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Preface

Usually, methods evaluating system reliability require engineers to

quantify the reliability of each of the system components. For series and

parallel systems, there are some options to handle the estimation of each

component’s reliability. We will treat the reliability estimation of complex

problems of two classes of coherent systems: series-parallel, and parallel-

series. In both of the cases, the component reliabilities may be unknown.

We will present estimators for reliability functions at all levels of the

system (component and system reliabilities). Nonparametric Bayesian

estimators of all sub-distribution and distribution functions are derived,

and a Dirichlet multivariate process as a prior distribution is presented.

Parametric estimator of the component’s reliability based on Weibull

model is presented for any kind of system. Also, some ideas in systems

with masked data are discussed.
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Chapter 1

Introduction

In engineering, the quality of the produced system is of great inter-

est. In this sense, the reliability study has been object of research in last

years. Among important works, Barlow e Proschan (1981) is highlight

about theory of reliability. Barlow and Proschan’s book shows concepts

and theories about reliability, presenting important results when compo-

nents and system reliabilities are known. In situations where component’s

reliability is unknown, statistical inference can be suitable considered to

estimate system and components reliabilities and it will be discussed in

the sequel of this book.

As a motivation, the reliability estimation of an automatic coffee ma-

chine is presented. The machine has two causes of failure: 1. the failure

of the component that grinds the grain; or 2. the failure of the heating

water component. Clearly, the failure of any component, 1 or 2, leads

the coffee machine failure. The failure of a component implies that the

possible future failure time of the other becomes invisible, i.e. a censored

data. Statistical inference for the reliability of the machine depends on

3



4 INTRODUCTION 1.0

both marginal components models. The reliability study of components

allows for one-off actions on the components that need to be improved

in order to maximize system performance, rather than changing the en-

tire system, generating less costs, time and unnecessary effort. Hence,

inferences for both components are needed.

Statistical inference of component reliability is not an easy task: cen-

sorship, dependence and unequal distributions are some of the troubles.

Considering a sample of the coffee machine example for which all n sam-

ple units are observed up to death. Every sample unit will produce a

component failure time and a censored failure time to the other compo-

nent. Both components failing at the same time is considered unlikely

in such situations. In this example, the sample will produce n failure

times observations and n censored times for the two components in test.

Relative to component failure time, it is reasonable to say that the two

components are not identically distributed: probably one of the compo-

nents may suffer more censors than the other. It is common that only

one component is responsible for the system failure at time t, implying

that all the remaining components are censored also at time t, although

the types of censor could be different. In general, the number of censored

observations should be higher than the uncensored ones.

The reliabilities of a system and its components also depend on the

structure of the system, that is, the way that components are intercon-

nected. The coffee machine is a series system of two components, a sim-

ple case known as competing risks problem. The illustration of a system

structure can be considered by what is known as the block diagram,

where each component of the system is illustrated by a block. Figure 1.1
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is the block diagram of a series system with four components - at the

time the system fails only one component is uncensored and the other

three components are right-censored at the system failure time, that is,

they still could continue to work after system fail.

bb 1 2 3 4

Figure 1.1: Series system with four components.

Suppose a system of m components and Xj denoting the failure time

of the jth component, j = 1, . . . ,m. Let T the random variable that

represents the system failure time. The function that defines T in re-

lation to X1, . . . , Xm depends on the system structure. For a system

with the structure represented in Figure 1.1, for instance, m = 4 and

T = min{X1, X2, X3, X4}.

Consider initially that a random sample of n systems with the struc-

ture in Figure 1.1 is observed and t = (t1, t2, . . . , tn) being a sample of the

random variable T . The goal is to estimate the reliabilities of components

involved in this series structure. At the system failure, however, not all

components would have their failure time observed. In addition, a par-

ticular component may be responsible for system failures in some sample

units and not in the remaining ones, cases of right-censored observations.

When a system fails, the failure time of a given component j may not

be observed, but its censored time of failure is. For all sample units, the

system failure times t1, . . . and tn are recorded. Associated to each sample

unit, let δi be the indicator of the component whose failure produced the

system to fail, with i = 1, . . . , n. At the time a series system fails, a given

component can only be uncensored (responsible for system failure), that
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is δi = j, or right-censored at the system failure time, that is δi 6= j, for

j = 1, . . . ,m.

