 0 < 0o if 91 ( ' )  and cp2(.) are increasing 
and decreasing functions, respectively. Hence, in these cases, 1(0o, 0) = 0 
implies that the lengths of L(O) and L(Oo) are equal, whereby L(O) = L(Oo) 
(note that L(Oo) C L(O)). It is thus illustrated that, under finiteness of 1(0o, 
0), 1(0o, 0) = 0 implies 0 ~ [00]. A concrete example is provided by q92(0 ) = 
-qos(O) = 0 a, 0 ~ JR, where [00] = {-00, 0o}, VOo ~ JR. 

The models referred to in Example 4 illustrate cases of continuity of 1(0o, .), 
which is satisfied under the usual regularity conditions on the family {F(y 10)}. 
In these cases, the gradient vector and the Hessian matrix of 1(0o, .) evalu- 
ated at 00 are respectively equal to the null vector and the Fisher information 
matrix per observation of F(y]Oo), ,~-(0o). As a consequence, the positive 
definiteness of ~(0o) is a Sufficient condition for existence of an unique local 
minimum of I(0o, .). 

On the other hand, a Taylor expansion about 0o yields 

1 
1(0o, 0 )  = -~- (0 - 0o)' ~ ( 0 " ) ( 0  - 0o), 0" = too + (1 - 00 ,  0 < t < 1 

so that ~'(0") is positive definite if 1(0o, 0) > 0 in a neighbourhood of 00. If 
one assumes that the rank of ~'(0) does not change in an open neighbour- 
hood of 0o (the Rothenberg's regulary condition of ~'(0) in 0o), then one can 
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conclude that 5(00) is positive definite. Taking criterion I at its local version 
into account, these conclusions set up the criterion of local identifiability of 
Rothenberg (1971), as follows: 

Criterion II. Under the mentioned regularity conditions, nonsingularity of 
~(0o) implies local identifiability of 0o which, in turn, implies the nonsing- 
ularity of ~-(0o) if 5 ( .  ) is regular in an open neighbourhood of 00. 

Thus the singularity of 5(00), only by itself, does not necessarily imply the 
local unidentifiability of 00. This fact can be understood from Taylor series 
expansion of I(0o, 0) at 0 near 00, 

1 
t(Oo, 0) = T (0 - 0o)* ~-(0o)(0 - 00) + 0(110 - Oolt~). 

The higher order terms can ensure that 1(0o, 0) > 0 for every 0 ~ 00 in the 
neighbourhood of 00, even though the quadratic form in the above express- 
ion be null. 

Rothenberg (1971) still extends this criterion to the case of a constrained 
parametric space and proves that nonsingularity of ~(0) is sufficient to global 
idenfitiability of the natural parameter of the multiparametric exponential 
family. 

To finish this section, we illustrate the application of the above criteria 
with the first case discussed along Example 3. 

Example  6. Taking the conditional distribution Bi(N,  lll/(lil + ti2)) into 
account it is easy to check that the information matrix 

~-(i.z) N._._~ ( /lll-(l.~l-bl~2) -1 -(I.~,q-1~2) -1 ) 
l~1+l~2 -(l~1+1~2) -1 1~1-(l~1+l~2) -~ 

is singular. Then/~ is not identifiable locally, and hence, globally, by Crite- 
rion II. Furthermore, the observational equivalence classes can be deter- 
mined from the Criterion I. Denoting/~o = (/~o, bto), a value of/~, it is easy to 
verify that 

I(po, li) = N Z ,  ~ In 
,=1 j 

This function is identically null iff ~i/(l~1 + ~2) = l~~ ~ + ~o), i = 1, 2. The 
point ~ is not identifiable and the set of minimum points of I(lio, ") coincides 
with the class [/io] defined by (5). 
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6. Identifiability versus estimability 

In much of the statistical literature there is some lack of clarity in the undis- 
tinct use of the terms identifiability and estimability, even though this latter 
concept is clearly inferential, independently of the various meanings in which 
is used. The purpose of this section is to expound the relationship between 
these two concepts in general and in the context of the linear model where 
they are often used. 

