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Summary

Superpopulation models are transformed in predictive models in order to permit
the use of standard classical statistics techniques. Confidence intervals based on
predictive models replace the predictive intervals based on superpopulation models.
The ideas are illustrated by various examples and the normal case turns out to
produce intervals that are also obtained by the standard classical survey sampling
techniques.

Key words: Maximum likelihood predictor, nuisance parameter, pivotal quantity,
prediction, predictive interval, predictive model, minimal sufficient reduction, spe-
cific sufficiency.

1. Introduction

Prediction of unknown quantities in parametric statistics has been fo-

cused from different points of view and predictive intervals (for these quanti-
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ties) of various types have been developed by many authors (see, for exam-

ple, Thatcher (1964), Hahn (1969), Lawless (1972), and Vit, (1973)). Gener-

ally, methods for deriving such intervals either make use of pivotal quantities

and normal approximations or are based on hypothesis testing approaches.

Faulkenberry (1973) proposed an alternative approach that was based on the

study of the conditional distribution of the original random quantities given a

sufficient statistics. In connection with this and under a non-Bayesian perspec-

tive, we advocate the use of a likelihood approach in order to obtain maximum

likelihood predictors for the quantities of interest. The idea is to derive con-

ditional probability functions producing the predictive likelihoods that do not

depend on the value of the unknown parameter (a quantity of no interest)

which is in fact replaced by the sufficient statistics (the quantity of interest).

For more details on the various forms of predictive likelihood we refer to the

recent work of Bjo/rnstad(1990). Other important references about choice of

likelihoods are Bayarri, De Groot, and Kadane (1986) and de Finetti (1977).

The related definitions of predictive likelihoods introduced by Lauritzen

(1974), Hinkley (1979), and Butler (1985) that consist of conditioning on min-

imal sufficient statistics, may differ in some situations. Consequently, the

maximum likelihood predictors obtained under these situations may differ sig-

nificantly (Bjo/rnstad, 1990). The aim of the present paper is to consider a

definition that combine the former ones and have interesting justifications un-

der the survey sampling or finite population context. The main idea consists

of looking for a family of probability for the data to be observed, indexed by

the quantity of interest, to be predicted. This quantity, that in the context

of finite populations is a function of both the observed and the unobserved

quantities, must act as the parameter in a standard statistical model.

Let Y = (Y1, . . . , YN) be a random vector with distribution indexed by

a parameter θ (scalar or vector). The quantity to be observed, the sample, is

represented without loss of generality by

Ys = (Y1, . . . , Yn)
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where n < N . The remaining part of Y, the unobserved quantity, is repre-

sented by YU = (Yn+1, . . . , YN).

The problem to be solved consists of making a predictive statement about

a function of Y, τ (Y), based on the observed value, ys of Ys.

From a Bayesian point of view, the problem is solved in a straightforward

manner. Once the prior probability (density) function, pdf, for the model

parameter, θ, is considered, the predictive distribution of τ (Y) given (Ys = ys)

is obtained. For instance, if p(θ) is the prior pdf, then the predictive pdf at

point τ (Y) = τ is

f(τ |ys) =
∫

f(τ |ys, θ)p(θ|ys) dθ , (1.1)

where p(θ|ys) is the posterior pdf of θ. That is, the predictive pdf is the average

of f(τ |ys, θ) under the posterior distribution. Also note that alternatively we

could write

f(τ |ys) ∝ f(τ )f(ys|τ ) , (1.2)

which can be interpreted as the Bayes’ operation when τ is considered as the

parameter and f(ys|τ ) defines the likelihood of τ . Here also, f(τ ) and f(ys|τ )

are obtained by integration using adequate distributions of θ. Note that, if τ

is sufficient under the full model of Y, then integration to obtain f(ys|τ ) is

unnecessary.

If prior information is not supposed to be used, the distributions that

could be used for prediction, f(τ |θ), f(τ |ys, θ), and f(ys|τ , θ), do involve

θ. Consequently, a satisfactory frequentist solution for the prediction of τ

may not be obvious. A tentative could be to replace, in these functions, the

parameter θ by its maximum likelihood estimate. Such an approach implicitly

assumes that the true value of θ is its estimate and would not take in account

the uncertainty about θ.