The data of n = 10 observed systems are presented in Table 1.1. For

instance, system ID=1 failed at time 1.92 and component 1 is the first

to fail, that is, δ1 = 1 and the others components are right-censored at

1.92.

Table 1.1: Observed data of n = 10 series system with m = 4 components.

System ID t δ
1 1.92 1
2 1.85 2
3 2.00 4
4 1.74 3
5 1.41 1
6 1.97 2
7 1.65 3
8 2.08 1
9 1.74 4
10 2.40 2

Considering a parametric model, let R(x|θj) = P(Xj > x|θj) and

f(x|θj) the reliability and density functions, respectively, and θj is the

parameter that can be either a scalar or a vector. For jth component,

the likelihood function can be writen as

L(θj | t, δ) =
n∏
i=1

[
f(ti|θj)

]I{δi=j}[
R(ti|θj)

]1−I{δi=j}
, (1.1)

where I{TRUE} = 1 or I{FALSE} = 0, δ = (δ1, . . . , δn) and j = 1, . . . ,m.

A parallel system as in Figure 1.2 works whenever at least one com-

ponent is working. Again, only one component has its failure time un-

censored, the other components are left-censored observations, that is,

they had failed before system failure. For a system with the structure



1.0 7

represented in Figure 1.2, m = 3 and T = max{X1, X2, X3}.

bb

1

2

3

Figure 1.2: Parallel system with three components.

Consider that a random sample of n = 7 systems with the structure

in 1.2 is observed and t = (t1, t2, . . . , t7) being a sample of the random

variable T . Associated to each sample unit, let δi be the indicator of the

component whose failure produced the ith system to fail, for j = 1, 2, 3

and i = 1, . . . , 7. At the time a parallel system fails, a given component

can only be uncensored (the last component to fail), that is δi = j, or

left-censored at the system failure time, that is, δi 6= j, for j = 1, . . . ,m.

The parallel systems data are presented in Table 1.2. For instance,

system ID=3 failed at time 4.93 and component 2 is the last to fail, that

is, δ3 = 2 and the others components are left-censored at 4.93.

Table 1.2: Observed data of n = 7 parallel system with m = 3 components.

System ID t δ
1 0.18 1
2 1.15 3
3 4.93 2
4 0.01 2
5 1.01 1
6 1.51 3
7 1.74 2

For jth component and considering a parametric model, the likelihood
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function can be writen as

L(θj | t, δ) =
n∏
i=1

[
f(ti|θj)

]I{δi=j}[
1−R(ti|θj)

]1−I{δi=j}
, (1.2)

where I{TRUE} = 1 or I{FALSE} = 0, δ = (δ1, . . . , δn) and j = 1, . . . ,m.

The literature on reliability of either parallel or series systems is abun-

dant; different solutions have been presented. Salinas-Torres et al. (1997),

Salinas-Torres et al. (2002), Polpo e Pereira (2009) and

Polpo e Sinha (2011) discussed the Bayesian nonparametric statistics

for series and parallel systems. Under Weibull probability distributions,

Bayesian inferences for system and component reliabilities were intro-

duced by Polpo et al. (2009) and Bhering et al. (2014) presented a hier-

archical Bayesian Weibull model for components’ reliability estimation in

series and parallel systems, proposing an useful computational approach.

Using simulation for series systems, Rodrigues et al. (2012), considering

Weibull families, compared three estimation types: Kaplan-Meier, Max-

imum Likelihood and Bayesian Plug-in Estimators. Polpo et al. (2012)

performed a comparative study about Bayesian estimation of a survival

curve.

Series and parallel systems are particular cases of a class of system

called coherent. A system is said to be coherent if all components are

relevant, that is, all components play any role in the functional capacity

of the system, and the structure function is nondecreasing in each com-

ponent, that is, the system will not become worse than before if a failed

component is replaced by another that works.

An important property is presented by Barlow e Proschan (1981) that
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every coherent system can be written as series-parallel system (SPS) rep-

resentation and as parallel-series system (PSS) representation. Consider

the PSS in Figure 1.3a and Figure 1.3b presents its SPS representation.

