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The article presents a Bayesian analysis for the environmental stress screening
problem. The decision problem of deriving optimal stress screen durations is solved.
Given a screen duration. the optimal stress level can also be determined. Indicators
of the quality of a screen of any duration are derived. A statistical model is presented
which allows a posterior density for the rate of early failures of the production
process to be calculated. This enables the user to update his opinion about the
quality of the process. © 1994 John Wiley & Sons, Inc.

i. INTRODUCTION

Environmental stress screening (ESS) has been given high priority by industry,
as it is able to reduce costs by enhancing the reliability of equipment. However,
a rational approach to ESS design or Bayesian models to handle data generated
by ESS experiments have not yet been suggested.

Environmental stress screening has been used, for instance, to purge popu-
lations from parts having hidden latent defects not detectable by quality control.
This is done by submitting the parts to stress (compression of time) which will
precipitate early failures. Defective parts are eliminated from the population,
and the surviving parts have a much smaller proportion of defective items. The
economical benefits of such procedures are clear, since the cost of stressing items
is usually much smaller than the cost of having failures occur after the equipment
is in the field.

An excellent description of the problem is given by Perlstein, Littlefield, and
Bazovsky [12] where there is a derivation of stress screen durations that will
leave the failure rate of the surviving parts within a chosen distance of the failure
rate of the “good” parts. In this article the determination of optimal durations
is approached from a Bayesian point of view. In addition to its philosophical
advantages, the Bayesian approach pays more attention to economic consider-
ations and is more realistic than the available classical-inspired plans which are
conditional on unknown quantities. '

The ESS experiment also provides data that statisticians may use to learn
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more about the production process. In the last part of this article Bayesian
inference for the rate of early failures is developed.

2. NOTATION AND ASSUMPTIONS

We are considering a lot of N parts having a proportion p of substandard
parts. These substandard parts have hidden latent defects which will very likely
provoke the early failures. They cannot be detected by quality control (even if
applied 100%) because they appear to be good parts. (It is assumed that every
part could, at least conceptually, be opened. One could then verify precisely
whether the part was substandard or not.)

This parts purging situation is essentially the setup used by Perlstein et al.
[12]. Environmental Stress Screening can also be applied to populations of as-
sembled parts or of finished products. The items failing the screen are then
repaired or improved, instead of replaced, as in the parts case. Such models are
known as complex systems. We shall discuss the parts populations case, although
the same Bayesian approach is applied to the complex systems situation without
any further conceptual complication.

The failure rate of the substandard parts under stress is A,, while the failure
rate of the good parts under stress is A,, A, > A,. There are two points which
should be carefully considered on the applicability of this model. First, the
constant failure rate assumption, which often is just a mathematical simplifica-
tion, plays a crucial role in ESS. The assumption that the failure times are
exponentially distributed guarantees that the parts surviving the stress screen
will not be aged by stressing. The user of a stress screen plan should be attentive
to the fact that if the exponential (or perhaps a decreasing failure rate) as-
sumption is not adequate, there might end up being a lot of mostly good parts
surviving the screen which will, nevertheless, be aged. (On the other hand, a
screen of small duration undertaken soon after manufacture can still be of interest
for parts having bathtub failure rates.)

The consideration of an exponential distribution for the lifetime of parts is
equivalent to the supposition that parts do not age under stressing. An equivalent
way of describing predictively the no-aging assumption is by assuming that the
associated process Y, of the number of failures Y; during the ith consecutive
unit of time, is Poisson. Either formulation induces the parametric exponential
model. A judgment of partial exchangeability, that is, of exchangeability of parts
having the same quality with respect to behavior under stress screening, is aiso
made. De Finetti’s representation theorem [5] for partially exchangeable se-
quences then induces consideration of the two failure rates A, and A.. The prior
density for (A, A,) on the plane reflects the statistician’s opinion about the failure
rates. For example, a prior distribution totally concentrated on the diagonal
A, = A, 1s a judgment of complete exchangeability. Since in the statistician’s
opinion A, < A,, such a prior will be totally concentrated on the region 0 < A,
£ A

We have derived the parametric modeling of the lifetime of parts from ex-
changeability and invariance considerations. Such judgments of indifference are
the most natural subjective judgments to consider.