As mentioned in Section 2, in an unidentifiable model a sample realization 
only gives information on an observational equivalence class, not operating a 
further selection within it. The definition of O/~ in terms of an identifying 
function ~p = ~p(t~), whose estimation is not problematic, clarifies this point 
by highlighting that the estimation of an unidentifiable parameter is merely 
arbitrary. The lack of uniqueness in the construction of estimators in this case 
is independent not only of the data set but also of the estimation method. 
This problem is distinct from that occurring in various identifiable models, 
where nonuniqueness follows from the lack of global concavity of the likeli- 
hood function for some (eventually all) data sets. One example of this is 
given by any random sample of the uniform model in (t9 - 1/2, ~ + 1/2), ~ 
/R, when analysed by the maximum likelihood method. Another example, 
where this estimation method does not yield unique estimates for certain data 
sets, is given by the genetic problem referred to in Example 3 under the 
Hardy-Weinberg equilibrium structure (see, e.g., Haberman, 1974). 

A further undesirable aspect of the unidentifiable models, with serious 
implications on the asymptotic theor of tests of hypotheses, is the inexistence 
of consistent estimators. It is sufficient to think that, whatever be the sample 
size, the sampling distribution of any estimator is the same for all observa- 
tionally equivalent points. The lack of consistency of the maximum likeli- 
hood estimator may in some cases be seen in the light of an argument around 
the infimum points of I(~o, t~) (see Silvey, 1975). Thus, the existence of con- 
sistent estimators is also a sufficient condition for identifiability, as is the 
estimation uniqueness mentioned above. Nevertheless, it must be added that 
the reciprocal proposition is not true (see, e.g., Zacks [1971, Sec. 5.3] and 
Gabrielsen [1978]). 

Although, sometimes, the term estimability is used in the sense of unique- 
ness of estimation, in a way that is independent of the data, or of existence of 
consistent estimators, it is more frequently applied in the following sense: 

Definition 6.1. A function tp(v ~) is said (linearly) estimable if it admits a(n) 
(linear) unbiased estimator. 

140 



STATISTICAL IDENTIFIABILITY 

It is evident that this estimability concept is also a sufficient condition for 
identifiability, i.e. 

Theorem 6.1. If r  is an estimable function, then q909) is identifiable. 

This result shows that every estimable function (for instance, the population 
moments ,  when they exist) induces an identifiable partition, but not neces- 
sarily coincident with the identifying partition. This latter aspect could be 
satisfied under  some requirements on the corresponding estimator (Tuncer,  
1985). 

In the analysis of linear models y = Xfl + u, defined as in Example 1, the 
interest is centered on linear functions of 0, namely o 2 and functions Aft, 
where A is a s x p matrix of rank s ~< p. It is widely known that a necessary 
and sufficient condition for linear estimability of Aft  is the existence of a s x n 
matrix, B, such that A = BX. The equivalence between the concepts of iden- 
tifiability and linear estimability for linear functions, proved by Reiersol 
(1963), could be demonstrated from Theorem 2.4, as follows: 

Theorem 6.2. A function Aft is identifiable iff it is linerly estimable. 

Proof. Since ((Xfl)' o2) ' is an identifying function and A/~ is a function inde- 
pendent  of o e, Theorem 2.4 tells us that Aft  is identifiable iff there exists a 
function h such that Aft = h(Xfl), Vfl ~ ~P. So, the implication linearly estim- 
able =~ identifiable follows. 

Now, let us decompose/R p in the direct sum of N(X)  with the subspace ~3 
generated by a given genealized inverse of X, i.e.,  ~P  = •(X) + ~. Since the 
transformation X restricted to ~,  ~ x_~ ~t(X), is an isomorfism, denote  by Ta, 
for every a ~ &(X) ,  the element of ~3 such that a = XTa.  Then,  by hypoth- 
esis, h(a) =- h(XTa)  = ATa ,  showing the linearity of the restriction of h to 
~t(X).  Hence,  Aft -- h(Xfl) = ATXf l ,  Vfl ~ IR p. 

