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Abstract: The Non-Informative Nuisance Parameter Principle concerns the problem of how inferences
about a parameter of interest should be made in the presence of nuisance parameters. The principle
is examined in the context of the hypothesis testing problem. We prove that the mixed test obeys the
principle for discrete sample spaces. We also show how adherence of the mixed test to the principle
can make performance of the test much easier. These findings are illustrated with new solutions to
well-known problems of testing hypotheses for count data.
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1. Introduction

Principles of Statistical Inference (or Data Reduction) constitute important guidelines
on how to draw conclusions from data, especially when performing standard inferential
procedures for unknown parameters of interest, like estimation and hypothesis testing. For
instance, the Sufficiency Principle (SP) states that any sufficient statistic retains all relevant
information about the unknown parameters that should be used to make inferences about
them. It precisely recommends that if T is a sufficient statistic for the statistical model
under consideration and x1 and x2 are sample points such that T(x1) = T(x2), then the
observation of any of these points should lead to the same conclusions regarding the
parameters of interest.

Besides the place of sufficiency in Statistical Inference, these recommendations cover
several issues such as the contrast between post-experimental and pre-experimental reason-
ing and the roles of non-informative stopping rules, censoring mechanisms and nuisance
parameters in data analysis. Among the main principles, the Sufficiency Principle is gener-
ally recognized as a cornerstone of Statistical Inference. On the other hand, the Likelihood
Principle (LP) and its profound consequences are still subjects of intense debate. The reader
will find a detailed discussion of the Likelihood Principle in [1–6].

In this work, we examine the Non-Informative Nuisance Parameter Principle (NNPP)
introduced by Berger and Wolpert in 1988 in their remarkable book that concerns the prob-
lem of the way inferences about a parameter of interest should be made in the presence of
nuisance parameters. Nuisance parameters usually affect inferences about the parameter of
interest, like in the estimation of the mean of a normal distribution with unknown variance,
in the estimation of the parameters of a linear regression model in the presence of unknown
variance, and in the determination of p-values for specific hypotheses in the analysis of 2× 2
contingency tables ([7]). In a few words, the NNPP states that under suitable conditions, it
is irrelevant whether the value of a non-informative nuisance parameter is known or not
in order to draw conclusions about the parameter of interest. Despite the importance of
the problem for eliminating nuisance parameters in data analysis, the authors have not
explored this principle and its consequences in some depth as far as we have reviewed
the literature. For this reason, we revisit the NNPP by formally stating it for the problem
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of hypothesis testing, present decision rules that meet the principle and show how the
performance of a particular test in line with the NNPP can then be simplified.

This work is organized as follows: in Section 2, the NNPP for hypothesis testing is
stated, discussed and illustrated under a Bayesian perspective. In Section 3, the Bayesian
test procedure based on the concept of adaptive significance level and on an alternative
p-value introduced by Pericchi and Pereira in [8], henceforth named the mixed test, is
reviewed and is proven to satisfy the NNPP for discrete sample data when the (marginal)
null hypothesis regarding the parameter of interest is a singleton (as a matter of fact, the
result also holds when such a null hypothesis is specified by a hyperplane). In that section,
we also define conditional versions of the adaptive significance level and p-value based on
suitable statistics and prove that under those conditions, the performance of the mixed test
is then simply the comparison between these new conditional quantities. These results are
of great importance to make it easier to use the mixed test in various situations. In Section 4,
we exemplify the main results by presenting new solutions by using the mixed test for well-
known problems of test of hypotheses for count data under suitable reparametrizations of
the corresponding models: we revisit the problems of comparison of Poisson population
means and of testing the hypotheses of independence and symmetry in contingency tables.
We make our final comments in Section 5. The proofs of the theorems and the calculations
for one example in Section 4 are found in the Appendix A.

2. The Non-Informative Nuisance Parameter Principle for Hypothesis Testing

The problem of the elimination of nuisance parameters in statistical inference has a
long history and remains a major issue. Proposals to deal with it include the marginal-
ization of the likelihood function by integrating out the nuisance parameter ([9–11]), the
construction of partial likelihood functions ([12–14], among others) and the consideration
of conditional likelihood functions based on different notions of non-informativeness,
sufficiency and ancillarity. Elimination of nuisance parameters and different notions of
non-information have also been studied in more detail in [15–18], where, based on suitable
statistics, the concepts of B, S and G non-information are presented. The generalized Suffi-
ciency and Conditionality Principles are also discussed in [17]. On the other hand, Bayesian
methods for eliminating nuisance parameters based on a suitable statistic T involve differ-
ent definitions of sufficiency: for instance, K-Sufficiency, Q-Sufficiency and L-Sufficiency
(see for example [17] and references therein).

In this section, the Non-Informative Nuisance Parameter Principle (NNPP) by Berger
and Wolpert is discussed and formally defined for the problem of hypothesis testing. As
we will see, on the one hand, the NNPP seems to be fair under both the partial and the
conditional non-Bayesian approaches mentioned in the previous paragraph; on the other
hand, it sounds really reasonable under the Bayesian standpoint. Despite the relevance
of the problem of the elimination of nuisance parameters in data analysis, Berger and
Wolpert [1] presented the NNPP but has not explored the principle in-depth as far as we
have examined in the literature.

Some notation is needed to continue. We denote by θ the unknown parameter and
by X the sample to be observed. Θ and X represent the parameter and the sample
spaces, respectively. The family of discrete probability distributions for X is denoted
by P = {P(·|θ) : θ ∈ Θ}. In addition, for x ∈ X, Lx(·) denotes the likelihood function
for θ generated by the sample point x. By an experiment E , we mean, as in [1] , a triplet
E = (X, θ,P), with X, θ and P as defined earlier. Finally, for a subset Θ0 of Θ, we formulate
the null hypothesis H : θ ∈ Θ0 and the alternative one A : θ /∈ Θ0. We recall that a test
function (procedure) for the hypotheses H versus A is a function φ : X → {0, 1} that
takes the value 1 (φ(x) = 1) if H is rejected when x ∈ X is observed and takes the value 0
(φ(x) = 0) if H is not rejected when x is observed. Under the Bayesian perspective, we also
consider a continuous prior density function π(·) for θ that induces, when combined with
the likelihood function Lx(·), a continuous posterior density function for θ given x, π(·|x).
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In [1], Berger and Wolpert presented the following principle on how to make inferences
about an unknown parameter of interest θ1 in the presence of a nuisance parameter θ2:
when a sample observation, say x0, separates information concerning θ1 from information
on θ2, it is irrelevant whether the value of θ2 is known or unknown in order to make
inferences about θ1 based on the observation of x0. In other terms, if the conclusions on θ1
were to be the same for every possible value of the nuisance parameter, were θ2 known,
then the same conclusions on θ1 should be reached even if θ2 is unknown. These authors
then consider the following mathematical setup to formalize these ideas.

Let θ = (θ1, θ2), with θ1 and θ2 defined as in the previous paragraph. Consider
Θ = Θ1 × Θ2; that is, the parameter space is variation independent, where Θi ⊆ Rni is the
set of values for θi, ni ∈ N∗, i = 1, 2. Suppose the experiment E = (X, θ,P) is carried out to
learn about θ. Let Ē = ((X, θ2), θ1, P̄) be the “thought” experiment in which the pair (X, θ2)
is to be observed (instead of observing only X), where P̄ is the family of distributions
for (X, θ2) indexed by θ1. Suppose also that under experiment E , the likelihood function
generated by a specific x0 ∈ X for θ has the following factored form:

Lx0(θ1, θ2) = L1
x0
(θ1)L2

x0
(θ2) (1)

where Li
x0

: Θi → R+, i = 1, 2; that is, Li
x0

depends on θ only through θi.
Berger and Wolpert then states the Non-Informative Nuisance Parameter Principle

(NNPP): if E and x0 ∈ X are such that (1) holds, and if the inference about θ1 from the observation
of (x0, θ2) when Ē is performed does not depend on θ2, then the inferential statements made for θ1
from E and x0 should be the same as (should coincide with) the inferential statements made from Ē
and (x0, θ2) for every θ2 ∈ Θ2.

The authors named such a parameter θ2 a Non-Informative Nuisance Parameter
(NNP), as the conclusions or decisions regarding θ1 from Ē and (x0, θ2) do not depend
on θ2.

A likelihood function that satisfies (1) is named a likelihood function with separable
parameters ([19]). The factored form of the likelihood function in (1) seems to capture
the notion of “absence of information about a parameter, say θ1, from the other, θ2, and
vice versa” under both Bayesian and non-Bayesian reasoning. Indeed, under the Bayesian
paradigm, posterior independence between θ1 and θ2 (say, given x0) reflects the fact that
one´s opinion about the parameter θ1 after observing x0 is not altered by any information
about θ2, and consequently, decisions regarding θ1 should not depend on θ2. Since posterior
independence between θ1 and θ2 given x0 is equivalent to the factored form of the likelihood
function generated by x0 under prior independence, condition (1) sounds really reasonable
as a mathematical description of separate information about the parameters. Thus, if a
Bayesian statistician should make inferences regarding a parameter θ1 in the presence of a
nuisance parameter θ2, it would be ideal that these parameters are independent a posteriori;
that is, the factored form of the likelihood function holds. This last equivalence is proven in
the theorem below.