Hinkley (1979) and Butler (1986) introduced predictive likelihood func-

tions that neither involves the replacement of an estimate for θ nor requires the

use of prior distributions. Consequently, standard inferential methods could
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be used. The different definitions presented by Hinkley (1979) and Butler

(1986) may lead to different solutions for the prediction problem. The defi-

nition of predictive likelihood that will be used to solve the problem stated

above, the prediction of τ , is more general than the former ones and produces

no inconsistency for the particular case of finite populations.

Several aspects of a prediction problem are discussed in Section 2. Sec-

tion 3 presents solutions for finite population problems. It is interesting to

notice that the standard normal produce the same results obtained under the

standard survey sampling techniques.

2. Prediction

Based on the model described in Section 1, the problem to be solved is

the prediction of τ (Y) using the observation ys of Ys. The starting point in a

frequentist context consists in associating a distribution to Ys indexed by τ .

The natural procedure is to consider the original random variables Y1, . . . , YN ,

as independent with a common distribution indexed by a unknown parameter

θ. With this model we obtain the conditional distribution of the sample Ys

given τ and θ. Hence the new model is indexed by two parameter, τ and θ.

In this manner and according to the main purpose of this study, the problem

may involve inference about τ in the presence of a nuisance parameter, θ (Basu

(1977)).

The parameter of the modified model is denoted by π = (τ , θ) and the

modified likelihood by l(π|ys). The definitions and results presented in the

sequel will be the basis of the solution. Note that there is a lack of independence

between the sample elements, Y1, . . . , Yn, in the modified model.

We are using, in a general notation, f (or g) and l for probability density

and likelihood functions, respectively. For simplicity, they do not show neither

differences in dimension nor in distribution since they are implicit in each case.



IGLESIAS ET AL.: PREDICTIVE LIKELIHOOD 69

Definition 2.1. The function l(π|ys) is called predictive likelihood. We also

call predictive functions the ones that are proportional to it, following the

principle of sufficiency.

Definition 2.2. If there exists a point π̂ = (τ̂ , θ̂) such that

sup
π

l(π|ys) = l(π̂|ys) ,

then τ̂ is the maximum likelihood predictor of τ (Y).

Definition 2.3. If there exist functions T1 = T1(Ys) and T2 = T2(Ys),

with observed values τ 1 and τ 2, such that T1 < T2 a.s. and Pr [(T1,T2) ∋

τ (Y)|θ] = γ, then (τ 1, τ 2) is called the predictive interval of τ (Y) with 100γ%

of confidence.

The following result characterizes the role τ (Y) when it is a minimal

sufficient statistics under the original model, f(y|θ).

Lemma 2.1. If there exist functions T = T (Ys) and U = U(Ys) such that,

(with respect to θ) S, U , and τ = τ (Y) are minimal sufficient reductions of

Ys, YU , and Y, respectively, then

i) f(ys|π) depends on π only through τ and

ii) f(ys|π) = g(t|τ )h(ys), where g is the pdf of T .

The proof is straightforward.

It should be noted that, if in this Lemma, Ys and YU are statistically

independent in the original model and U is uniquely defined by T and τ ,

then g defines the predictive likelihood of Hinkley (1979). That is, Hinkley’s

predictive likelihood is l∗(u|t) which is equal to g(t|τ ) at the observed point

t. Moreover, under the conditions of the Lemma, the maximum likelihood
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predictor of τ agrees with the predictor defined in Lauritzen (1974). Also, in

this case there is no nuisance parameter to be eliminated.

Another feature of the modified likelihood when f(ys|π) = f(ys|τ ) is

that, under the Bayesian point of view, formula (1.2) may be immediately

applied without the need of integration to obtain its factors. In this case,

comparison between Bayesian and frequentist methods follows the standard

procedures since there is no need for elimination of nuisance parameters.

To illustrate Lemma 2.1, we present the following simple example.

Example 2.1. Let Y1, . . . , YN , the elements of Y, be independent exponential

random quantities with common unknown mean equal to θ−1. The population

total τ (Y) = Y1 + · · ·+YN and the sample total T = Y1 + · · ·+Yn are minimal

sufficient reductions of Y and Ys, with respect to the original model. The

predictive likelihood may be written as

l(π|ys) ∝ l(τ |t) ∝
(τ − t)N−n−1tn−1

τ N−1
I(t, τ ) , (2.1)

where I(·, τ ) is the indicator function of the interval (0, τ ).

The maximum likelihood predictor obtained from (2.1) is τ̂ = T
n
(N − 1).