Another point that needs to be mentioned is the quantification of stress levels.
In Perlstein et al. there are reminders of the fact that the stress level should be
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kept under a “‘threshold which could precipitate failure modes that would never
occur in normal operation or which could damage the part” [9, Sect. 2.2]. In
addition to this assumption of nondamaging stress levels, it is assumed that the
stress levels used can be translated into a factor of acceleration of time. In both
Bayesian and non-Bayesian derivations, the optimal duration of the stress screen
turns out to be the inverse of the acceleration of time factor multiplied by
acceleration-invariant constants.

In practice the user of these plans needs to be able to express the stress level
as a constant factor of acceleration of time. We will use this assumption and
denote such a factor by /. We then have A, = /A, and A, = /A,, where A; and
A, denote the failure rates under normal operating conditions.

Let T be the optimal duration for the screen (under a given stress level /) and
t denote time. We will now introduce the notation and discuss the costs involved
in stressing and stopping the screen. Let ¢, represent the cost of having a sub-
standard part escape the screen and ¢, represent the cost of having a good part
destroyed by the screen. The costs ¢, and ¢, are ‘“‘decision’ costs In the sense
that they describe the cost of wrong “‘decisions” regarding a part. Since the
major concern in ESS is to eliminate poor parts, the cost ¢ is usually much
larger than c¢,. If one defines a substandard part as a part failing the screen,
then ¢, = 0. The stressing costs as opposed to decision costs are now considered.
Let c; be the cost of stressing and failing a part, and ¢4 be the cost of stressing
and releasing a part. We are assuming, for simplicity, that ¢; and ¢, depend
neither on ¢ nor on the quality of the part. These assumptions are of course not
suitable in many situations. For example, the cost of stressing can be modeled
as a linear function of time of stress of the part until failure or release. Under
these more realistic assumptions, the adaptation of the derivation presented in
this section is straightforward.

The total cost depends on A,, A, and on p, the “parameters’ of this model.
The proportion p of substandard parts in the lot is structurally distinct from the
failure rates since it is, at least conceptually, observable. One could open every
part and count the number of substandard ones. The verifiability {6] of the failure
rate values depends on “‘observing” limits related to infinite sequences of failure
times. It is immaterial whether p is treated as a random quantity or as a param-
eter.

Since p will not be observed, we will model it as a parameter. A joint prior
density for (p, A,, A,) will be given. The design problem to be solved is the
determination of + = T in such a way that the expected total cost with respect
to the prior distribution for (p, A,, A.) i1s minimized.

We will consider families of prior densities which are convenient and large
enough to accommodate different opinions. A family of joint prior densities for
(p, Az A,) which is weakly conjugate will be introduced.

We suggest the use of the beta family of prior densities for p as a natural
approximation for a strictly coherent discrete prior on {fN~': j = 0,1, . . .,
N}. The beta family is indexed by positive numbers a and b and the beta(a, b)
prior density is given by

f(p) = [T(a + BY/(T(@T GBI (1 — p)e-l.

The uniform density on (0, 1) is the particular case @ = b = 1. The expected
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value of a beta (a, b) distribution is given by E(p) = a/(a + b) and its variance
by V(p) = ab(a + b) ¥a + b + 1)L
We will assume the following joint prior density for (p, Az A.):

F(ps Ao A) = 0dT(a + B)(T(@T(BN)p*~ 1 - ) i

for 0 < p < 1and 0 < A, < A,. This is equivalent to assuming p independent
of (Az A.), a beta(a, b) density for p, an exponential (6) density for A,, and a
conditional exponential (7) density for A, shifted by A,. It follows that E(A,) =
0-', E(AJr,) = A, + 7, and E(A,) = (0 + 1)/(07). The marginal distribution
of A, has a mode at [In(7/6)]/[7 — 6]. The statistician will elicit values a, b, 9,
and 7 and it will typically be the case in ESS thata < b and 8 > .