The SPS in Figure 1.4a has its PSS representation in Figure 1.4b.

(a) (b)

Figure 1.3: (a) PSS (b) SPS representation of system in (a).

(a) (b)

Figure 1.4: (a) SPS (b) PSS representation of system in (a).

Considering this celebrated property, Polpo et al. (2013) introduced

Bayesian nonparametric statistics for a class of coherent system in or-

der to estimate components reliabilities. They restricted themselves to

cases for which no component appears more than twice in parallel-series

and series-parallel representations, under assumption that two compo-

nents or more can not fail at the same instant of time. However, it is

common that, in the representation of the system, some components ap-

pear in two different places within it. For instance, consider again the

representation in Figure 1.3b (or Figure 1.4b). We have the reliabilities

of four components to estimate. However, two of them are in fact the

same component (component 1), and they will fail at the same time,

which violates the assumption. For this reason, it is important to have

the estimators for both SPS and PSS that give a wide variety of represen-
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tations. If one of these representations does not violate the assumptions,

then the proposed Bayesian nonparametric estimator can be used. This

nonparametric approach is presented with details in Chapter 2.

Figure 1.5 is the bridge system described in the literature

(Barlow e Proschan, 1981) and Figure 1.6 illustrates its SPS and PSS

representations. Note that each of the five components appears twice for

both representations. Another interesting structure is the k-out-of-m sys-

tem - work only if at least k out of the m components work. For instance,

Figure 1.7 considers the simple 2-out-of-3 case into SPS and PSS repre-

sentations. Note that each of the three components also appears twice in

both combinations. Situations like these violate Polpo et al. (2013) as-

sumption and their approach is not suitable anymore both for the PSS

representation and for SPS representation. Thus, a solution to estimate

the reliability of components in systems such as Figures 1.5 and 1.7 is to

consider the parametric approach and the general likelihood function is

developed in the sequel.

Figure 1.5: Bridge structure.

In likelihood functions (1.1) and (1.2) the jth component is suscepti-

ble only to right-censored or only to left-censored data, respectively. For a

more general case, a component can be susceptible to both side of censor-

ing. For instance, system 2-out-of-3 (Figure 1.7) - system work if at least 2

out of 3 components work. Consider that a system 2-out-of-3 is observed
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(a)
(b)

Figure 1.6: (a) SPS bridge representation (b) PSS bridge representation.

(a)
(b)

Figure 1.7: (a) SPS 2-out-of-3 representation (b) PSS 2-out-of-3 representa-
tion.

and component 1 failed first and component 3 failed in the sequence. At

the moment of component 3 failure, the system failed. Thus, component

3 is uncensored, component 1 is left-censored data and component 2 is

right-censored observation. Another 2-out-of-3 system is observed but for

this system, component 2 was the first to fail (left-censored), component

1 was the last to fail (uncensored) and component 3 yet worked in system

failure (right-censored). Note that each component is susceptible to be

uncensored, left or right-censored failure time.

Another kind of censoring could also occur: suppose a machine failure

time (a sample unit) is in an interval (l, u) − l for the observed lower

limit and u for the upper limit. If two or more components failed, they

are all interval censored in (l, u).

To generalize the notation for all cases of component failure and cen-

soring, consider the following notation: for a specific component j of the
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system unit i, let (lji, uji) be a general interval of time, in which

• lji = uji = ti, if the j-th component failure time causes the i-th

system failure time;

• lji = ti and uji =∞, if the j-th component is right-censored at ti;

• lji = 0 and uji = ti , if the j-th component is left-censored at ti;

• 0 < lji < uji <∞, if the j-th component is interval-censored.

Consider that a random sample of n = 10 systems with the struc-

ture in Figure 1.7 is observed. The data are presented in Table 1.3. For

instance, system ID=2 failed at time 2.09 and the failure of component

2 causes the system failure (l22 = 2.09 and u22 = 2.09), component 1

had failed before time 2.09 (l12 = 0 and u12 = 2.09) and component 3 is

right-censored at time 2.09 (l32 = 2.09 and u32 =∞).

Table 1.3: Observed data of n = 10 2-out-of-3 systems.