The application of this result to a restricted linear model under  some un- 
observed cells, as referred to in Example 1, shows that the model identifiabil- 
ity is equivalent to the general concept of connectedness of Murray and 
Smith (1985). This result still allows us to realize the reason for restricting the 
estimability concept for linear functions to that of linear estimability. In 
effect, from Theorems 6.1 and 6.2, one has that: 

Theorem 6.3. A function Aft is identifiable iff it is estimable. 

This theorem shows that there cannot be any estimable linear function that is 
not also linearly estimable. However ,  consideration of nonlinear functions 
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permits illustrating that identifiability does not imply estimability, in general. 
On the other hand, this theorem permits deriving identifiability conditions 
from results on estimability (see Richmond [1974]). 

In some situations, the domain of fl is constrained to a subset o f / R  p, often 
defined by the subspace •(H),  where H is a t x p matrix of rank t < p. 
According to the analysis of the unrestricted model, the model identifiability 
is equivalent to the existence of an unique solution to the system X f l  = ~, 
with fl ~ d~(H), for each value of the mean/~ of the observations. When  this 
does not occur, the class of points observationally equivalent to flo ~ X ( H )  is 
defined by 

[flo] = {~e  J~(H) : fl = flo + a, a ~ X(X)}  

where the null space of X is a (p - r)-dimensional subspace of JR p. Taking 
Xflo = fio, [flo] is the set of solutions to the nonhomogeneous linear system, 
Gfl = (fib 0') ' ,  where G = (X'  H ' ) ' .  So, [flo] is, for a fixed rio, a linear man- 
ifold of dimension p - rank(G) lesser than its dimension (p - r) in the unres- 
tricted model. This definition of [/~o] shows clearly that it contains only flo iff 
rank (G) = p.  In this set-up, the functions Af t  are to be viewed as linear 
transformatiOns o f /R  p-t (isomorphic to N ( H ) )  and this yields modifications 
on the linear estimability criterion. Reiersol (1963) establishes this new crite- 
rion as follows: 

Theorem 6.4. Under the assumption fl E N ( H ) ,  the function Aft is linearly 
estimable iff the row vectors of A, {a~, i = 1 . . . . .  s/, are such that ai ~ .J/t(G'). 

Due to Theorem 6.1 on one hand, and Theorems 2.4 and 6.4 on the other 
hand, the results expressed by Theorems 6.2 and 6.3 hold formally for the 
restricted model, that is 

Theorem 6.5. Under  the assumption fl ~ gf(H),  the function Af t  is identifi- 
able iff it is estimable. 

Naturally, every function Af t  identifiable in the unrestricted model is also 
identifiable in the restricted model. The reciproca! is not, however, true. The 
function itself which results from Aft ,  assumed to be identifiable i n /R  p-t, by 
embodying the constraints Hfl = 0, may no longer be identifiable in the un- 
restricted model. Ia effect, since the identifiable function Aft ,  when fl 
de(H), is linearly estimable, let By be a linear unbiased estimator of it. Then, 
(A - BX) f l  = O, Vfl ~ de(H), meaning that the rows of A - B X ,  viewed as 
column vectors, belong to the orthocomplement of d~(H), which is ~t (H' ) .  
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Thus,  there exists a s x t matrix C such that A - B X  = CH,  whereby Af t  = 
BXfl + Cliff .  In this way, if Hfl is not identifiable, Af t  may not be identifiable 
in ~P .  As an illustration, consider the A N O V A  II model referred to in Ex- 

b 
ample 1 and the identifiable function q~(fl) = r I + al + __1 Z yj. On im- 

b b j=l 
posing the constraint Z ),j = O, defined by an unidentifiable function, q~(fl) is 

j=l  
conver ted to r /+  at.  This new function is identifiable in the restricted model 
but not in the unrestricted model. 

7. The process of  the model identification 

In classical inferences the unidentifiability problems require a reformulation 
of the model so as to get its identification. In this section we intend to de- 
scribe how the model can be identified, analysing in detail how the process of 
imposing exact restrictions can achieve that purpose. This question is crucial 
for a whole understanding that seemingly different analyses of, namely, the 
liner model with no full rank are actually equivalent. 