Theorem 1. Let E = (X, θ,P) be an experiment and π(·) be the prior probability density function
for θ = (θ1, θ2). Suppose θ1 is independent of θ2 (θ1 ⊥⊥ θ2) a priori. Then, for each x ∈ X,

θ1 ⊥⊥ θ2 | X = x ⇐⇒ ∃Li
x : Θi → R+ , i = 1, 2, (2)

such that Lx(θ1, θ2) = L1
x(θ1)L2

x(θ2).

On the other hand, the condition (1) seems to also be a fair representation of non-
informativeness of one parameter on another under a non-Bayesian perspective. In fact,
such a factored form of the likelihood function arises, for instance, when the sample X is
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conditioned on particular types of statistics that are simple to interpret under non-Bayesian
paradigms. Note that for any statistic T, one can write

Lx(θ1, θ2) = P(X = x|θ1, θ2) = P(X = x|T(X) = T(x), θ1, θ2)P(T(X) = T(x)|θ1, θ2) .

If, in addition, T is a statistic such that its distribution given θ depends only on θ1
and the conditional distribution of X given T(X) = T(x), and θ depends only on θ2, the
factored form in (1) is easily obtained (such a statistic was named p-sufficient for θ1 by
Basu ([17]). In this situation, all the relevant information on θ1 is summarized in T, and
one can fully make inferences on θ1 taking into account only the conditional distribution of
T given θ, which does not involve θ2. Similarly, if T is a statistic such that its distribution
given θ depends only on θ2 and the conditional distribution of X given T(X) = T(x) and θ
depends only on θ1, the factored form in (1) holds. Such a statistic was named s-ancillary
for θ1 by Basu ([17]), and it is somewhat evident that in this case, conclusions on θ1 should
be drawn exclusively from the distribution of X given T(X) and θ, which does not depend
on θ2. Such a conditional approach to the problem of elimination of nuisance parameters
had already been proposed by Basu ([17]) and in a sense is closely related to the NNPP by
Berger and Wolpert. The next theorem formally presents such results.

Theorem 2. Let E = (X, θ,P) be an experiment in which θ = (θ1, θ2) and Θ is variation
independent. Then, if ∃ T : X → T such that T is either p-sufficient or s-ancillary for θ1, then for
each x ∈ X, the likelihood function generated by x, Lx(·) can be factored as (1).

In summary, it seems reasonable that inferences about θ1 and θ2 can be performed
independently under condition (1). Thus, if only θ1 is of interest, then it seems sensible
under (1) that we reach the same conclusions on θ1 when x is observed either by using the
whole likelihood function Lx or only the factor L1

x. That is, it makes sense to disregard the
information contained in L2

x and focus on L1
x. As mentioned by [19], examples of likelihood

functions with separable parameters like (1) are rare, but if (1) holds, it would be a useful
property for Bayesian and non-Bayesian statisticians to analyze statistical data, especially
in the presence of nuisance parameters. This fact will be illustrated in Sections 3 and 4.

We end this section by formally adapting the general NNPP to the special problem of
hypothesis testing, in which inference about an unknown parameter consists of deciding
whether a statement about the parameter (a statistical hypothesis) should be rejected or
accepted by using the observable quantity X.

As before, let E = (X, θ,P) be an experiment, with Θ = Θ1 ×Θ2. Let Ē = ((X, θ2), θ1, P̄)
be the “thought” experiment in which, in addition to X, θ2 is observed. Then, consider the
following definition.

Definition 1. Non-Informative Nuisance Parameter (NNP): Let B ⊆ Θ1 and φ̄ : X× Θ2 →
{0, 1} be a test for the hypotheses

H̄ : θ1 ∈ B
Ā : θ1 /∈ B

(3)

Then, we say that θ2 is a Non-Informative Nuisance Parameter (NNP) for testing H̄ versus Ā by
using φ̄ if, for every x ∈ X such that (1) holds, φ̄(x, θ2) does not depend on θ2; that is, it depends
only on x.

In a nutshell, Definition 1 tells us something that appears intuitive: if the decision
between H and A does not depend on θ2, then θ2 does not provide any information about
θ1. In the following example, we illustrate this idea.
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Example 1. Consider that Θ1 = Θ2 = R and the experiment Ē = ((X, θ2), θ1,P). Let B ⊂ R
and φ̄ : X× Θ2 → {0, 1} be the test for the hypotheses

H̄ : θ1 ∈ B
Ā : θ1 /∈ B,

(4)

such that the null hypothesis is rejected when the conditional probability of B given x and θ2 is
small; that is,

φ̄(x, θ2) = 1 ⇔ P(θ1 ∈ B | x, θ2) < δ, (5)

where δ ∈ (0, 1). Suppose, in addition, that θ1 and θ2 are independent a priori. Let us ver-
ify that θ2 is an NNP for testing these hypotheses by means of φ̄. Let x0 ∈ X be such that
Lx0(θ1, θ2) = L1

x0
(θ1)L2

x0
(θ2) for specific functions L1

x0
and L2

x0
. Then,

P(θ1 ∈ B | x0, θ2) =
∫

B
π(θ1 | x0, θ2)dθ1 =

=
∫

B
[

P(X = x0|θ1, θ2)π(θ2|θ1)π1(θ1)∫
Θ1

P(X = x0|θ′1, θ2)π(θ2|θ′1)π1(θ
′
1)dθ′1

]dθ1 =

=

∫
B

Lx0(θ1, θ2)π2(θ2)π1(θ1)dθ1∫
Θ1

Lx0(θ1, θ2)π2(θ2)π1(θ1)dθ1

=

=

∫
B

L1
x0
(θ1)L2

x0
(θ2)π2(θ2)π1(θ1)dθ1∫

Θ1

L1
x0
(θ1)L2

x0
(θ2)π2(θ2)π1(θ1)dθ1

⇒

⇒ P(θ1 ∈ B | x0, θ2) =

∫
B

L1
x0
(θ1)π1(θ1)dθ1∫

Θ1

L1
x0
(θ1)π1(θ1)dθ1

,

(6)

where πi is the prior of θi, i = 1, 2. Thus, we have that

φ̄(x0, θ2) = 1 ⇔

∫
B

L1
x0
(θ1)π1(θ1)dθ1∫

Θ1

L1
x0
(θ1)π1(θ1)dθ1

< δ. (7)

Note from Equation (7) that φ̄(x0, θ2) does not depend on θ2. Thus, θ2 is an NNP for testing
H̄ versus Ā by using φ̄.

After defining an NNP, we formally state the Non-Informative Nuisance Parameter
Principle (NNPP) for hypothesis testing.

Definition 2. Non-Informative Nuisance Parameter Principle (NNPP): Let the parameter
space be variation independent; that is, Θ = Θ1 ×Θ2. Consider the experiments E = (X, θ,P) and
Ē = ((X, θ2), θ1, P̄). Let B ⊆ Θ1 be the subset of Θ1 of interest. In addition, let φ : X → {0, 1}
and φ̄ : X× Θ2 → {0, 1} be tests for the hypotheses

H : θ ∈ B × Θ2
A : θ /∈ B × Θ2,

and
H̄ : θ1 ∈ B
Ā : θ1 /∈ B,

(8)

respectively.
If θ2 is an NNP for testing H̄ versus Ā by using φ̄ and x0 ∈ X such that condition (1)

holds, then
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φ(x0) = 1 ⇔ φ̄(x0, θ2) = 1 . (9)

The NNPP for statistical hypothesis testing says that if one intends to test a hypothesis
regarding only the parameter θ1, it is irrelevant whether θ2 is known or unknown if it is
non-informative for such a decision-making problem. More formally, if one wants to test
a hypothesis concerning only θ1 and he observes a sample point x0 ∈ X that separates
information on θ1 from information on θ2—that is, (1) holds—then the performances of the
tests φ under the original experiment E and φ̄ under the “thought” experiment Ē should
yield the same decision on the hypothesis θ1 ∈ B if θ2 is non-informative for that purpose.

We should mention that the NNPP can be adapted to any other inferential procedure.
However, in this work, we focus on the principle for the problem of hypothesis testing.
We conclude this section by proving that tests based on the posterior probabilities of the
hypotheses satisfy the NNPP under prior independence.