System ID Component 1 Component 2 Component 3
l u l u l u

1 1.95 1.95 1.95 ∞ 0 1.95
2 0 2.09 2.09 2.09 2.09 ∞
3 3.56 ∞ 3.56 3.56 0 3.56
4 2.55 ∞ 0 2.55 2.55 2.55
5 1.89 1.89 1.89 ∞ 0 1.89
6 3.01 ∞ 0 3.01 3.01 3.01
7 2.43 2.43 0 2.43 2.43 ∞
8 0 1.51 1.51 1.51 1.51 ∞
9 3.55 3.55 3.55 ∞ 0 3.55
10 2.35 ∞ 0 2.35 2.35 2.35

To complete the theoretical environment, let f(·|θj) and R(·|θj) the

density and reliability functions, respectively, and θj is the parameter
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that can be either a scalar or a vector. Using the above notation, the

likelihood function is as follow:

L(θj | lj,uj) =
n∏
i=1

[
f(lji|θj)

]I{lji=uji}[
R(lji|θj)−R(uji|θj)

]1−I{lji=uji}(1.3)
where I{TRUE} = 1 or I{FALSE} = 0; lj = (lj1, . . . , ljn) and

uj = (uj1, . . . , ujn).

A parametric approach which considers the likelihood function (1.3)

for estimation of components’ reliabilities involved in any kind of coher-

ent system, from the simplest to the most complex structures, is pre-

sented in Chapter 3. The available information are the failure time of

system and the status of each component at system failure instant. This

approach does not need the supposition of identically distributed compo-

nents lifetimes. The main assumption is that components’ lifetimes are

mutually independent and the components lifetime distributions are the

three-parameter Weibull, a very general distribution that can approxi-

mate most of the lifetimes distributions. The paradigm is the Bayesian

one. Another advantage of the Weibull is that, in our paradigm, even with

improper priors, the posterior distributions turn out to be proper. The

presented mechanism of calculus can well be used for any other family of

distributions whenever proper priors are used.

Chapters 2 and 3 will address the problem of component estimation

in coherent systems under the Bayesian paradigm in nonparametric and

parametric approaches, respectively. In both chapter the status of each

component at the time of system failure is considered to be known. How-

ever, identifying which component fail caused the failure of a given system
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can be a difficult task. In special situations, we can only establish that

failed components belong to small sets of components. Cases like this

are known as masked data failure cause and it is usually due to limited

resources for the diagnosis of the cause of the failure. As an example of

masked data problem, Basu et al. (1999) cited situations of failures of

large computer systems, where the analysis is often performed in such a

way that a small subset of components is identified as the cause of fail-

ure. In an attempt to repair the system as quickly as possible, the entire

subset of components is replaced and the component responsible for the

failure can not be investigated.

In Chapter 4 the masked data problem formulation is developed and

a Bayesian three-parameter Weibull model for components’ reliabilities

in masked data scenario is presented. This model is general and it can

be considered for components involved in any coherent system.

Finally, the datasets considered in Chapters 2, 3 and 4 are presented

in Appendixs A, B and C, respectively.



Chapter 2

Nonparametric

A nonparametric estimator for all the reliability functions involved in

the series-parallel system (SPS) and parallel-series system (PSS) under

the assumptions that the components reliabilities are unknown is pre-

sented; the only available information are the failure times of the system

and the component that produced the failure. The required assumptions

are mutually independent components failure times and that two or more

components cannot fail at same instant of time.

In Section 2.1 are presented the probability results necessary for the

development of the estimator. Section 2.2 is devoted to the construction

of the nonparametric Bayesian estimator for SPS and PSS with three

components (m = 3). In Section 2.3 the results are extended to a more

general case of m ≥ 4; and in Section 2.4 the estimator is used in simu-

lated datasets and illustrated its qualities.

15
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2.1 Probability relations

In this section, important results and properties of the PSS and SPS

are presented. Before it, we present these results for series and parallel

systems that will facilitate the understanding of the results for PSS and

SPS, once series and parallel systems are simpler.

2.1.1 Series and parallel systems

First consider a parallel system with m components. Let Xj be the

failure time of jth component with marginal distribution function (DF)

Fj and T = max{X1, . . . , Xm} be the system failure time. The indicator

of the component whose failure produced the system to fail is δ = j when

T = Xj, j = 1, . . . ,m. The jth sub-distribution function evaluated at a

time t is the probability that the system survives at most to time t and

the last component to fail is the jth component, that is, F ∗j (t) = P(T ≤

t, δ = j).