Given the existence of identifying functions, the model reparametrization 
to a function of this kind establishes a way of getting identification of the 
model.  The restricted model of the cell means referred to in Example 1 illus- 
trates this form of identification. An identical procedure may be applied to 
the log linear model for the cell probabilities of a Multinomial table. 

That  identifying reparametrization appears to be quite convenient when 
the inferential purpose is centered on an identifying function or on functions 
of it. However ,  the identification process most applied in a classical context 
consists of imposing constraints on the parametric space so that each observa- 
tional equivalence class becomes a singleton. 

In order  to clarify the conditions on the constrains required by the model 
identification, let ~(0)  be an identifying function so that [0o] = 10 E O : ~p(~ 
= ~Po} where Ip0 = ~p(Oo). Let us denote  the restricted parametric space by O 
= {v a ~ O :  A(O) = 0}. As referred to in Section 2, O is identifiable iff each [t~o] 
is made singular by A(O) = 0. It is easy to see at once that this goal cannot be 
attained with an identifiable function A(O). In fact, in this case there will exist 
classes [0o] incompatible with the value 0 for A(O) and so, the system of 
equations ~(0)  = ~o, MO) = 0 will not be consistent for all classes of O/~ .  
The compatible classes, in number of at least one (there will be only one if 
A(0) is further sufficient), will not have their dimensionality reduced and so 
the unidentifiability problem will remain in ~). 

The identification process of O based on imposing the consistent, restric- 
tions A(O) =-- (At(O), " ' ,  At(O))' = (0, . " ,  0) ' ,  with tAi(O)} unidentifiable, can be 
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elucidatively viewed in sequential terms. Suppose, with no loss of generality, 
that each equivalence class is represented by a point of Ok and denote  by Oj 
the parametric  space restricted by Ai(O), i = 1 . . . . .  j (Or --- 09). Imposing first 
).1(0) = 0 causes that in each [0o] e 0 / -  there are only some points compati-  
ble with such a restriction. This means that the dimensionality of [0011 = [00] 
A O1 is less than that of [00]. Now imposing ;t2(0) = 0, [0o]2 is obtained from 
[0o] by removing other points, and so on. If the dimensionality of each [O0]j e 
O/~  is greater  than one, a further restriction, ;tj+l(O) = 0, is imposed to 
reduce their dimensionality. This sequential process stops when each e lement  
of  O/~  is a singleton. If this occurs after adding A/O) = 0, then 0 ,1~  = {{0} : 0 
e Ot} and the desired identifiability is achieved. 

In many situations, the parts of O/~  and the restrictions are defined by 
linear functions, say CO' and AO respectively. The mathematical results on 
linear systems then allow us to define necessary and sufficient conditions for 
uniqueness of the solution to the equations CO = ~P0 - COo, AO = O. 

By the results in Section 6, A d  is unidentifiable iff the rows of  A do not 
belong to .dL(C'). That is, iff no non-null vector  of ~r is vector of  3/t(C'), 
i.e.,  ./~t(A') (q .~t(C') = {0}. This condition is necessary and sufficient for  con- 
sistency of the linear system quoted above, V~p0 e .~t(C) - see, e.g.,  the algeb- 
raic result contained in Scheff6 (1959, Sect. 1.4). Thus, the condition that the 
rows of A and C are mutually linearly independent  is not more than the 
unidentifiability condition of A0, as emphasized by Reiersol (1963). 

Once its consistency is ensured, the system will have a unique solution if 
the rank of (C', A ' ) '  is equal to the dimensionality of 0, sayp.  Assuming that 
C has rank r < p,  which implies that it is enough to define t = p - r restric- 
tions, the system will be consistent and will have a unique solution iff A 0  is 
unidentifiable and A is of full rank. In this case, 0 is expressed through ~p = 
CO by 0 = (C' C + A '  A ) - I C ' %  showing the identifiability of ~9. 