In practical situations, where A, is much smaller than A,, the value of 6 will
be chosen much larger than the value of 7. The conditional exponential density
for A, then becomes practically flat if compared to the prior exponential density
for A,. The prior uncertainty about A, can be expressed through prior densities
that make use of the knowledge about production process standards, as contained
in publications such as the military standards series. On the other hand, the
statistician is able to express his relatively much larger ignorance about A, given
A, through an almost flat prior conditional density which is nevertheless proper.
In addition to satisfying coherence requirements, proper priors can be very
helpful when deriving marginal posterior densities as in Section 5. For values
of # much larger than the value of 7, the following relation shows how small the
prior probability of having A, close to A, is—even if the mode of the marginal
prior density f(A,, A.) is the origin.

FACT: With the prior f(p, A,, A.) given above,
P(A, <MA)=1- 66+ «(M — 1], forevery M > 1.

The proof follows immediately by conditioning on A,.

3. OPTIMIZING THE STRESS SCREENING DURATION

There is a proportion p of substandard parts in a lot of size N. But inspection
of a part does not reveal whether it is substandard or not. This fact makes all
parts look similar and entails a judgment of exchangeability of the parts with
respect to quality and behavior under the screening stress experiment. In par-
ticular, for any part in the lot, the statistician’s probability that it is substandard
is E(p) = a/(a + b), where E stands for integration with respect to the beta(a,
b) prior for p.’

The conditional cost per part of a screen of duration £ at stress level [ 1s
therefore easily derived as

pl1 — e e + e (e + c)] + (1 - pIQ - e M)(c, + ¢5) + eHey).

The conditional cost is the expected total screening cost of a part. The as-
sumption of exponentiality of the lifetime distribution is used in the derivation
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of the expression above, since
P(X > x|p, Ags A) = pe™* + (1 — ple™™,

where X is the lifetime of a part from the lot. Integration over the sample space
for X is correct for the Bayesian since there is no violation of the likehihood
principle [3] when the choice of stress duration has to be made before the
observation min(x, T) becomes available. Preposterior integration is a common
feature in decision problems concerned with design.

The optimization problem can be easily visualized by means of an influence
diagram [1]. Figure 1 is the influence diagram for the problem of finding the
duration T minimizing the expected value of the cost with respect to the relevant
random quantities. The influence diagram is for a single part since the expected
cost for the lot is N times the expected cost per part when parts are exchangeable.

After rearranging the terms, we obtain the cost per part expressed as

3+ ¢l —p) + (¢, + ¢4 — c3)pe™ + (cs — ¢ ~ c3)(1 — ple™*.

The dependence of the conditional cost on the stress level / is expressed through
the failure rates which are average numbers of failures per unit of time under
stress. Failure rates under stress level [ are related to those under normal op-
erating conditions, A, and A,, through the relations stated in Section 2:
A, = Ir; and A, = A,
The last expression for the conditional cost can be integrated with respect to
the joint prior f(p, A, A.). We will then have the expected cost per part (in the
statistician’s opinion) or the risk of a screen plan of duration ¢ and stress level
I, denoted by R(t, [). The risk obviously depends also on the cost structure of
the experiment, but we will omit this from the notation. By using the joint prior
f(p, Ag. A.) presented in Section 2, one obtains

R, 1) = ¢5 + cobla + b)™' + (¢, + s — c)a(a + b) 10x(z + 1)~1(8 + 1)~

+ (cs — ¢; — cy)b(a + b)'6(6 + 1)\

A T.Duration
: ~.  5;Cost of Screen

T ’( S \'> p ~ Beta(a,b)
~~ 3l p~Ber(p
< ~
\, s / Ag ~ Expo(@)
N\ 4 Ae |Ag ~ Ag* Expo(t)