Let F (t1, . . . , tm) = P (X1 ≤ t1, . . . , Xm ≤ tm) be the joint distribu-

tion function, in which continuous partial derivatives are assumed over

all arguments. The following theorem establishes the relation between

the joint distribution function with the jth sub-distribution F ∗j (t).

Theorem 1 The derivative of F ∗j (t), dF ∗j (t)/dt, is equal to the partial

derivative of F (t1, . . . , tm) at the jth component, evaluated at t1 = t2 =

. . . = tm = t.

Because the life of the components are assumed to be mutually s-
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independent,

F (t1, . . . , tm) =
m∏
j=1

Fj(tj). (2.1)

Using the fact in (2.1) and the Theorem 1,

d

dt
F ∗j (t) = uj(t)

m∏
j=1

Fj(t), (2.2)

where uj is the reversed hazard rate (RHR) of the jth component:

uj(t) =
fj(t)

Fj(t)
=

d

dt
lnFj(t). (2.3)

From (2.3) one can write

Fj(t) = exp

{
−
∫ ∞
t

uj(y)dy

}
. (2.4)

Letting u(y) =
∑m

j=1 uj(y), (2.2) becomes

d

dt
F ∗j (t) = uj(t) exp

{
−
∫ ∞
t

u(y)dy

}
, (2.5)

Taking now the sum for j = 1, . . . ,m in both sides of (2.5), we obtain

m∑
j=1

d

dt
F ∗j (t) = u(t) exp

{
−
∫ ∞
t

u(y)dy

}
=

d

dt
exp

{
−
∫ ∞
t

u(y)dy

}
. (2.6)
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Consequently,

m∑
j=1

F ∗j (t) = exp

{
−
∫ ∞
t

u(y)dy

}
,

which combined with (2.5) leads to

uj(t) =
dF ∗j (t)/dt∑m
j=1 F

∗
j (t)

. (2.7)

Finally, (2.4) implies

Fj(t) = exp

{
−
∫ ∞
t

dF ∗j (y)∑m
j=1 F

∗
j (y)

}
, (2.8)

that is, the relationship of interest between marginal distribution func-

tions and sub-distribution functions.

Unfortunately, the expression in (2.8) does not work for the case with

jump points. To obtain a version of (2.8) in the presence of jumps, we

introduce the following definition and theorem.

Definition 1 For simplicity, consider the case of m = 2. The function

Φp (F ∗1 , F
∗
2 , t) based on the sub-distributions F ∗1 and F ∗2 is

Φp2 (F ∗1 , F
∗
2 , t) ≡ exp

⊂
∞∫
t

−dF ∗1 (v)
2∑
j=1

F ∗j (v)

 D
∏
v>t

F ∗1


2∑
j=1

F ∗j (v−)

2∑
j=1

F ∗j (v+)

,

where ⊂
∫
g(s)ds is integration over disjoint open intervals that do not

include the jump points of g(·) and D
∏G

is product over jump points of

G(·).
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The next result, although restricted to m = 2, extends expression (2.8)

in the sense that it can include disjoint jump points.

Theorem 2 The sub-distribution functions F ∗1 and F ∗2 determine (uniquely)

the distribution function F1 for t ≤ t∗ by F1(t) = Φp2(F
∗
1 , F

∗
2 , t).

An analogous development can be performed for a series system with

m components, in which T = min{X1, . . . , Xm} and δ = j, if T = Xj.

The version of (2.8) for a series system is given by (Salinas-Torres et al.,

2002):

Fj(t) = 1− exp

{∫ t

0

dR∗j (y)∑m
j=1R

∗
j (y)

}
, (2.9)

in which R∗j (t) = P(T > t, δ = j) is the sub-reliability function for jth

component.

Unfortunately, the expression in (2.9) does not work for the case with

jump points. To obtain a version of (2.9) in the presence of jumps, we

introduce the following definition and theorem.