For  illustrative purposes, let us examine the following example: 

Example  7. Consider tha A N O V A  model with two factors without interac- 
tion for a situation where there is one observation in each of the 2 x 2 = 4 
cells. The  model is specified by a 4 x 5 matrix of rank 3, X = (xl "" xs),  
where xl = (1 1 1 1)', x2 = (1 1 0 0)', x3 = (0 0 1 1)', x4 = (1 0 1 0)' and x5 = 
(0 1 0 1)'. The parameter  vector is fl = (r i al  a2 Yt )2)' e ~5 .  As seen in 
Example 1, for a given flo = (rl ~ ~ c~2 ~ ~2)' e 1~ 5, the class [flo] is a 
bidimensional linear manifold defined by 

[flol = { f l e  : = X o} 

= { ~ e  J~R5 : . = n~ + c + d, ai .= ~ -- C, 

d ; i , j  = 1, 2, c, d e  
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Impose the restriction ~.)fl = 0, with ;~) = (0 1 1 0 0), which is suitable for the 
purpose since ~q ~ ~ t ( X ' )  (Theorem 2.6). The new classes, [flo]l = [flo] A 
~r(Z)) define each a unidimensional linear manifold since Gl = (X ' ,  ~1)' has 
rank 4. This operation removes the points of each [/30] regarding to c :g 0 and 
so, for flo e d~(A'l) 

[#o], = {fl ~ ~ : a , #  = c,,8o} 

= {#~  ~ :  ~ = ,7 ~ + d, ai = ~,,  ~ j  - d; i , j  = 1.2. d~n~} .  

To achieve the identification of the model, it suffices to add an extra restric- 
tion, necessarily linearly independent of the proceeding one (otherwise, 
N(~.~(/~ would not change). Note that the restriction X'3fl = 0, where ~.~ = (0 
0 0 1 - 1),  for instance, is unsuitable because the fact that ~-3 = G'16, with 
6 = (1 - 1 0 0 0) ' ,  shows that ~.~fl is identifiable (Theorems 6.4 and 6.5). 
Adding, instead, Z~fl = 0, where ;d2 = (0 0 0 1 1) is already fruitful. As a 
matter of fact, ~.2 q~ ~ t (G) )  and its unidentifiability removes from each [flo]l 
the points corresponding to d ~ 0. Thus, denoting (32 = (G't, ;t2)' 

[#o12 = [#o] ,  n ~ v ( ~ )  = {# ~ n~ 5 : o 2 #  = G2~o} = {#o}. 

Naturally, the model identification above does not require those two linearly 
independent restrictions corresponding to Zi ai = 2) yj = 0. Another  set of 
restrictions is aa = Yb = 0 defining the so-called reference cell parametriza- 
tion. 

Once an identifiable model is obtained, the arbitrariness in estimation 
obviously vanishes, At this point, it is important to stress that the classical 
inferences about functions Af t ,  identifiable in the unrestricted normal linear 
model, do not change when working with the identified model, as can be 
drawn from Reiersol's (1963) paper. The discussion in Searle (1971, Ch. 5, 
Sec. 6), having Theorems 6.4 and 6.5 in mind, is quite elucidative in this 
respect. 

In this way, it is evident the double role that the unidentifiable functions 
play, that of ensuring the construction of an identifiable model and that of 
not ,,disturbing>, the inferences about the identifiable functions. These 
aspects facilitate the understanding of the two usual means of classical analy- 
sis of the Normal linear model under the freedom equations formulations. 
One of them is the previous conversion to an identifiable model. The other is 
the use of an estimate of the original parameters, obtained from one general- 
ized inverse of X ' X  or from imposition of non-identifiable restrictions 
enough for a unique solution to exist to the normal equations sytem. 
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8. Unidentifiability and the classical and Bayesian approaches 

As we have seen earlier, classical estimation of an unidentifiable parameter is 
merely arbitrary. Moreover, certain asymptotic optimality properties of any 
estimator like consistency are not valid anymore. These aspects make asymp- 
totic tests of hypotheses unfeasible due to problems related to the definition 
of the test statistics (observed values dependent on the estimate used and 
possible singularity of the Fisher information matrix) and to the determina- 
tion of their asymptotic distribution. We must note that these problems may 
not disappear entirely when the model is identifiable under the null hypoth- 
esis. Think, for instance, of the Wald test when the constrained parametric 
space, ~9 = {0 ~ r : 3.(0) =-- (3.t(O), "" ,  A t (O)) '  = (0, . . . ,  0) '}  is identifiable. 
The nonuniqueness of the unrestricted maximum likelihood estimator in 
addition to the necessary unidentifiability of 3.(0) imply that the Wald statis- 
tic is not well defined. 