] ZI(T, &g, Xe 2 =0) ~ Ber (exp(-AgT)
/ ZI(T, g, Ae 2 =1) ~ Ber (exp{-2,TH

X A
e
4 \ ) e
()

Figure 1. Decision problem influence diagram.
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The prior values for normal operating conditions, 6’ and 7', must satisfy 8’ =
10 and ¥ = I for coherence. By using these values, the risk can also be written
explicitly in terms of ! by simply replacing 6’ for 0, 7' for 7, and It for ¢ in the
expression of R(¢, ) above.

In order to obtain the optimal T: i.e., the value of ¢ minimizing the risk or
expected cost, one can minimize R(z, [) by elementary differentiation methods.
Let us set

K = 7'(bla)[(cs = €2 — c3)/(c; = ¢ — ¢J)].

If K is either negative or zero, the optimal 7 will typically be equal to 0, no
screening, or to =, screening until failure of all parts. We will examine the more
interesting situation where K is strictly positive and finite. Under this assumption,
one obtains

T=K'1-Kr+(1-K(>— )"

as the optimal duration for the screen. If the value of T'in the expression above
is negative, then the optimal decision is to not stress the population. Notice that
T can be written in the form 7 = [~'D, with D being a constant relative to
acceleration of time; that is, D has the same value for all /. The minimal total
expected cost of the screening experiment of optimal duration T is R(T, [)
multiplied by N, by the exchangeability assumption.

The optimal solution obtained is not a strict Bayes solution, as it is not se-
quential. A sequential solution would dynamically incorporate the information
resulting from the failure of any part in a new (conditional) derivation of an
optimal time 7. Such a genuine Bayesian solution is nevertheless too complicated
to obtain. We derived, instead, the preposterior solution, which is sufficiently
close to the sequential one.

We now derive goodness measures of a screen of duration ¢. The probability
that a substandard part will escape from the screening is

E(e %) = 67/[(= + 6)(8 + 1)].

The expected number of substandard parts that will escape from the screening,
also called the remaining defect density, is therefore

Dg(t) = NE(p)or/[(t + (8 + t)] = Nla/(a + b)ler/{(r + 1)(8 + )]

The use of the assumption of prior independence between p and A, should be
noticed. |

The probability that a substandard part will not escape from the Screen is
sometimes called the screening strength (SS) and we have

5§S(t) = 1 — 6r/[(= + t)(8 + 1)].

On the other hand, the probability that a good part will survive the screening
is

E(e™™) = 0/(8 + )
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and the expected number of good parts remaining in the lot after the Screen 18
NE(1 — p)6/(@ + t) = N[b/{(a + b)]6/(6 + 1).
Another measure of interest in the military standards literature is the yield,

defined as the prior probability of having zero substandard parts remaining in
the lot after the Screen. The yield is derived as

Y(1) = E([1 ~ e™™P") = E([p(1 — e™*) + (1 - p)I")

N
gl (a + b)IT(a)] > (7) (-1)T(@ + N — j)
j=0

/[C@a+ b+ N —jr+ (N—- DO+ (N - NoI

il

gdl'(a + b)Y/ (T(a)[' ()T (a + b + N))]

N :
% ¥ 3 (N)(’.)(—l)f-fl‘(a + Hrb + N — )

Sl Ned K

e+ G = Doy + (j — o).

The approximation above is obtained by assuming a prior beta(a, b) density for
a propensity p in place of the proportion p. Such “infinite population” models
are discussed in Section 5. The identity then results from the equivalence between
a beta(a, b) assumption for the propensity p and a beta-binomial (N, a, b)
assumption for the number of substandard parts initially present in the lot: By
using the equivalence, we obtain

N
E((p(1 = e) + (1 — pIY) = %%E[(l — e Myl

where g; are the beta-binomial probability function values.