Example 2 (continuation of Example 1). Consider the conditions of Example 1. Consider E = (X,
θ,P) and let φ : X → {0, 1} be the test for the hypotheses

H : θ ∈ B × Θ2
A : θ /∈ B × Θ2

(10)

that rejects the null hypothesis H if its posterior probability is small; that is,

φ(x) = 1 ⇔ P(θ ∈ B × Θ2 | x) < δ. (11)

Let x0 ∈ X be such that Lx0(θ1, θ2) = L1
x0
(θ1)L2

x0
(θ2). We can write the posterior probability on

the right-hand side of (11) as

P(θ ∈ B × Θ2 | x0) =
∫

B×Θ2

π(θ | x0)dθ =

∫
B×Θ2

Lx0(θ)π(θ)dθ∫
Θ

Lx0(θ)π(θ)dθ
=

=

∫
B×Θ2

L1
x0
(θ1)L2

x0
(θ2)π1(θ1)π2(θ2)dθ∫

Θ1×Θ2

L1
x0
(θ1)L2

x0
(θ2)π1(θ1)π2(θ2)dθ

=

∫
B

L1
x0
(θ1)π1(θ1)dθ1∫

Θ1

L1
x0
(θ1)π1(θ1)dθ1

,

(12)

where the last equality follows from Fubini’s Theorem. Hence,

φ(x) = 1 ⇔

∫
B

L1
x0
(θ1)π1(θ1)dθ1∫

Θ1

L1
x0
(θ1)π1(θ1)dθ1

< δ. (13)

From Equations (7) and (13), we have that φ(x) = 1 ⇔ φ̄(x, θ2) = 1. Thus, the NNP
Principle is met by tests based on posterior probabilities, as in Example 1. This result also holds
when Θi ⊆ Rni , ni ∈ N∗, i = 1, 2.

In the next section, we examine a second test procedure that is in line with the NNPP.
We review the mixed test introduced by Pericchi and Pereira ([8]) and prove that such a
test meets the NNPP for simple hypotheses concerning the parameter of interest. We also
show how the adherence of the mixed test to the NNPP can then simplify its use.

3. The Mixed Test Procedure

The mixed test formally introduced in ([8]) is a test procedure that combines elements
from both Bayesian and frequentist views. On the one hand, it considers an (intrinsically
Bayesian) prior distribution for the parameter from which predictive distributions for the
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data under the competing hypotheses and Bayes factors are derived. On the other hand,
the performance of the test depends on ordering the sample space by the Bayes factor and
on the integration of these predictive distributions over specific subsets of the sample space
in a frequentist-like manner. The mixed test is an optimal procedure in the sense that it
minimizes linear combinations of averaged (weighted) probabilities of errors of decision.
It also meets a few logical requirements for multiple-hypothesis testing and obeys the
Likelihood Principle for discrete sample spaces despite the integration over the sample
space it involves. In addition, the test overcomes several of the drawbacks fixed-level
tests have. However, a difficulty with the mixed test procedure is the need to evaluate the
Bayes factor for every sample point to order the sample space, which may involve intensive
calculations. Properties of the mixed test and examples of application are examined in
detail in [8,20–25].

Next, we review the general procedure for the performance of the mixed test and then
show the test satisfies the NNPP when the hypothesis regarding the parameter of interest
is a singleton.

First, we determine the predictive distributions for X under the competing hypotheses
H and A, fH and fA, respectively. For the null hypothesis H : θ ∈ Θ0, Θ0 ⊂ Θ, fH is
determined as follows: for each x ∈ X,

fH(x) =
∫

Θ0

Lx(θ)dPH(θ) , (14)

where PH denotes the conditional distribution of θ given θ ∈ Θ0. That is, for each x ∈ X,
fH(x) is the expected value of the likelihood function generated by x against PH . Similarly,
for the alternative hypothesis A: θ ∈ Θc

0 we define

fA(x) =
∫

Θc
0

Lx(θ)dPA(θ) , (15)

where PA denotes the conditional distribution of θ given θ ∈ Θc
0. From (14) and (15), we

obtain the Bayes factor of x ∈ X for the hypothesis H over A as

BF(x) =
fH(x)
fA(x)

. (16)

Finally, the mixed test φ∗: X → {0, 1} for the hypotheses H versus A consists in rejecting
H when x ∈ X is observed if and only if the Bayes factor BF(x) is small. That is, for each
x ∈ X,

φ∗(x) = 1 ⇔ BF(x) ≤ b/a , (17)

where the positive constants a and b reflect the decision maker’s evaluation of the impact
of the errors of the two types or, equivalently, his prior preferences for the competing hy-
potheses. A detailed discussion on the specification of such constants is found in [8,20–25].

The mixed test can also be defined as a function of a new significance index. That
is, (17) can be rewritten as a comparison between such a significance index and a specific
cut-off value. These quantities are defined below.

For the mixed test defined in (17), the p-value of the observation x0 ∈ X is the
significance index given by

p-value(x0) = ∑
x ∈ D(x0)

fH(x) , (18)

where D(x0) = {x ∈ X : BF(x) ≤ BF(x0)}. Also, we define the adaptive type I error
probability of φ∗ as

α∗ = ∑
x ∈ D

fH(x), (19)
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where D = {x ∈ X : BF(x) ≤ b/a}. Alternatively, α∗ is also known as the adaptive
significance level of φ∗.

Pereira et al. [21] proved that the mixed test φ∗ for the hypotheses

H : θ ∈ Θ0
A : θ ∈ Θc

0
(20)

can be written as

φ∗(x) = 1 ⇔ BF(x) ≤ b/a ⇔ p-value(x) ≤ α∗ . (21)

Note that φ∗ consists of comparing the p-value with the cut-off α∗, which depends on the
specific statistical model under consideration and on the sample size, as opposed to a
standard test with a fixed significance level that does not depend on the sample size.

The former does not have a few of the disadvantages of the latter, such as inconsis-
tency ([8,26]) lack of correspondence between practical significance and statistical signif-
icance ([8,27]) and absence of logical coherence under multiple-hypothesis testing. We
continue with the main results of the manuscript.

The Mixed Test Obeys the NNPP

In this subsection, we prove that the mixed test meets the NNPP when the hypothesis
about the parameter of interest is simple. Next, we examine further the case in which there
is a statistic s-ancillary for the parameter of interest and show how the introduction of the
concepts of a conditional p-value and a conditional adaptive significance level can make
performance of the mixed test much easier.

Theorem 3. Let θ = (θ1, θ2) and Θ = Θ1 × Θ2 (that is, Θ is variation independent). Let
E = (X, θ,P) and Ē = ((X, θ2), θ1, P̄) be two experiments as defined in Section 2. Let θ0 ∈ Θ1.
In addition, let φ∗ : X → {0, 1} and φ̄∗ : X× Θ2 → {0, 1} be the mixed tests for the hypotheses

H : θ ∈ {θ0} × Θ2
A : θ /∈ {θ0} × Θ2

and
H̄ : θ1 = θ0
Ā : θ1 ̸= θ0,

(22)

respectively. Assume θ = (θ1, θ2) is absolutely continuous with prior density function π, with
θ1 ⊥⊥ θ2. Then, θ2 is a Non-Informative Nuisance Parameter for testing H̄ versus Ā by using φ̄∗,
and for every x ∈ X such that (1) holds,

φ∗(x) = 1 ⇔ φ̄∗(x, θ2) = 1 (23)

Theorem 3 tells us that when the likelihood function may be factored as (1), the
mixed test obeys the NNPP. That is to say, if one aims to test a simple hypothesis about
the parameter of interest θ1 in the presence of a non-informative nuisance parameter θ2
by means of the mixed test, then he can disregard θ2 in the analysis. Under a purely
mathematical viewpoint, when x ∈ X satisfying (1) is observed, the decision between
rejecting and accepting the null hypothesis regarding θ1 depends on Lx only through the
factor L1

x, which is not a function of θ2, as we can see from Equation (A16) in Appendix A.
It should be emphasized that Theorem 3 holds for null hypotheses more general than only
simple ones. For instance, the Theorem is still valid when the null hypothesis H is of the
form H : θ ∈ Θ0 × Θ2, where Θ0 ⊂ Θ1 is a hyperplane of Θ1. The proof of this result is
quite similar to the proof of Theorem 3 in Appendix A and for this reason is omitted.

The adherence to the NNPP is indeed an advantage of the mixed test. It may bring
a considerable reduction in the calculations involved along the procedure of the mixed
test, especially under statistical models for which a statistic s-ancillary for the parame-
ter of interest can be found. Such cases are examined after Corollary 1, which follows
straightforwardly from Theorems 2 and 3.
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Corollary 1. Assume the same conditions of Theorem 3 and suppose that ∃ T : X → T such that
T is p-sufficient for θ2 and s-ancillary for θ1. Then, for all x ∈ X, φ∗(x) = 1 ⇔ φ̄∗(x, θ2) = 1.