To obtain the predictive interval, we notice that Z = T
τ is a pivotal quantity

with distribution Beta with parameters N − n and n. Hence a predictive

interval with 100γ% of confidence is of the form
[
T

b
;

T

a

]
,

where a and b are chosen in such a way that a < b and Pr (a < Z < b) = γ.

(Note that Pr (a < Z < b) is the incomplete Beta function divided by the

Beta function, both calculated at point (N − n, n).] To obtain the shortest

interval we choose a and b that makes (1/a) − (1/b) minimum. In particular

if N = n + 1, the shortest predictive interval is


T,
T

n

√
(1 − γ)



 .
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Unfortunately, there are many situations where the quantity of interest,

τ is not a minimal sufficient reduction of Y for the original model. Conse-

quently, elimination of the nuisance parameter, θ, would be necessary. How-

ever, interesting results can be obtained under other kinds of simplifications.

In the sequel we discuss a common situation that allows simple solutions.

Suppose that the original parameter has the representation θ = (θS, θU)

and that, for any fixed value of θU , τ (Y) is specific sufficient relatively to θS

(see Basu (1977)); that is, the nuisance parameter to be eliminated is simply

θU . In this case, the predictive model depends on the modified parameter

π = (τ , θ) only through π∗ = (τ , θU). As before we represent the maximum

likelihood predictor by τ̂ .

A dual situation is when there exists a minimal sufficient reduction of

Y (in relation to θ), η(Y), such that η(Y) = (τ (Y), λ(Y)). The function

l(η|yS) = f(yS|η) may be considered as the predictive likelihood where λ is

the nuisance parameter to be eliminated and τ is the quantity to be predicted.

The maximum likelihood predictor in this case is represented by τ̃ .

The next example is very standard and incorporates both situations de-

scribed above, besides the fact that there is a choice of λ such that τ and λ

are statistically independent. Consequently, to obtain the predictor we can

use indifferently either likelihood l(π∗|yS) or l(η|yS) since τ̃ = τ̂ .

Example 2.2. Let Y1, . . . , YN , the elements of Y, be independent normal

random variables with unknown common mean and variance represented by

θS = µ (∈ IR) and θU = σ2 (∈ IR+), respectively. Here, we take

T = Y1+· · ·+Yn , V = Y 2
1 +· · ·+Y 2

n , τ = Y1+· · ·+YN , and λ = Y 2
1 +· · ·Y 2

N .

Recall that τ is specific sufficient in relation to µ. To obtain the first predictive

likelihood, l(π∗|yS), we note that YS|π
∗ is distributed as a n-variate normal

with mean
(
τ
N
jn
)

and covariance matrix σ2
(
In − 1

N
Jn

)
, where jn is the n-

variate vector with all components equal to the unity, In is the identity matrix
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of order n and Jn is the squared matrix of order n with all components equal

to the unity. Hence the maximum likelihood predictor of τ is τ̂ = N
n
T . On the

other hand, the alternative likelihood is based on the (conditional) distribution

of (T, V )|η, since (T, V ) is a sufficient reduction (in the original model) of the

sample, YS, in relation to (µ, σ2). After some calculations we obtain the

likelihood at point (t, v)

l(η|t, v) ∝

(
λ − v −

(τ − t)2

N − n

)(N−n−3)/2 (
λ −

τ 2

N

)
−(N−3)/2

. (2.2)

The maximum likelihood predictor, τ̃ , coincides with τ̂ = N
n
T . If λ is replaced

by

λ∗ =
N∑

i=1

(Yi − (τ/N))2 ,

then we would obtain the same maximum likelihood predictor for τ since there

is a one-to-one correspondence between (τ , λ) and (τ , λ∗). Note that, in the

original model, τ and λ∗ are statistically independent.

We end this section by noticing that all the discussion presented here can

be extended for the case where Y1, . . . , YN are vectors.

3. Finite population examples

Prediction in finite population has been studied till now through the

standard classical sampling theory and the superpopulation model approach.

Advantages and restrictions for these two methods have been presented in

the literature (see Basu (1969) and Cassel, Särndal, & Wretman (1967) for

interesting discussions and for a large list of references). The restrictions for

the standard sampling theory leans upon the probabilistic model used that

is not related to the quantity of interest. For the superpopulation model,

the restrictions can be stated from the fact that ad hoc methods must be

constructed. The problems come from the fact that there is an unknown
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parameter of no interest that must be estimated in order to use it for the

prediction of the unknown quantity of interest. The approach discussed in

the present paper eliminates one of the steps by transforming the quantity

of interest in a parameter of an alternative model obtained from the original

superpopulation model. In this way only standard statistical techniques needed

to be used.