For fixed values of the yield Y(¢), it is very difficult to solve for ¢, using either
of the expressions above. Hence, we suggest the following heuristic approxi-
mation, which is a Poisson term for zero occurrences

Y(t) = e—G-r[Na/(a+b)]/[(9+t)(-r+f)] = e~ Drl9),

The parameter of the approximating Poisson distribution is the remaining defect
density Dg(r). Notice that Dg(f) = (1 — 55(¢))D;,, where D;, is the expected
number of substandard parts before the screen, or the incoming defect density
[Na/(a + b)), while 1 — SS(¢) = 67/[(6 + ) (7 + 1)].

4. NUMERICAL EXAMPLES

We will first examine the same numerical example of Section 5 of Perlstein
et al. [12]. They consider a population of 3750 electronic parts and derive a
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duration of 215 hours in order to have 96% “power screen’” value. Let us now
consider a cost structure given by ¢; = 100, ¢c; = 20, ¢; = 1, and ¢, = 0.01.
Suppose the statistician chooses @ = 1 and b = 3999, and (knowing He=
2(10%) and 7 = 67. We obtain K = 12.6535and T = 330.64 hours. The expected
cost when using this duration is 0.0179 per part or 67.07 for the whole lot. The
expected cost when using a duration of 215 hours is 0.0184 per part or 68.94 for
the whole lot. The expected cost per part if no screening at all is performed
(t = 0) is 0.0350 — 0.01 = 0.0250 or 93.75 for the lot. Notice that c, is to be
subtracted from R(0, [) in order to obtain the correct risk at ¢ = 0 (there is no
stressing cost when ¢ = 0). The relative stability of the expected cost—per part—
for small and moderate durations is caused, in this particular example, by the
assumptions of an extremely small proportion of defectives in the lot (as ex-
pressed by the prior beta values of a and b) and independence of c; and c, from
t. The graph of R(¢, I) as a function of ¢ is on Figure 2.

If the optimal duration T = 330 is used, the expected number of good parts
surviving the test is

3750 x (3999/4000) x 2(10%/[2(10°) + 330] = 3748.44
and the expected number of defective parts surviving the test is

3750 x (1/4000) x 2(106) x 67/[{2(10°) + 330467 + 330}] = 0.16.

0.035

0.030

0.02%

0.020

o 200 400 600 800 1000

time

Figure 2. The risk function.
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Figure 3. Contour curves of optimal duration.

There is no precise way of comparing the Bayesian approach to the power
screen approach of Perlstein et al. {12], since they do not consider any cost
structure in their numerical example. In addition, their non-Bayesian approach
is conditioned on known values of the parameters.

We now consider the particular situation where ¢; = ¢, = 0; that is, stressing
is free. In Figure 3, we present a plot showing contour curves of optimal duration:
The horizontal axis has values of a/(a + b), the prior expected proportion of
substandard parts. The vertical axis has values of c,/c,, the ratio between the
decision costs. The optimal duration values were computed by taking 6 = 10°
and r = 102 Notice, however, that since T is always proportional to the inverse
stress level, {7}, the plot is useful for any other values of 6 and 7 such that
6/ = 10%. For prechosen screen durations, optimal stress levels can actually be
obtained from such plots, i.¢., from the relation between T and [~V derived in
Section 3.

Similar plots can be constructed for different values of 6/, c3, and ¢4. Notice
also the “negative” values of T for the small values of ¢,/c; that make it optimal
to not start screening at all.