Now, let us suppose that under experiment E = (X, θ,P), there is a statistic T : X → T
such that T is s-ancillary for θ1. Let H : θ ∈ {θ0}×Θ2 be the hypothesis of interest. From the
predictive distribution fH for X, we can define for each value t ∈ T(X) = {T(x) : x ∈ X}
the conditional probability function for X given T(X) = t, fH,t by

fH,t(x) =
fH(x)

∑
y∈X:T(y)=t

fH(y)
(24)

if T(x) = t, and fH,t(x) = 0, otherwise.
Finally, from the conditional distribution in (24), we define two conditional statistics:

the conditional p-value and the conditional adaptive significance level. Such quantities
will be of great importance for the performance of the mixed test, as we will see in the
next section.

Definition 3. Conditional p-value: Let E = (X, θ,P) be an experiment for which the statistic
T : X → T is s-ancillary for θ1. Let H : θ ∈ {θ0} × Θ2 be the hypothesis of interest, and fH,t,
t ∈ T(X), as in (24). We define the p-value conditional on T, pT-value : X → [0, 1] for each x0 ∈ X by

pT-value(x0) = ∑
x ∈ D(x0)

fH,T(x0)
(x) =

∑
x ∈ D∗

T(x0)
fH(x)

∑
x ∈ DT(x0)

fH(x)
, (25)

whereD∗
T(x0) = {x ∈ X : BF(x) ≤ BF(x0), T(x) = T(x0)} andDT(x0) = {x ∈ X : T(x) = T(x0)}.

From Equation (A14), the PT − value may be rewritten as

pT-value(x0) =

∑
x ∈ D∗

T(x0)

[
L1

x(θ0)
∫

Θ2
L2

x(θ2)π2(θ2)dθ2

]
∑

x ∈ DT(x0)

[
L1

x(θ0)
∫

Θ2
L2

x(θ2)π2(θ2)dθ2

] , (26)

where L1
x(θ0) = P(X = x| T(X) = T(x), θ0) and L2

x(θ2) = P(T(X) = T(x)| θ2) since T is
s-ancillary for θ1. It follows that

pT-value(x0) =

∑
x ∈ D∗

T(x0)

[
P(X = x| T(X) = T(x), θ0)

∫
Θ2

P(T(X) = T(x)| θ2)π2(θ2)dθ2

]
∑

x ∈ DT(x0)

[
P(X = x| T(X) = T(x), θ0)

∫
Θ2

P(T(X) = T(x)| θ2)π2(θ2)dθ2

]

=

∑
x ∈ D∗

T(x0)

[
P(X = x| T(X) = T(x0), θ0)

∫
Θ2

P(T(X) = T(x0)| θ2)π2(θ2)dθ2

]
∑

x ∈ DT(x0)

[
P(X = x| T(X) = T(x0), θ0)

∫
Θ2

P(T(X) = T(x0)| θ2)π2(θ2)dθ2

] =

=

∑
x ∈ D∗

T(x0)
P(X = x| T(X) = T(x0), θ0)

∑
x ∈ DT(x0)

P(X = x| T(X) = T(x0), θ0)
;

that is,
pT-value(x0) = ∑

x ∈ D∗
T(x0)

P(X = x| T(X) = T(x0), θ0) . (27)
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Definition 4. Conditional adaptive significance level: Let E = (X, θ,P) be an experiment for
which the statistic T : X → T is s-ancillary for θ1. Let H : θ ∈ {θ0} × Θ2 be the hypothesis of
interest and fH,t, t ∈ T(X) be as in (24). We define the conditional adaptive significance level given
T, α∗T : X → [0, 1], for each x0 ∈ X by

α∗T(x0) = ∑
x ∈ D

fH,T(x0)
(x) =

∑
x ∈ D∩DT(x0)

fH(x)

∑
x ∈ DT(x0)

fH(x)
. (28)

The conditional adaptive significance level α∗T may be rewritten as

α∗T(x0) = ∑
x ∈ D∩DT(x0)

P(X = x| T(X) = T(x0), θ0) . (29)

Definitions 3 and 4 are conditional versions of Definitions in (18) and (19), respectively.
While calculation of the unconditional quantities involves the evaluation of the Bayes factor
for every x ∈ X, the determination of the conditional statistics at a specific sample point
x0 ∈ X depends only on the values of the Bayes factor for the sample points x such that
T(x) = T(x0), which may be much easier to accomplish. Note also that the pT-value and α∗T
can be seen, respectively, as an alternative (conditional) measure of evidence in favor of the
null hypothesis H and an alternative threshold value for testing the competing hypotheses.
As a matter of fact, one can substitute the p-value and the adaptive significance level with
their conditional versions in order to perform the mixed test. This is exactly what the next
theorem states.

Theorem 4. Assume the same conditions as in Corollary 1 and Theorem 3. Then, for all x0 ∈ X,

φ∗(x0) = 1 ⇔ pT-value(x0) ⩽ α∗T(x0) .

The results of Theorems 3 and 4 and Corollary 1 suggest a way the mixed test may be
used without doing so many calculations: when an ancillary statistic for the parameter of
interest, T, is available, one can perform the test by comparing the conditional statistics
pT-value and α∗T instead of comparing the unconditional ones in Definitions (18) and (19).
This possibility is illustrated in the next section.

4. Examples

We now revisit three well-known problems of hypothesis testing for count data and
present new solutions to them by means of the mixed test. In each problem, we consider a
suitable reparametrization of the standard model in order to ensure that

1. There exists a statistic T that is ancillary to the new parameter of interest;
2. The hypothesis about the new parameter of interest under the reparametrization is a

singleton (or a hyperplane);
3. The new parameter of interest is independent of the new nuisance parameter a priori;
4. The distribution of the data X given any value of the statistic T is simple enough

to render the calculations of the conditional p-value and the conditional adaptive
significance level easy.

4.1. Comparison of Poisson Means

Suppose we are interested in testing the equality between two Poisson means: say
θ1 and θ2. Let θ = (θ1, θ2). For this purpose, let X = (X1, X2) be a random vector to be
observed such that given θ, X1 and X2 are independent Poisson random variables with
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parameters nθ1 and nθ2, respectively, where n ∈ N∗ = {1, 2, 3, . . .} is a known integer. The
hypotheses to be tested are

H : θ ∈ Θ0

A : θ ∈ Θc
0,

(30)

where Θ0 = {(θ1, θ2) ∈ R2
+ : θ1 = θ2}. The likelihood function for θ ∈ R2

+ generated by
x = (x1, x2) ∈ N2 is

Lx(θ) =
(nθ1)

x1

x1!
(nθ2)

x2

x2!
e−θ1ne−θ2n. (31)

Suppose also that θ1 and θ2 are independent a priori and that θi is distributed as a
Gamma random variable with parameters ai > 0 and c > 0, i = 1, 2. That is, the prior
density function of θ is

π(θ) =
ca1

Γ(a1)
θ

a1−1
1 e−cθ1 I(0,∞)(θ1)

ca2

Γ(a2)
θ

a2−1
2 e−cθ2 I(0,∞)(θ2). (32)

Although one can determine an exact expression for the Bayes factor in this case (as a
matter of fact, in [25], the authors first presented a solution to the problem of testing the
equality of Poisson means by using weighted likelihoods in the context of a production
process monitoring procedure), the use of the mixed test under the above parametrization
may be computationally disadvantageous, as the sample space is N2 and one should
determine infinitely many Bayes factors to perform the test. To overcome this difficulty, we
next consider the following reparametrization of the model: let λ = (λ1, λ2) be the new
parameter, where

λ1 =
θ1

θ1 + θ2
and λ2 = θ1 + θ2. (33)

The new parameter space is then Λ = (0, 1)×R+. Now, the hypotheses (30) can be
rewritten as

H̃ : λ ∈ Λ0

Ã : λ ∈ Λc
0,

(34)

with Λ0 = { 1
2} ×R+. Note that the likelihood function (31) can be rewritten by condition-

ing on the statistic T(X) = X1 + X2 as follows:
Lx(θ) = P(X1 = x1, X2 = x2 | θ) =P(X1 = x1, X2 = x2 | X1 + X2 = x1 + x2, θ)P(X1 + X2 = x1 + x2 | θ)

=

(
x1 + x2

x1

)(
θ1

θ1 + θ2

)x1
(

θ2

θ1 + θ2

)x2 e−n(θ1+θ2)[n(θ1 + θ2)]
x1+x2

(x1 + x2)!
.