As in most finite population situations, in this section we consider the

population total as the quantity of interest and the sample total as the relevant

statistic. Hence, we use the following notation through this section:

T = Y1 + · · · + Yn and τ = Y1 + · · · + YN .

The observed value of T is represented by t.

Next we present thee predictive likelihood for the exponential family.

Lemma 3.1. Let Y1, . . . , YN , the elements of Y, be statistically independent

random quantities with common density function

f(y|(θ, φ)) ∝ exp

{
θy − b(θ)

a(φ)
+ c(y, φ)

}
,

where a(·), b(·) and c(·, ·) are known functions. The predictive likelihood in this

case is

l(τ , θ, φ|yS) ∝ l(τ , φ|t) ∝ exp [h1(t, φ) + h2(τ − t, φ) − h3(t, φ)]

where h1, h2 and h3 are known functions.

The proof is simple and uses stronglyu the specific sufficiency of τ (for

Y) and t (for YS) and the fact that t and τ − t are statistically independent,

in the original model.

In the sequel we present standard examples that will permit the readers

to compare with the solutions obtained under the superpopulation approach.
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Example 3.2. Let Y1, . . . , YN , the elements of Y, be statistically indepen-

dent Bernoulli random variables with common unknown parameter (sucess

probability) θ. The predictive likelihood is obtained from the conditional dis-

tribution of T |τ which is hipergeometric with parameter τ , population size N

and sample size n. The maximum likelihood predictor, τ̂ , is an integer that

satisfies

(N + 1)
T

n
− 1 ≤ τ̂ ≤ (N + 1)

T

n
.

The construction of the predictive with 100γ% confidence for τ , presents the

same numerical difficulties of the confidence interval for the parameter of the

hipergeometric model.

Example 3.3. Let Y1, . . . , YN , the elements of Y, be statistically independent

Poisson random variables with common unknown mean θ. The predictive like-

lihood is obtained from the conditional distribution of T |τ which is binomial

with the parameters τ and n/N . For this binomial model, τ represents the

sample size and n/N is the probability of success. The maximum likelihood

predictor, τ̂ , is an integer that satisfies

N
T

n
− 1 ≤ τ̂ ≤ N

T

n
.

The construction of the predictive set for τ presents the same numerical diffi-

culties of the former example.

Example 3.4. Let Y1, . . . , YN , the elements of Y, be statistically independent

geometric random variables with common unknown parameter θ, having com-

mon mean equal to (1 − θ)/θ. The predictive likelihood is obtained from the

conditional distribution of T |τ and is equal to

l(τ |t) ∝

(
n+t−1

t

) (
N−n+τ−t−1

τ−t

)

(
N+τ−1

τ

) ,

where t and τ are integers satisfying 0 ≤ t ≤ τ . The maximum likelihood
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predictor, τ̂ , is an integer that satisfies

(N − 1)
T

n
− 1 ≤ τ̂ ≤ (N − 1)

T

n
.

Again, we have the same difficulties to built the predictive set for τ .

Note that the above three examples have in common the fact that the

quantity of interest is an integer quantity which brings the standard difficul-

ties of constructing confidence sets. The following examples are related with

continuous random quantities and present nice and simple analytical solutions.

Example 3.5. Let Y1, . . . , YN , the elements of Y, be statistically independent

Gamma random variables with common positive parameters a (known) and β

(unknown) having common mean equal to a/β. The predictive likelihood is

obtained from the distribution of T |τ and is equal to

l(τ |t) ∝
(
1 −

t

τ

)(N−n)a−1 ( t

τ

)na

.

The maximum likelihood predictor is τ̂ = (N−a−1)T
n
, To obtain the predictive

interval for τ with confidence 100γ% we notice the fact that the pivotal quan-

tity Z = T/τ has a beta distribution with parameter (na; (N − n)a). Hence,

the predictive interval for τ is

[
T

d
;

T

c

]
,

where c and d are chosen in such a way that

1

c
−

1

d
is minimum under

∫ d

c
f(z) dz = γ .