That kind of problems, from a classical point of view, justifies attempts to 
eliminating non-identifiability, generally based upon imposing exact restric- 
tions. In the setting quoted above, if only r < t restrictions 3.i(0) = 0 are 
enough to ensure identifiability, then these restrictions are sometimes used to 
define the new parametric space, under which the t - r remaining restrictions 
are to be tested. The original testing problem is disregarded and replaced by 
a conditional test of the t - r restrictions given the r identifying restrictions. 
The asymptotic tests of Silvey (1959) and Aitchison and Silvey (1960), for 
instance, are set in this context. 

The need for identification of the original model to make inferences feasi- 
ble may lead to a criticizable practice of adopting restrictions of an arbitrary 
nature. To paraphrase Koopmans and Reiersol (1950), ,,Scientific honesty 
demands that the specification of a model be based on prior knowledge of the 
phenomenon studied and possibly on criteria of simplicity, but not on the 
desire for identifiability of characteristics in which the researcher happens to 
be interestedly. 

Rather, one can take advantage of the existence of identifiable parametric 
functions to increase our knowledge about unknown aspects of the model. 
Even when the restrictions themselves come from an analysis based on 
theoretical considerations and/or earlier observations, the categorical and 
sharp type of prior information embodied in the exact restrictions raises 
further difficulties given the little precise nature of this type of information, 
in general. 

That kind of difficulties will be mitigated with a stochastic specification of 
all or part of the prior information, given its more flexible (and so, more 
justifiable) nature. Note that this is not only admitted but also required by 
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the Bayesian inferential process, whether or not the model is identifiable. 
The Bayesian conjunction of stochastic prior information with sample in- 
formation implies that the posterior distribution is proper whenever the prior 
distribution is, independently of the model identifiability. In this case, exist- 
ence of posterior moments, in particular, does not call for identifiability. It is 
certainly this that is underlying to the concise phrase of Lindley (1971, p. 46), 
<<In passing, it might be noted that unidentifiability causes no real difficulty in 
the Bayesian approach,,. In our opinion, what happens is a displacement of 
the difficulties emerging from the lack of identifiability, which become re- 
lated to the necessity of defining a proper prior distribution more carefully, 

-since some parametric functions are nor updated by data, as will be seen 
afterwards. 

In spite of the distinct notions of identifiability which can be found in the 
Bayesian literature (Zellner [1971], Drrze [1972], Learr~r [1978], Florens et 
al. [1990]), in the dominant sense, the notions of Bayesian identifiability and 
sufficiency are essentially identical to those defined in Section 2 (Kadane 
[1974], Drrze [1974], Picci [1977], Deistler and Seifert [1978]). 

With that concept of sufficiency, the characterization set in Theorem 2.2 is 
equivalent to saying that within each equivalence class, specified by the iden- 
tifying function ~p(0), the posterior probability measure is essentially equal to 
the prior probability measure. By the duality between the concepts of para- 
metric and sample sufficiency, one can prove (Picci [1977], Paulino [1988]) 
that, in the usual dominated Bayesian models, sufficiency of lp(0) is characte- 
rized by the factoring of the posterior density of 0 into two factors, one de- 
pendent of y and of 0 through ~(0) and the other independent of y. These 
results show clearly that. once the distribution of V/(0) is updated, the role of 
the data is exhausted. This means that any other function y(O), one may 
define in order to establish a one-to-one correspondence between 0P, Y) and 
0, is not distributionally modified. For illustration consider the folloing ex- 
ample: 

Example  8. Suppose that a random sample of size N is drawn from a popula- 
tion partitioned in four categories with (positive) probabilities 0i, 1 ~< i ~< 4, 
2:/0~ = 1. Suppose further that, rather than the usual outcome of counts {x~} 
for all categories, the observed reports only indicated the number of ele- 
ments classified or not in the categories 1 and 4 together, that is, the value of 
y = x l  + x4 (and, of course, N - y = x2 + x3). Let us assume that the 
reporting process is modelled in such a way that the relevant model for infer- 
ences o n  [Dqi} is defined by the family of distribution Bi(N, tgl "}- 04) (see 
Paulino [1991]). 