(35)

Hence, the induced likelihood function for λ generated by (x1, x2) may be factored as

L̃x(λ) =

[(
x1 + x2

x1

)
λ

x1
1 (1 − λ1)

x2

][
(nλ2)

x1+x2

(x1 + x2)!
e−λ2n

]
(36)

Note that T is an ancillary statistic for λ1, as it is distributed as a Poisson random
variable with mean nλ2, and the conditional distribution of X, given T(X) = t, t ∈ N,
depends on λ only through λ1. The prior distribution for λ is given by

π̃(λ) =
Γ(a1 + a2)

Γ(a1)Γ(a2)
λa1−1

1 (1 − λ1)
a2−1I(0,1)(λ1)

ca1+a2

Γ(a1 + a2)
λa1+a2−1

2 e−cλ2I(0,∞)(λ2) . (37)

Now, as (34), (36) and (37) hold, it follows from Theorem 3 that λ2 is an NNP and that
the performance of the mixed test for the hypothesis H̃ : λ ∈ { 1

2} ×R+ against Ã based on
L̃x and the prior π̃ is equivalent to the performance of the mixed test for the simple hypoth-
esis λ1 = 1

2 against λ1 ̸= 1
2 based on the binomial-like factor of L̃x that depends only on θ1

and the marginal Beta prior density for λ1 ignoring the NNP λ2. In addition, Theorem 4
implies that the test for H̃ versus Ã reduces to the comparison of the statistics pT-value
and α∗T at the observed sample point, say x0 = (x01, x02). Note that in this case, one does
not need to evaluate the Bayes factor for every point of N2 but only for those x01 + x02 + 1
of them for which the sum of the components is x01 + x02. That is, one needs to evaluate
the Bayes factor only for the elements of {(u, v) ∈ N2 : T(u, v) = T(x0) = x01 + x02} when
x0 = (x01, x02) is observed.
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From Equations (A14) and (A15), one gets the following predictive functions under H̃
and under Ã for X:

fH̃(xxx) = (1/2)x1+x2

(
x1 + x2

x1

)
× K (38)

and

f Ã(xxx) =

(
x1 + x2

x1

)[
Γ(x1 + a1)Γ(x2 + a2)

Γ(x1 + x2 + a1 + a2)

][
Γ(a1 + a2)

Γ(a1)Γ(a2)

]
× K , (39)

where K =
∫ ∞

0

[
(nλ2)

x1+x2

(x1+x2)!
e−λ2n

]
ca1+a2

Γ(a1+a2)
λa1+a2−1

2 e−cλ2 dλ2. Consequently, the Bayes factor
BF(x) is

BF(xxx) =(1/2)x1+x2
Γ(a1)Γ(a2)

Γ(a1 + a2)

Γ(x1 + x2 + a1 + a2)

Γ(x1 + a1)Γ(x2 + a2)
. (40)

Finally, it follows from (28) and (30) that for x0 = (x01, x02) ∈ N2,

pT-value(x0) = ∑
(x1,x2) ∈ D∗

T(x0)

(
x1 + x2

x1

)
(1/2)x1+x2

=
T(x0)

∑
x1=0

(
T(x0)

x1

)
(1/2)T(x0)ID(x0)

(x1, T(x0)− x1)

(41)

and

α∗T(x0) = ∑
(x1,x2) ∈ D∩DT(x0)

(
x1 + x2

x1

)
(1/2)x1+x2

=
T(x0)

∑
x1=0

(
T(x0)

x1

)
(1/2)T(x0)ID(x1, T(x0)− x1) .

(42)

Note that in this case, the conditional pT-value resembles the frequentist p-value for
the simple hypothesis θ = 1

2 under simple random sampling from the Bernoulli model
with parameter θ (however, for the calculation of the pT-value, the sample space is ordered
by the Bayes factor instead of the likelihood ratio).

Example 3 (Comparison of Poisson means). In [25], the authors consider that a methodology
to detect a shift in a production process is to compare the quality index of the current rating period
P, θ2, with the quality index of the previous rating period, θ1. Suppose that we want to test if a
process is under control; that is, if θ1 = θ2. For this purpose, two audit samples of size n = 10
are collected at rating periods P − 1 and P, respectively. Let X1 represent the number of defects
found in the first sample and X2 represent the number of defects found in the second sample. Also
suppose that X1 and X2 are Poisson random variables with parameters nθ1 and nθ2, respectively.
Let X = (X1, X2). For simplicity, we consider the hyperparameters in (32) as a1 = a2 = c = 1.
Hence, the predictive functions under the competing hypothesis are given by:

fH(xxx) = (1/2)x1+x2

[
(x1 + x2 + 1)

(
x1 + x2

x1

)][(
n

n + 1

)x1+x2
(

1
n + 1

)2
]

, (43)

and

fA(xxx) =
(

n
n + 1

)x1+x2
(

1
n + 1

)2
. (44)

Consequently, the Bayes factor at x = (x1, x2) ∈ N2 can be expressed by

BF(xxx) = (1/2)x1+x2(x1 + x2 + 1)
(

x1 + x2

x1

)
. (45)

Now, suppose that two defects are found at rating period P − 1 and nine defects are found at
period P. That is, suppose that X = (2, 9) is observed. In this case, one gets BF(2, 9) = 0.322.
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Considering b
a = 1, the conditional adaptive significance level and the conditional pT-value at (2, 9)

are, respectively,

α∗T((2, 9)) = ∑
x1∈{0,1,2,3,8,9,10,11}

(
2 + 9

x1

)
(1/2)2+9 = 0.227 and

PT-value((2, 9)) = ∑
x1∈ {0,1,2,9,10,11}

(
11
x1

)
(1/2)11 = 0.065 .

Since PT-value((2, 9)) < α∗T((2, 9)), the decision is to reject the null hypothesis (34), where
λ = ( θ1

θ1+θ2
, θ1 + θ2).

Note that although the sample size is small, the null hypothesis can be rejected with a conditional
PT − value of 0.065. Such a value is not compared with standard (fixed) cut-off values such as 0.01
or 0.05 but rather with the conditional adaptive significance level of 0.227 for X = (2, 9). Note also
that performance of the mixed test by means of the conditional statistics pT-value and α∗T when
X = (2, 9) is observed requires the calculation of only finitely many Bayes factors (twelve, precisely)
even though the sample space is infinite.

4.2. Test of Symmetry

Suppose we want to test the hypothesis of symmetry in an r × r two-way contingency
table. Several methods have been proposed for testing diagonal symmetry: see, for exam-
ple, [28–33] and references therein. Here we propose a solution to this problem by using
the mixed test and its properties. We present the simplest case r = 2. The reader will find
the general case r > 2 in Appendix A for the sake of readability.

Suppose each element (individual) of a sample of size n is classified into four mutually
exclusive combinations of the two-valued variables X1 and X2. Let Table 1 represent the
observed frequencies of the cross-classifications, where Xij is the number of individuals
classified into the i − th category of X1 and the j − th category of X2, i, j = 1, 2. Let
θ = (θ11, θ12, θ21), with θij ≥ 0 and θ11 + θ12 + θ21 ≤ 1, where θij denotes the probability of
classification into the i − th category of X1 and the j − th category of X2, i, j = 1, 2.

Table 1. Observed frequencies of (X1, X2) in the 2 × 2 case.

X2

X1

x11 x12 n1.
x21 x22 n2.

n.1 n.2 n

The hypotheses for testing diagonal symmetry are

H :θ12 = θ21

A :θ12 ̸= θ21
(46)

We assume that the vector X = (X11, X12, X21) is, given θ, a multinomial random
vector with parameters n and θ. The likelihood function generated by x = (x11, x12, x21) is
then given by

Lx(θ) =
n!

x11!x12!x21!x22!
θx11

11 θx12
12 θx21

21 θx22
22 , (47)

where x22 = n− x11 − x12 − x21 and θ22 = 1− θ11 − θ12 − θ21. Assume also a prior Dirichlet
distribution with parameter vector α = (α11, α12, α21; α22), αij > 0 for θ. That is,

π(θ) =
Γ(α11 + α12 + α21 + α22)

Γ(α11)Γ(α12)Γ(α21)Γ(α22)
θα11−1

11 θα12−1
12 θα21−1

21 θα22−1
22 IΘ(θ) , (48)
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where Θ = {(u1, u2, u3) ∈ R3
+ : u1 + u2 + u3 ≤ 1}.

We should note that the determination of the predictive functions is much easier under
the following reparametrization of the model: let us define

λ11 = θ11 λ21 = θ12 + θ21 and λ12 =
θ12

θ12 + θ21
.

Let λ = (λ12, (λ11, λ21)). Thus, the new parameter space is Λ = (0, 1)× S2 , where
S2 = {(u, v) ∈ R2

+ : u + v ≤ 1}.
Then, we can reformulate the hypotheses (46) as

H̃ : λλλ ∈ Λ0
Ã : λλλ ∈ Λc

0 ,
(49)

where Λ0 = { 1
2} × S2. Note that the likelihood function for θ generated by x = (x11,

x12, x21) ∈ {(a, b, c) ∈ N3 : a + b + c ≤ n} can be rewritten by conditioning on the statistic
T(X) = (X11, X12 + X21) as

Lx(θ) = P(X = (x11, x12, x21) | T(X) = (x11, x12 + x21) , θ)P(T(X) = (x11, x12 + x21) | θ)

=

(
x12 + x21

x12

)(
θ12

θ12 + θ21

)x12
(

θ21

θ12 + θ21

)x21 n!
x11!(x12 + x21)!x22!