Example 3.6. Let Y1, . . . , YN , the elements of Y, be statistically independent

Normal random variables with common unknown mean µ and known variance

c2. The predictive likelihood is obtained from the conditional distribution of

T |τ which is normal with mean
[

n
N

]
τ and variance

[
1 − n

N

]
nc2. Consequently,
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the maximum likelihood predictor of τ is τ̂ = N
n
T and the predictive interval

for τ is obtained using the pivotal quantity

Z =
T − n

N
τ

c

√
n
[
1 − n

N

] ,

that is distributed as a standard normal variable. The predictive interval for

τ is defined by

τ̂ ± Nzc

√
1

n
−

1

N
,

where z is such that Pr (−z < Z < z) = γ.

The above examples did not involved any nuisance parameter. The fol-

lowing ones are multiparametric cases.

Example 3.7. This is the continuation of Example 2.2. If the quantity of

interest is only the population total, τ , then, in order to obtain the predictive

interval, the following pivotal quantity can be used:

W =
T − n

N
τ

S

√
n
[
1 − n

N

] ,

where S2 = 1
n−1

[
V − T 2

n

]
. Since the distribution of W is Student t with n− 1

degrees of freedom, the predictive interval for τ is defined by

τ̂ ± NwS

√
1

n
−

1

N
,

where w is such that Pr (−w < W < w) = γ.

Note that the last example produces formulas that are equal to those

obtained by using the classical sampling techniques which is not based on any

superpopulation model.

Example 3.8. If in Example 3.7 we also consider the population variance as

a quantity of interest, then the second predictive likelihood (expression 2.2) of
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Example 2.6 is the one to be used. Suppose that the population variance is

defined by

φ =
1

N − 3

N∑

i=1

(
Yi −

τ

N

)2

(for simplicity we consider N − 3 in the place of N). The maximum likelihood

predictor of φ is given by

φ̂ =
1

n

n∑

i=1

(
Yi −

T

n

)2

−
1

n

(
τ̂ 2

N
−

T 2

n
−

(τ̂ − T )2

N − n

)

if this expression is positive and zero otherwise. This predictor can receive

interesting interpretations since is a function of the sample variance corrected

by a function of the population total, the sample total and the total of the

unobserved part of the population. It may not be simple to decide which

pivotal quantity to be used to obtain a predictive interval for the population

variance. However, a good start could be the fact that the ratio between

1

n

n∑

i=1

(
Yi −

T

n

)2

and
1

N − n

N∑

i=n+1

(
Yi −

τ − T

N − n

)2

is a pivotal quantity with a well known distribution.

Example 3.9. Let Y1, . . . , YN , the elements of Y, be statistically independent

Normal random variables with known common variance c2 and unknown mean

of Yi, for i = 1, 2, . . . , N , equal to β0 + β1xi where xi is a fixed value of a

covariance x and β0 and β1 are unknown parameters. In this case, τ is specific

sufficient for β0. If the only quantity of interest is τ , then we use the likelihood

obtained from the conditional distribution of yS|τ , β1 which is n-variate normal

with mean equal to
τ

N
jn + β1(x − xN jn)

and variance equal to

c2(In −
1

N
Jn) ,
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where jn, In and Jn are defined as in Example 2.2 and x = (x1, . . . , xn) and

xN =
1

N

N∑

i=1

xi

is the population mean of the xi’s (note that, equivalently, xn is the sample

mean of the xi’s).

The maximum likelihood predictors of β1 and τ are, respectively:

β̂1 =

∑n
i=1(xi − xN)

(
Yi −

T
n

)

∑n
i=1(xi − xn)2

and

τ̂ =
N

n
T − Nβ̂1(xn − xN) . (3.1)

To obtain the predictive interval for τ we use the following standard

normal pivotal quantity
τ̂ − τ

Nc
√

R(x)
n

− 1
N

,

where

R(x) =

∑n
i=1(xi − xN)2

∑n
i=1(xi − xn)2

.

Example 3.10. In Example 3.9 suppose that besides τ ,

ρ =
N∑

i=1

Yixi

is also a quantity of interest. The vecto (τ , ρ) is a minimal sufficient statistic

for the original model in relation to (β0, β1). For Z =
∑n

i=1 Yixi and since

(T, Z) is a minimal sufficient reduction of the sample, the predictive likelihood

may be obtained from the conditional distribution of (T, Z)|(τ , ρ) which is

also normal. To describe the mean and the variance of this distribution we

introduce the following notation:

sn =
1

n

(
x2

1 + · · ·+ x2
n

)
,



IGLESIAS ET AL.: PREDICTIVE LIKELIHOOD 79

sN =
1

N

(
x2

1 + · · ·+ x2
N

)
,

Σ11 = Σ12 = n

(
1 xn

xn sn

)
,

Σ22 = N

(
1 xN

xN sN

)
and

Σ = Σ11 − Σ12Σ
−1
22 Σ12 .