Definition 2 For simplicity, consider the case of m = 2. The function

Φs2 (R∗1, R
∗
2, t) based on the sub-reliability functions R∗1 and R∗2 is

Φs2 (R∗1, R
∗
2, t) ≡ 1− exp

⊂
t∫

0

dR∗1(v)
2∑
j=1

R∗j (v)

 D
∏
v>t

F ∗1


2∑
j=1

R∗j (v
+)

2∑
j=1

R∗j (v
−)

,

where ⊂
∫
g(s)ds is integration over disjoint open intervals that do not

include the jump points of g(·) and D
∏G

is product over jump points of

G(·).
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The next result, although restricted to m = 2, extends expression (2.8)

in the sense that it can include disjoint jump points.

Theorem 3 The sub-reliability functions R∗1 and R∗2 determine (uniquely)

the distribution function F1 for t ≤ t∗ by F1(t) = Φs2(R
∗
1, R

∗
2, t).

For more details about relations among the distributions and sub-

distribution functions (sub-reliability functions) can be found in

Salinas-Torres et al. (2002) and Polpo e Sinha (2011) for series system

and Polpo e Pereira (2009) for parallel system.

In next Sub-section the relations among the distributions and sub-

distribution functions are presented for a more general class of systems -

SPS and PSS.

2.1.2 PSS and SPS

We restrict ourselves to a system with three components (m = 3),

given in Figure 1.3a and in Figure 1.4a.

Let X1, X2 and X3 be the lifetimes of three components of an PSS

and SPS with marginal distribution functions (DF) F1, F2, and F3, re-

spectively. The restriction here is that the three sets of jump points of

F1, F2, and F3 must be disjoint. The indicator of the component whose

failure produced the system to fail is δ = 1 when T = X1, δ = 2 when

T = X2, and δ = 3 when T = X3. Let F ∗j (t) = P(T ≤ t, δ = j) be the

sub-distribution function of the jth component and F (·) the distribution

function of the system. The following properties can be proved.
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Property 1 The sub-distribution functions (SDF) F ∗1 , F ∗2 , and F ∗3 de-

termine the DF of the system,

F (t) = F ∗1 (t) + F ∗2 (t) + F ∗3 (t). (2.10)

Property 2 1. F ∗1 (+∞) = Pr(δ = 1);

2. F ∗2 (+∞) = Pr(δ = 2);

3. F ∗3 (+∞) = Pr(δ = 3);

4. F ∗1 (+∞) + F ∗2 (+∞) + F ∗3 (+∞) = 1.

Property 3 The set of jump points F ∗j and Fj are the same, where j =

1, 2, 3. Because F1, F2, and F3 have disjoint set of jump points, so have

F ∗1 , F ∗2 , and F ∗3 .

Property 4 If min(F1(t), F2(t), F3(t)) < 1 for t < t∗, and 1 for t ≥ t∗,

then t∗ is the largest support point of the system.

The lifetime of the SPS is T = min(X1,max(X2, X3)) and the system

reliability of s-independent components is

R(t) = [1− F1(t)][1− F2(t)F3(t)]. (2.11)

The lifetime of the PSS is T = max(X1,min(X2, X3)) and the system

reliability of s-independent components is

R(t) = 1− F1(t) {1− [1− F2(t)][1− F3(t)]} . (2.12)
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Property 5 The SDF of the SPS can be expressed using the marginal

DF of the components by

F ∗1 (t) =

t∫
0

[1− F2(t)F3(t)]dF1(t),

F ∗2 (t) =

t∫
0

[1− F1(t)]F3(t)dF2(t),

F ∗3 (t) =

t∫
0

[1− F1(t)]F2(t)dF3(t), (2.13)

and the SDF of the PSS can be expressed using the marginal DF of the

components by

F ∗1 (t) =

t∫
0

{1− [1− F2(t)][1− F3(t)]}dF1(t),

F ∗2 (t) =

t∫
0

F1(t)[1− F3(t)]dF2(t),

F ∗3 (t) =

t∫
0

F1(t)[1− F2(t)]dF3(t). (2.14)

Our interest is to obtain the inverse of (2.13) and (2.14); that is, to

express the DFs F1, F2 and F3 as a function of the SDF (F ∗1 , F ∗2 , F ∗3 ).

These inverses are presented with the following definitions and theorems.