Assume further that the accumulated prior information about {t~i} can be 
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quantified by a Dirichlet distribution with parameter b = (bl b2 b3 b4)' ~ JR 4. 
It is easy to check that the posterior density of 0 can be expressed as 

qy(O) = gOp(O); y) h(O) 

where ~p(O) = 01 + 04, 

(15) 

gOP(O); y) = [~p(0)]~'-111 - ~p(O)]~2-1/B(al, a2) 

with at = bl + b4 + y and a 2 = b 2 + b 3 + N - y, and 

01 ~b4--1( 04 ib4-1 ( 02 ib2-1( 03 ib3--1 
~----~-044] \~-~-044] 1 \ ~ - ~ /  \0-2-~3] 1 h(O) = - -  x - -  ~ 

B(bl, b4) O1 B (b2, b3) 0 2 

This factorization of qy(O) confirms the identifying feature of ~p = 01 + 04 
and the lack of sufficiency of the non-identifiable functions qoz = 01/(01 + 04) 
and tp2 = 02/(02 + 03). 

Considering the transformation (01; 02, 04) ~ (01, 02, ~p) one can see that 
gOP; Y) and h(O) stand for the posterior distribution of ~p and the conditional 
posterior distribution of (01, 02) given ~p, respectively. This latter factor re- 
veals that, given ~p and y, the functions ~1 and qo 2 are independently distri- 
buted as B(bl, b4) and B(b2, b3), respectively, thus coinciding with the cor- 
responding prior distribution. Hence, the (degenerate) conditional prior dis- 
tribution of O given ~p cannot be updated by y. 

Instead using directly the posterior distribution of O, the posterior mo- 
ments of 0, for instance, can be computed from the relationship Eo[I-I i ~'ly] 
= E,{Eo[FIi ~']ly, ~}, by considering 

H~ii, = ~,+,,(l _ ~p)r2+r, i-i  ( Oi ]~' H ( 0i I ~'. 
i i=1,4 ~1) ] i=2,3 1 -  ~p / 

So, it follows that 

Eo [~i t~i,ly] = B(al+rt+r4,a2+r2+r3) B(bt+rt,b4+r4) B(b2+r2,b3+r3) 
B(al, a2) B(bl,  b4) B (b2, b3) 

This procedure examplifies how Bayesian analyses can be made on the space 
of an identifying function as expressed by Kadane (1974). Furthermore, it 
shows how the specification of a proper prior distribution unblocks infer- 
ences with no necessity of imposing more rigid a priori structures like in the 
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classical approach. It is a procedure similar to this which underlies the Baye- 
sian solution of the incomplete categorical data problem developed by Pauli- 
no and Pereira (1992, 1994), without resorting to the assumption of a nonin- 
formative reporting process. 

The discussion made in this section shows that the inferential relevance of the 
identifiability present distinct degrees in the classical and Bayesian 
approaches. The latter presents a greater flexibility and naturality in making 
inferences about unidentifiable parameters practicable, though the lack of 
identifiability cannot be minimized. 

In the way of conclusion, what seems important to emphasize is the judi- 
ciousness and the honesty which should guide the statistician when faced with 
a model suffering from unidentifiability. He/she must resist any unreasonable 
tendencies to discard the model or deform it through arbitrary esthetic opera- 
tions. Even though many typical characteristics of the model are not ,,accessi- 
ble~, to analyse what is analysable is a more credible alternative. And from 
this viewpoint, choosing Bayesian ways could lead us farther as a consequ- 
ence of less sharp obstacles caused by lack of identifiability. 
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