θx11
11 (θ12 + θ21)

x12+x21 θx22
22 .

(50)

Hence, the induced likelihood function for λ generated by x = (x11, x12, x21) may be
factored as

L̃x(λ) =

[(
x12 + x21

x12

)
λ

x12
12 (1 − λ12)

x21

][
n!

x11!(x12 + x21)!x22!
λ

x11
11 λ

x12+x21
21 (1 − λ11 − λ21)

x22

]
(51)

Note that T is an ancillary statistic for λ12 as it is a multinomial random vector
with parameters n and (λ11, λ21), and the conditional distribution of X given T(X) = t,
t ∈ {(u, v) ∈ N2 : u + v ≤ n} depends on λ only through λ12. The prior distribution for λ
is given by

π̃(λ) =
Γ(α12 + α21)

Γ(α12)Γ(α21)
λα12−1

12 (1 − λ12)
α21−1I(0,1)(λ12) π̃(λ11,λ21)

(λ11, λ21) , (52)

where π̃(λ11,λ21)
is the prior Dirichlet distribution for (λ11, λ21) with parameter vector

(α11, α12 + α21, α22).
As in the example of the previous subsection, the results from Section 3 imply that

(λ11, λ21) is an NNP for testing the hypotheses H̃ versus Ã in (50) by using the mixed
test. In addition, we only need to compare the conditional pT-value with the conditional
adaptive significance level to decide between the hypotheses.

From Equations (A14) and (A15), one gets the following predictive functions under H̃
and under Ã for X:

fH̃(x11, x12, x21) = (1/2)x12+x21

(
x12 + x21

x12

)
× K (53)

and

f Ã(x) =

(
x12 + x21

x12

)[
Γ(x12 + α12)Γ(x21 + α21)

Γ(x12 + x21 + α12 + α21)

][
Γ(α12 + α21)

Γ(α12)Γ(α21)

]
× K , (54)

where

K =
∫

S2

[
n!

x11!(x12 + x21)!x22!
λx11

11 λx12+x21
21 (1 − λ11 − λ21)

x22

]
π̃(λ11,λ21)

(λ11, λ21)dλ11dλ21.
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Consequently, the Bayes factor BF(x) is

BF(x) = (1/2)x12+x21
Γ(α12)Γ(α21)

Γ(α12 + α21)

Γ(x12 + x21 + α12 + α21)

Γ(x12 + α12)Γ(x21 + α21)
. (55)

Finally, it follows from (28) and (30) that for x = (x11, x12, x21),

pT-value(x) = ∑
(y11,y12,y21) ∈ D∗

T(x)

(
y12 + y21

y12

)
(1/2)y12+y21

=
x12+x21

∑
y12=0

(
x12 + x21

y12

)
(1/2)x12+x21ID(x)(x11, y12, x12 + x21 − y12)

(56)

and

α∗T(x) = ∑
(y11,y12,y21) ∈ D∩DT(x)

(
y12 + y21

y12

)
(1/2)y12+y21

=
x12+x21

∑
y12=0

(
x12 + x21

y12

)
(1/2)x12+x21ID(x11, y12, x12 + x21 − y12)

(57)

In this example (as in the previous subsection), the conditional pT-value looks like the
frequentist p-value for the simple hypothesis θ = 1

2 regarding an unknown proportion. We
should emphasize that for calculation of the pT-value, the sample space is ordered by the
Bayes factor in place of the likelihood ratio. Note also that the evaluation of this conditional
statistic involves ordering at most n + 1 points of the sample space (exactly those for which
the statistic T takes the value T(x0) when x0 is the effectively observed sample point). On
the other hand, if one performs the mixed test without using these conditional quantities,
he shall order all (n+3

3 ) = (n+3)(n+2)(n+1)
6 elements of the sample space.

Example 4 (Analysis of opinion swing). Suppose it is of interest to evaluate whether the
proportion of individuals that did not support the US President before the State of the Union
Address remained unchanged after his address. For this purpose, n = 100 individuals are surveyed
with regard to their support for the President before and after his annual message. The survey results
are displayed in the following 2 × 2 contingency Table 2:

Table 2. Survey results.

After

No Yes

Before
No 20 17 37
Yes 10 53 63

30 70 100

Let X1 (X2) be the support—“No” or “Yes”—for the President before (after) the State of the
Union Address. Let θij be the probability that an individual is classified into the i-th category of
X1 and j-th category of X2 (for instance, θ11 is the probability that an individual does not support
the President both before and after his address). The hypothesis that the support for the President
remains unchanged is θ21 + θ22 = θ12 + θ22. This is equivalent to the hypothesis that the proportion
of swings from “Yes” to “No” is equal to the proportion of swings from “No” to “Yes”; that is, this
is equivalent to the symmetry hypothesis θ12 = θ21. Thus, we can test such a hypothesis by means
of the mixed test considering the mathematical setup of this subsection. Suppose α = (1, 1, 1, 1).
Then, the Bayes factor is given by

BF(x11, x12, x21) = (1/2)x12+x21(x12 + x21 + 1)
(

x12 + x21

x12

)
. (58)
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For the observed data x = (20, 17, 10), we obtain the Bayes factor BF((20, 17, 10)) = 1.76.
Considering a = b (that is b/a = 1), we do not reject the null hypothesis since BF((20, 17, 10)) > 1.
In this case, the conditional adaptive significance level and the conditional PT-value at the point
((20, 17, 10)) are

α∗T((20, 17, 10)) = ∑
y12∈{0,...,9}∪{18,...,27}

(
17 + 10

y12

)
(1/2)17+10 = 0.122 and

PT-value((20, 17, 10)) = ∑
y12∈{0,...,10}∪{17,...,27}

(
27
y12

)
(1/2)27 = 0.248 .

Note that pT-value((20, 17, 10)) > α∗T((20, 17, 10)), as it was expected. Note also that we
ordered only 28 elements of the sample space by the Bayes factor to determine the above conditional
quantities. To calculate the unconditional ones, we should have ordered all 176,851 points in the
sample space.

4.3. Test of Independence

Consider the same statistical model as in the previous subsection. However, now we
want to evaluate whether there exists (or not) association between the variables X1 and
X2. For this purpose, we may test the independence hypothesis between these variables.
Consider the joint distribution for (X1, X2) in Table 3 below:

Table 3. Joint distribution of X1 and X2 given θ.

X2

X1

θ11 θ12 θ1.
θ21 θ22 θ2.

θ.1 θ.2 1

The hypotheses to be tested are

H : θ11 = (θ11 + θ12)(θ11 + θ21)

A : θ11 ̸= (θ11 + θ12)(θ11 + θ21)
(59)

It is easy to check that hypotheses H and A can be rewritten as

H :
θ11

θ11 + θ12
=

θ21

1 − (θ11 + θ12)

A :
θ11

θ11 + θ12
̸= θ21

1 − (θ11 + θ12)

(60)

Let us define

λ11 =
θ11

θ11 + θ12
λ21 =

θ21

1 − (θ11 + θ12)
and λ12 = θ11 + θ12

and consider the new parameter λ = ((λ11, λ21), λ12), which takes value in Λ = (0, 1)2 × (0, 1).
Let T(X) = T(X11, X12, X21) = X11 + X12. Proceeding as in the previous subsections, we
obtain the following induced likelihood function for λ generated by x = (X11, x12, x21)

L̃x(λ) =

[(
x11 + x12

x11

)
λx11

11 (1 − λ11)
x12

(
x21 + x22

x21

)
λx21

21 (1 − λ21)
x22

][(
n

x11 + x12

)
λx11+x12

12 (1 − λ12)
x21+x22

]
(61)
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Note that T is an ancillary statistic for (λ11, λ21), as it is a binomial random variable
with parameters n and λ12. In addition, for each possible value t of the statistic T, the
conditional distribution of X given T(X) = t depends on λ only through (λ11, λ21).

The prior distribution for λ is such that λ11, λ21 and λ12 are independent Beta random
variables with respective parameters α11 and α12, α21 and α22, and α11 + α12 and α21 + α22.

Finally, note that under the new parametrization, the independence hypothesis is

H̃ : λ ∈ Λ0
Ã : λ /∈ Λ0 ,

(62)

where Λ0 = {(u, v) ∈ (0, 1)2 : u = v} × (0, 1).
From the results from Section 3, it follows that λ12 is an NNP for testing the hypotheses

H̃ versus Ã above by using the mixed test. In addition, we only need to compare the
conditional PT − value with the conditional adaptive significance level to decide between
these hypotheses. In a sense, the test for the hypothesis of independence between X1 and
X2 by using the conditional statistics resembles the test for the hypothesis of homogeneity
were the marginal counts X11 + X12 and n − X11 − X12 fixed beforehand.