The conditional distribution of (T, Z)|(τ , ρ) is normal with mean µ and

variance Σ where

µ =
n

N(sN − x2
N )

(
sN − xNxn xn − xN

xnsN − xNsn sn − xNxn

)(
τ

ρ

)
= B

(
τ

ρ

)
.

Clearly, the maximum likelihood predictor of (τ , ρ) is given by B−1(T, Z)′.

It is not difficult to check that the first component of this vector coincides

with the expression (3.1). Also by a proper standard transformation, as we

present in the next example, we obtain the pivotal quantity that will produce

the predictive region for (τ , ρ).

Except for the last example we have been working with univariate random

variables. We end this section with a multivariate normal distribution where

the quantity of interest is the vector of population totals.

Example 3.11. Let Y1, . . . , YN , the elements of Y, be statistically indepen-

dent Normal random vector of order k (> 1) with unknown common mean

vector µ and known common covariance matrix Σ. The population total, τ ,

which is also a vector of order k, is a minimal sufficient reduction of Y with

respect to µ. The predictive likelihood can be obtained from the conditional

distribution of the sample total T given τ . This distribution is multivariate

normal with mean vector
[

n
N

]
τ and covariance matrix

[
1 − n

N

]
nΣ. Hence, the

maximum likelihood predictor of τ is τ̂ = N
n
T and the predictive region for τ
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is given by

{
τ :

N

(N − n)n

(
T −

N

n
τ

)′

Σ−1
(
T −

N

n
τ

)
≤ χ2

}
,

where χ2 is the value of a qui-squared with k degrees of freedom that gives

100γ% of confidence.

4. Final remarks

Since we presented cases of smooth likelihoods, to obtain the maximum

likelihood predictors in the discrete cases, we compared the likelihood ratios

l(τ |t)/l(τ − 1|t) and l(τ |t)/l(τ + 1|t) with the unity. For the continuous

cases sove the equation obtained by making the partial derivative of the log-

likelihood equal to zero.

It is important that we understand the relevant role that sufficiency and

specific sufficiency play in the method discussed in this article. In order to

illustrate this role, let us consider two simple cases.

Again, consider the population total, τ , as the quantity of interest. First

we go back to Examples 2.2 and 3.7 where the original model is normal with

mean µ and variance σ2. Suppose that we receive an additional information

saying that the mean is known to be zero. The model now has only one

unknown parameter, σ2. The predictive likelihood based on the conditional

distribution of the sample given the population total is exactly the same as

before, l(π∗|yS). Hence the information that the parameter µ, of no interest,

is known to be zero, would not improve the prediction of τ . We believe that

this is not reasonable, since τ and µ are strongly related.

The second case considered here is the regression case of Examples 3.9

and 3.10. The information that the intercept parameter, β0, is null also would

not change the predictive likelihood and no improvement in the prediction is

attained with such an important information. Using Bayesian methods, where
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all relevant information is processed, this problem would not occur (Datta &

Gosh (1991)).

We end this article by emphasizing that the method discussed here is

based on a proper model that is consequence of standard suppositions. In no

place, additional suppositions or restrictions were considered. The real ques-

tion to be discussed is an old one: what is the likelihood function? We believe

that Bayesians would answer this question saying that, after elimination of

nuisance parameters by integration, l(τ |yS) is the correct likelihood function.

(Received January 1993. Revised September 1993.)
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Royall, R.M. (1968). An old approach to finite population sampling theory. JASA,
63, 1269–79.

Royall, R.M. (1971). Linear regression models in finite population sampling theory.
In: Godambe, V.P. and Sprott, D.A. (Eds.). Foundations of statistical
inference. Holt, Rinehar and Winston, Toronto, 259–74.

Thatcher, A.R. (1964). Relationships between Bayesian and confidence limits for
prediction. JRSS, B 26, 176–92.

Vit., P. (1973). Interval prediction for a Poisson process. Biometrika, 60, 667–8.