5. STATISTICS: THE POSTERIOR DENSITY

In the previous sections, we used the Bayesian approach to decision-making
in the problem of determining the optimal duration of a stress screening test.
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It was assumed that the user has the figures for the cost structure and values
determining the joint prior density for the three parameters involved in the
problem. Now, we will consider the use of data. In fact, an ESS experiment
provides data consisting of failure times and the number of truncations at the
duration. The genuine Bayesian obtains a joint posterior (to the data) density
which is his updated (by the data) opinion about the parameters. He will use it
as the prior in the derivation of the duration of a possible second screen. Al-
ternatively, he might use the updated opinion in order to suggest changes in the
production process. Conceptually, the production process could be fine tuned
up to the point where future screenings would not be necessary. This is of course
an idealistic goal, but it illustrates the dynamics of Bayesian statistical control:
The screening experiment purges the lot; in addition to this original aim, it
provides data which are informative about the production process. Changes in
the production process might improve it, making future screenings shorter and
less expensive.

There are computational difficulties in the derivation and use of such joint
posteriors—they are not as simple as the joint prior that we presented in Section
2. The problem has been approached by Bernardo and Girén [4] who consider
a very particular case where the only parameter is p, the other two assumed to
be known. They point out the absence of conjugate densities for this kind of
model and present some approximations to the posterior methods. The practical
difficulty of deriving multidimensional posterior densities has been recently dis-
cussed by several authors, such as Kass, Kadane, and Tierney [8]. The problem
of using data provided by the screen hasalso been discussed, from a non-Bayesian
point of view, by Mendenhall and Hader [10], who suggest an iterative method
to solve simultaneous equations for maximum likelihood estimates. However,
they assume that all failed parts have their quality revealed; Rider [13] uses the
classical method of moments for estimation of the parameters. However, he
assumes no truncation of the observations. In addition, the classical method of
moments very often provides negative estimates for the failure rates. Coherent
procedures never obtain such conclusions. An efficient sequential design of ESS
screens should make use of the (truncated) data arising from the screens. Such
a procedure would not need any estimation experiment and would be better
derived as a Bayesian sequential design procedure.

We suggest a “‘restriction to interest” approach: We will slightly summarize
the data, sacrificing some of the information obtained about the failure rates,
in order to obtain a computable marginal posterior density for p. It is important
to realize that the original model is being replaced by another one. Specifically,
the proportion per se of substandard parts in the original lot is no longer a
parameter of interest. Actually, after the screening this proportion is drastically
reduced. At this point, what we are interested in is the proportion of substandard
parts in the next lot. Hence, we are now considering a model where the pro-
duction process generates parts which are substandard with propensity p and
from which the first lot was actually a sample of size N, with a proportion of
substandard parts no more necessarily equal to p. This modeling is naturally
induced by an exchangeability judgment the user has about the parts with respect
to their quality [9].

We will now derive the joint posterior density. The full data provided by the
experiment are a list of failure times and the number of surviving parts. A crucial
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assumption here is that an autopsy on all the failed parts will be performed,
with some of them failing to respond, that is, not revealing whether they were
of substandard quality or not. This enables one to use the methodology of Basu
and Pereira [2] to handle data showing nonresponse.

Once the autopsies are performed, we organize the data as x = number of
failed parts that were (revealed by autopsy) substandard, y = number of failed
parts that were (revealed by autopsy) good, z = number of failed parts with
quality not revealed by the autopsy, and m = N — (x + y + z) number of
surviving parts. Notice that the actual failure times are collapsed.

A factorable nuisance parameter has to be now introduced. Let a denote the
probability that a failed part does not respond to the autopsy. Once again, the
introduction of « in the model depends on a judgment of exchangeability of the
failed parts with respect to responsiveness.

Let us recall the prior density introduced in Section 2:

Py A A) = 61[T(a + b)/(T(@T(b)))p*~'(1 — p)b=le=Mo=eae,

for 0 < p < 1and 0 < A, < A,. We will use Bayes theorem in order to obtain
the joint posterior f(p, A, Ax, y, z, m) and the marginal f(plx, y, z, m). The
probabilistic dependencies among parameters and data can be easily visualized
in the influence diagram for this inference problem (see Figure 4). All the
operations performed below correspond to reversals and removals of arcs in the
influence diagram aiming toward the final diagram, which has node *‘data’ as
the only predecessor of node p.