Considering as in the previous section α = (1, 1, 1, 1), we obtain the following expres-
sion for the Bayes factor:

BF(x11, x12, x21) =
36 (x11 + x21 + 1)! (n + 1 − x11 − x21)!

x11! x12! x21! x22! (n + 3) ( n+2
x11+x21+1)

.

The conditional predictive probability function for X given T(X) = X11 + X12 = t,
t = 0, . . . , n is given by

fH,t(x11, x12, x21) =
6 ( t

x11
) (n−t

x21
)

(n + 3) ( n+2
x11+x21+1)

IT−1(t)(x11, x12, x21) , (63)

where T−1(t) = {(y11, y12, y21) ∈ X : T(y11, y12, y21) = y11 + y12 = t}.
From the above distribution, one may obtain the conditional PT − value and the

conditional adaptive significance level α∗T at each point in the sample space.

Example 5 (Market’s directional change). In [34] it is argued that the directional change of the
stock market in January signals the directional change of the market for the remainder of the year.
Suppose the following Table 4 summarizes the directional changes of the prices of a few stocks in
both periods.

Table 4. Survey results.

After January

Up Down

January change
up 5 0 5

down 2 8 10

7 8 15

In this case, the Bayes factor is given by

BF(x11, x12, x21) =
36 (x11 + x21 + 1)! (16 − x11 − x21)!

x11! x12! x21! x22! 18 ( 17
x11+x21+1)

. (64)

For the observed data x = (5, 0, 2), we obtain the Bayes factor BF((5, 0, 2)) = 0.244.
Considering a = b (that is b/a = 1), we reject the null hypothesis by using the mixed test since
BF((5, 0, 2)) < 1. That is, the data from only a few stocks reveal that the directional change for
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the remainder of the year depends on the directional change in January. Note that although the
sample size is small (n = 15) and a cell count is equal to zero, the mixed test can be fully performed,
as opposed to standard tests for the hypothesis of independence that rely on asymptotic results.
In this case, the conditional adaptive significance level and the conditional pT-value at the point
((5, 0, 2)) are

α∗T((5, 0, 2)) = 0.0109 and PT-value((5, 0, 2)) = 0.0022 .

5. Discussion

Statistical hypothesis testing is an important quantitative method that may help the
daily activity of scientists from different areas of knowledge. However, with recent compu-
tational advances, the misuse of standard tests have come to light. Thus, problems with
tests of significance and fixed-level tests have brought a growing need for alternative ap-
proaches to hypothesis testing that do not have such drawbacks. Among these alternatives,
we revisit in this manuscript the mixed test by Pericchi and Pereira, which combines aspects
from two opposing viewpoints: the frequentist and the Bayesian. The mixed test satisfies
various reasonable properties one desires when performing a test of hypotheses. Here we
prove that the mixed test also meets the Non-Informative Nuisance Parameter Principle
(NNPP) for simple hypotheses regarding the parameter of interest. The NNPP concerns the
question of how to make inferences about a parameter in the presence of Non-Informative
Nuisance Parameters: it states that it is irrelevant whether a Non-Informative Nuisance
Parameter is known or unknown in order to draw conclusions about a quantity of interest
from data. This principle, though important, has not been explored in some depth, and
for this reason, we studied it further in hypothesis testing problems. Nuisance parameters
typically affect inferences about a parameter of interest: when the variance is unknown,
estimation of the mean of a normal distribution and estimation of the parameters of a linear
regression model are examples of this.

Adherence of the mixed test to the NNPP allowed for much easier performance of
the test, as the calculations involved were significantly reduced. Indeed, decision making
between the competing statistical hypotheses was simplified in the three examples we
examined: in each situation, conditioning on a suitable statistic and considering condi-
tional versions of the p-value and the adaptive significance level were revealed to be an
advantageous course of action to use the mixed test. The extent to which the adherence of
the mixed test to the NNPP is valid and the use of the mixed test can then be made easier
remains unanswered in this work. This issue is the goal of future investigation.

Author Contributions: All authors have contributed to the conceptualization, formal analysis and
writing of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by Conselho Nacional de Desenvolvimento Científico e
Tecnológico [grant 141161/2018-3].

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Proof of Theorem 2. Suppose there exists a statistic T : X → T such that it is p-sufficient
for θ1 and s-ancillary for θ2. Then,

P(X = x| θ) =P(X = x, T(X) = T(x) | θ)

=P(X = x|T(X) = T(x), θ1, θ2)P(T(X) = T(x) | θ1, θ2)
(A1)

The result is immediate: as the conditional distribution of X given T(X) = T(x) and
θ depends only on θ2, and the marginal distribution of T given θ depends only on θ1,
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one can write for each x ∈ X, P(T(X) = T(x) | θ1, θ2) = L1
x(θ1) and P(X = x|T(X) =

T(x) | θ1, θ2) = L2
x(θ2). The proof when T is p-sufficient for θ2 and s-ancillary for θ1 is

analogous.

Proof of Theorem 1. We first prove the (⇒) part of the theorem. Suppose that x ∈ X is
such that θ1 ⊥⊥ θ2 | X = x; that is, the posterior distribution of θ given X = x can be factored
as π(θ| x) = π1(θ1| x)π2(θ2| x). Then,

π(θ|x) = π1(θ1|x)π2(θ2|x) ⇒ Lx(θ)π(θ)∫
Θ

Lx(θ)π(θ)dθ
=

∫
Θ2

Lx(θ)π(θ)dθ2∫
Θ

Lx(θ)π(θ)dθ

∫
Θ1

Lx(θ)π(θ)dθ1∫
Θ

Lx(θ)π(θ)dθ
. (A2)

Due to the fact that θ1 ⊥⊥ θ2, it follows from the last equality in (A2) that

Lx(θ)π1(θ1)π2(θ2) = π1(θ1)
∫

Θ2

Lx(θ)π2(θ2)dθ2

π2(θ2)
∫

Θ1

Lx(θ)π1(θ1)dθ1∫
Θ

Lx(θ)π(θ)dθ
. (A3)

The result follows considering, for instance,

L1
x(θ1) =

∫
Θ2

Lx(θ)π2(θ2)dθ2 and L2
x(θ2) =

∫
Θ1

Lx(θ)π(θ1)dθ1∫
Θ

Lx(θ)π(θ)dθ
. (A4)

Next, we prove the converse. Suppose that the likelihood can be factored as
Lx(θ) = L1

x(θ1)L2
x(θ2). Then,

π(θ|x) = Lx(θ)π(θ)∫
Θ

Lx(θ)π(θ)dθ
=

L1
x(θ1)L2

x(θ2)π1(θ1)π2(θ2)∫
Θ1×Θ2

L1
x(θ1)L2

x(θ2)π1(θ1)π2(θ2)dθ
. (A5)

The posterior marginal density of θi is obtained from (A5) by integrating out the other
component. Thus,

πi(θi|x) =
Li

x(θi)πi(θi)∫
Θi

Li
x(θi)πi(θi)dθi

, i = 1, 2, (A6)

and therefore, π(θ1, θ2|x) = π1(θ1|x)π2(θ2|x); that is, θ1 ⊥⊥ θ2|X = x.

Proof of Theorem 3. We first verify that θ2 is an NNP for testing H̄ versus Ā by means of
φ̄∗. Recall that

φ̄∗(x, θ2) = 1 ⇔ f̄H̄(x, θ2)

f̄ Ā(x, θ2)
<

b
a

, (A7)

where f̄H ( f̄A) is the predictive distribution for (X, θ2) obtained under H̄ (Ā). In this case,
the likelihood function generated by (x0, θ2) for θ1 with x0 ∈ X such that (1) holds and
θ2 ∈ Θ2 is

L̄(x0,θ2)
(θ1) = P(X = x0 | θ1, θ2)π2(θ2 | θ1) = Lx0(θ1, θ2)π2(θ2)

= L1
x0
(θ1)L2

x0
(θ2)π2(θ2).

(A8)

Then, the predictive function under the null hypothesis H̄ can be calculated as

f̄H̄(x0, θ2) =
∫
{θ0}

L̄(x0,θ2)
(θ1)dPH̄(θ1) , (A9)
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where PH̄ is degenerate at θ0 conditional distribution of θ1|θ1 = θ0. Thus,

f̄H̄(x0, θ2) = L1
x0
(θ0)L2

x0
(θ2)π2(θ2). (A10)

In addition, the predictive function under the alternative hypothesis Ā is given by

f̄ Ā(x0, θ2) =
∫

Θ1

L1
x0
(θ1)L2

x0
(θ2)π2(θ2)dPH̄1

(θ1)

=
∫

Θ1

L1
x0
(θ1)L2

x0
(θ2)π2(θ2)π1(θ1)dθ1

= L2
x0
(θ2)π2(θ2)

∫
Θ1

L1
x0
(θ1)π1(θ1)dθ1.

(A11)

Thus, the Bayes factor can be expressed by

f̄H̄(x0, θ2)

f̄ Ā(x0, θ2)
=

L1
x0
(θ0)L2

x0
(θ2)π2(θ2)

L2
x0
(θ2)π2(θ2)

∫
Θ1

L1
x0
(θ1)π1(θ1)dθ1

=
L1

x0
(θ0)∫

Θ1

L1
x0
(θ1)π1(θ1)dθ1

.

(A12)

Note that Equation (A12) does not depend on θ2. As a result, the test in (A7) does not
depend on θ2, and consequently, θ2 is an NNP for testing H̄ versus Ā by means of φ̄∗. Now,
we shall determine the test φ∗ for H versus A. The predictive distribution for X at x0 under
the null hypothesis is

fH(x0) =
∫

Θ1×Θ2

Lx0(θ1, θ2)dPH(θ1, θ2). (A13)

It is not difficult to verify that for fixed θ0 ∈ Θ1, the conditional distribution of θ given
θ1 = θ0 is such that θ1 is degenerate at θ0, and θ2 is independent of θ1 with density π2.

Then,
fH(x0) =

∫
Θ1×Θ2

Lx0(θ1, θ2)dPH(θ1, θ2)

=
∫

Θ2

L1
x0
(θ0)L2

x0
(θ2)π2(θ2)dθ2

= L1
x0
(θ0)

∫
Θ2

L2
x0
(θ2)π2(θ2)dθ2.

(A14)

For the alternative hypothesis, we have that

fA(x0) =
∫

Θ1×Θ2

L1
x0
(θ1)L2

x0
(θ2)dPA(θ1, θ2)

=
∫

Θ1×Θ2

L1
x0
(θ1)L2

x0
(θ2)dP(θ1, θ2)

=
∫

Θ1

∫
Θ2

L1
x0
(θ1)L2

x0
(θ2)π1(θ1)π2(θ2)dθ1dθ2

=
∫

Θ1

L1
x0
(θ1)π1(θ1)dθ1

∫
Θ2

L2
x0
(θ2)π2(θ2)dθ2.

(A15)

Finally,
fH(x0)

fA(x0)
=

L1
x0
(θ0)

∫
Θ2

L2
x0
(θ2)π2(θ2)dθ2∫

Θ1
L1

x0
(θ1)π1(θ1)dθ1

∫
Θ2

L2
x0
(θ2)π2(θ2)dθ2

=
L1

x0
(θ0)∫

Θ1

L1
x0
(θ1)π1(θ1)dθ1

=
f̄H̄(x0, θ2)

f̄ Ā(x0, θ2)
.

(A16)
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Hence,
fH0(x0)

fH1(x0)
<

a
b
⇔

f̄H̄0
(x0, θ2)

f̄H̄1
(x0, θ2)

<
a
b

, (A17)

and consequently,

φ∗(x0) = 1 ⇔ φ̄∗(x0, θ2) = 1. (A18)

Proof of Corollary 1. The corollary follows directly from Theorems 2 and 3.

Proof of Theorem 4. From Theorem 3 and Corollary 1, we have that for each x0 ∈ X,

φ∗(x0) = 1 ⇔ BF(x0) ⩽
b
a

. (A19)

Then,

φ∗(x0) = 1 ⇒ BF(x0) ⩽
b
a

⇒ D(x0) ⊆ D ⇒

⇒ ∑
x ∈ D(x0)

fH,T(x0)
(x) ≤ ∑

x ∈ D

fH,T(x0)
(x) ⇒ pT-value(x0) ≤ α∗T(x0) .

Thus,
φ∗(x0) = 1 ⇒ PT-value(x0) ≤ α∗T(x0) . (A20)

The converse is proven by the contrapositive.

φ∗(x0) = 0 ⇒ b
a

< BF(x0) ⇒ D ∪ {x0} ⊆ D(x0) .

As x0 /∈ D if BF(x0) >
b
a , we obtain that

φ∗(x0) = 0 ⇒ ∑
x ∈ D

fH,T(x0)
(x) + fH,T(x0)

(x0) ≤ ∑
x ∈ D(x0)

fH,T(x0)
(x) .

Since x0 ∈ DT(x0) and BF(x0) >
b
a > 0, it follows that fH,T(x0)

(x0) > 0. Thus,

φ∗(x0) = 0 ⇒ α∗T(x0) < PT-value(x0) , (A21)

and consequently,
pT-value(x0) ≤ α∗T(x0) ⇒ φ∗(x0) = 1 . (A22)

From (A20) and (A22), the result follows.

Mixed test for symmetry hypothesis for r × r contingency tables
In this case, Table A1 represents the observed frequencies of the cross-classification of

n units by the variables X1 and X2.

Table A1. Observed frequencies of X1 and X2 in the 3 × 3 case.

X2

X1

x11 x12 x13 n1.
x21 x22 x23 n2.
x31 x32 x33 n3.

n.1 n.2 n.3 n

Let X = (Xij) be the (r2 − 1)-dimensional vector of cell counts and θ = (θij) be the
(r2 − 1)-dimensional vector of cell probabilities, where Xij and θij are self explanatory.
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Suppose that X is a multinomial random vector with parameters n and θ. The likelihood
function generated by x ∈ X for θ is given by

Lx(θ) =
n!

x11! . . . xrr!
θx11

11 . . . θxrr
rr . (A23)

The hypotheses for testing diagonal symmetry are

H :θij = θji ∀i ̸= j.

A :θij ̸= θji for at least one i ̸= j.
(A24)

We also assume a prior Dirichlet distribution with parameter α = (αij) for θ. That is,

π(θ) =
Γ(α11 + . . . + αrr)

Γ(α11) . . . Γ(αrr)
θα11−1

11 . . . θαrr−1
rr . (A25)

To perform the mixed test for the symmetry hypothesis, we consider the following
reparametrization of the model: we define

λij =
θij

θij+θji
for i < j

λij = θij + θji for i > j
λij = θij for i = j.

(A26)

Let λ = (λ1, λ2), where λ1 is the ( r2−r
2 )-dimensional vector for which the components

are λij’s such that i < j, and λ2 is the ( r2−r
2 + r − 1)-dimensional vector for which the

components are λij’s such that i ≥ j. The new parameter space is then Λ = (0, 1)
r2−r

2 ×
S r2−r

2 +r−1
.

Then, we can rewrite the hypotheses (A24) as

H̃ : λ ∈ Λ0
Ã : λ ∈ Λc

0.
(A27)

where Λ0 = B × S r2−r
2 +r−1

, and B is the singleton B = {( 1
2 , . . . , 1

2 )}.

As in previous sections, we consider a statistic T that is s-ancillary for λ1: T is the
( r2−r

2 + r − 1)-dimensional vector for which the components are the sums Xij + Xji for i < j
and Xii for i = 1, . . . , r − 1. The induced likelihood function for λ generated by x is

L̃x(λ) =

[
∏
i<j

(
xij + xji

xij

)
λ

xij
ij (1 − λij)

xji

][
n!

∏i xii ! ∏i>j(xij + xji)!
∏

i
λ

xii
ii ∏

i>j
λ

xij+xji
ij

]
. (A28)

We can easily see that the likelihood function in (A28) can be factored as L̃x(λ1, λ2) =
L̃1

x(λ1)L̃2
x(λ2). In addition, the prior distribution for λ is such that λ1 and λ2 are indepen-

dent: λ2 being a Dirichlet random vector and λ1 a vector of independent Beta random
variables. That is,

π̃(λ) = π̃1(λ1)π̃2(λ2) = ∏
i<j

Γ(αij + αji)

Γ(αij)Γ(αji)
λ

αij−1
ij (1 − λij)

αij−1I(0,1)(λij) π̃2(λ2) (A29)

From Theorem 3, we have that λ2 is an NNP for testing H̃ versus Ã by means of
the mixed test. In addition, the mixed test for H̃ reduces to the mixed test for the simple
hypothesis λ1 = ( 1

2 , . . . , 1
2 ) were λ2 known. From Theorem 4, it follows that we only need

to compare the conditional PT − value with the conditional adaptive significance level to
test H̃ against Ã. From (28), (30) and (A28), we obtain for x = (xij) ∈ X:
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pT-value(x) = ∑
y ∈ D∗

T(x)
∏
i<j

(
yij + yji

yij

)
(

1
2
)yij+yji = ∑

y ∈ D∗
T(x)

∏
i<j

(
xij + xji

yij

)
(

1
2
)xij+xji (A30)

and

α∗T(x) = ∑
y ∈ D∩DT(x)

∏
i<j

(
yij + yji

yij

)
(

1
2
)yij+yji = ∑

y ∈ D∩DT(x)
∏
i<j

(
xij + xji

yij

)
(

1
2
)xij+xji . (A31)

In this case, these conditional quantities are simply determined by the products of
binomial-type probabilities.
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