The likelihood L(a, p, A,, Alx, y, z, m) is proportional to the multinomial
probability term:

Lia, p, A, Adx, y, 2z, m)
= [pA — e*T)(1 — a)fF % [(1 — p)(1 — e ¥ K1 - )]
X[ap(l — e7*T) + a(l — p)(1 — e )]

X [pe*T + (1 — ple M.

Beta (a,b)

Gl1= (1-a)p(1-exp(-2,T))
42= (F-a)(1-p)(1-exp(-2AgT))
43= alp(1-exp(-2,T))+
(1-pX(1-exp{-A,T))]
Q4= plexp{-A,T))+
(1-pX(1-exp{-24T}))

Figure 4. Inference problem influence diagram.
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Assuming that a is a priori independent of (p, A, A,), one derives [for any prior
density A(e)] the posterior density f(plx, y, z, m) by first using Bayes’ theorem
to obtain the joint posterior density

f(a, p\ A Adx, y, 2, m) = CH(@)f(p, Ay, AIL(a, P, Ag Adx, y, z, m).

Successive applications of Newton’s binomial formula then yield

f(a, P, Ags Adxs ¥, 2, m) = Cl(e)a?(1 — a)*™]

- 528 EEE OGO

% (,__l)x+y+z—i4j-—r—s X pk+!(1 _ p)m-l+z—ke—,\,T(x—i+l+k—r+-rln
X e—ART(y—j+m—l+z—k-s+(8—r)/T)‘
By recalling the (propriety of prior) fact

r r e~ M0-De A dA, dA, = (67,
0 A,

one can integrate out A,, A, (and @), obtaining

f(P‘x, y, Z,m) = C 2 G(i,j, Lk, r, s)pa+x+k+!—1(1 — p)b+y+m—l+z—k—l,

where 2. denotes

and

it = () NEICI e

/[(x—i+l+k-—r+1'/T)(y—-j+m+z—s+9/T+x-—i—-r)].

Finally, by recalling that

J ' pe-i(t — p)b-1dp = [(@T(B)/T(a + b) = Bla, b)

we can solve for C, thus determining the computable analytic expression of the
posterior density of p:

1/C=ZG(i,f,l,k,r,s)B(a+x+k+l,b+y+m—l+z—k),
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Analogous computations provide the posterior moments of p and integration of
the posterior density f( p|Data) determines probability intervals for p. We have,
for example,

E(plxa y') 2z, m) = S!/SU’
E(p3x, y, z, m) = §5,/5,.
where

Ss = > Gli,j,Lk,r,s)Bla+x+k+1+8b+y+m—-1+z—k)

foré = 0,1, 2.

The joint posterior density f(p, A, AJx, y, z, m) is seen to be a mixture of
densities of the same kind as the joint prior f(p, A,, A.). In this sense, they are
weakly conjugate. As a consequence, estimates and probability intervals for the
failure rates are obtained in an analogous way, even if the experimental design
is restricted to p.

6. CONCLUSION

The existing literature for planning, monitoring, and controlling ESS exper-
iments is entirely non-Bayesian. The present work introduces a predictivist
Bayesian treatment to the ESS problem which possesses the usual advantages
that the Bayesian formulation has over other methods. The duration design
problem is solved in an economically optimal way. The difficulty of obtaining
an exact separation—i.e., a tractable posterior f(p, A,, A/Data)—reflects the
general computational problems of handling nonconjugate multidimensional
posterior densities. New developments on hardware and software are expected
to ease the problem. We approach this situation by summarizing the data and
using techniques for data having nonresponse which proved to be successful in
medical research area [11]. This enables one to obtain a useful analytic one-
dimensional posterior probability density for p. Probability intervals and Bayes-
ian point estimates of p can therefore be obtained. We believe this article in-
dicates a correct way of handling more complex ESS situations which also exist.
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