Definition 3 The functions Φs(F
∗
1 , F

∗
2 , F

∗
3 , t), and Φp(F

∗
1 , F

∗
2 , F

∗
3 , t) based
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on sub-distributions F ∗1 , F ∗2 , and F ∗3 are

Φs(F
∗
1 , F

∗
2 , F

∗
3 , t)≡1−

exp

⊂
t∫

0

−dF ∗1 (v)

1−
3∑
j=1

F ∗j (v)



D
∏
v≤t

F ∗1


1−

3∑
j=1

F ∗j (v+)

1−
3∑
j=1

F ∗j (v−)

.


 ,

Φp(F
∗
1 , F

∗
2 , F

∗
3 , t)≡exp

⊂
∞∫
t

−dF ∗1 (v)
3∑
j=1

F ∗j (v)

 D
∏
v>t

F ∗1


3∑
j=1

F ∗j (v−)

3∑
j=1

F ∗j (v+)

.

The functions Φs (for a series system), and Φp (for a parallel system) are

the versions with three components for those presented in Polpo e Sinha

(2011) and Polpo e Pereira (2009), respectively. First, Theorem 4 states

the relation between F1 and F ∗1 , F ∗2 , and F ∗3 .

Theorem 4 The SDF F ∗1 , F ∗2 , and F ∗3 determine (uniquely) the DF F1

of an SPS for t ≤ t∗ by F1(t) = Φs(F
∗
1 , F

∗
2 , F

∗
3 , t), and the DF F1 of a

PSS for t ≤ t∗ by F1(t) = Φp(F
∗
1 , F

∗
2 , F

∗
3 , t).

The next definition gives the functions Φsp (for the SPS), and Φps (for

the PSS).

Definition 4 The functions Φsp(F
∗
1 , F

∗
2 , F

∗
3 , t), and Φps(F

∗
1 , F

∗
2 , F

∗
3 , t), based

on sub-distributions F ∗1 , F ∗2 , and F ∗3 , are

Φsp(F
∗
1 , F

∗
2 , F

∗
3 , t) ≡
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exp

⊂
∞∫
t

−dF ∗2 (v)
3∑
j=1

F ∗j (v)− Φs(F ∗1 , F
∗
2 , F

∗
3 , v)


D
∏
v>t

F ∗2


3∑
j=1

F ∗j (v−)− Φs(F
∗
1 , F

∗
2 , F

∗
3 , v

−)

3∑
j=1

F ∗j (v+)− Φs(F ∗1 , F
∗
2 , F

∗
3 , v

+)

,
Φps(F

∗
1 , F

∗
2 , F

∗
3 , t) ≡

1−

exp

⊂
t∫

0

−dF ∗2 (v)

Φp(F ∗1 , F
∗
2 , F

∗
3 , v)−

3∑
j=1

F ∗j (v)



D
∏
v≤t

F ∗2


Φp(F

∗
1 , F

∗
2 , F

∗
3 , v

+)−
3∑
j=1

F ∗j (v+)

Φp(F ∗1 , F
∗
2 , F

∗
3 , v

−)−
3∑
j=1

F ∗j (v−)

.

Theorem 5 The SDF F ∗1 , F ∗2 , and F ∗3 determine (uniquely) the DF F2

of an SPS for t ≤ t∗ by F2(t) = Φsp(F
∗
1 , F

∗
2 , F

∗
3 , t), and the DF F2 of a

PSS for t ≤ t∗ by F2(t) = Φps(F
∗
1 , F

∗
2 , F

∗
3 , t).

Note that Theorem 5 can be easily rewritten to obtain the relation of DF

F3 and the SDF.

The proofs of Theorems 4 and 5 can be seen in Polpo et al. (2013).

Theorem 5 provides an important relation between the SDF and DF,

for both SPS and PSS. Using this result, in the next section, we have de-

veloped the nonparametric Bayesian estimator for the DF of the system’s

components.
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2.2 Bayesian Analysis

This section describes a Bayesian reliability approach to SPS and PSS.

We have derived a nonparametric Bayesian estimator of the distribution

function using the multivariate Dirichlet process

(Salinas-Torres et al., 2002). From Property 1, we have that the sub-

distribution functions are related to the system distribution function by

a sum. Considering that F ∗1 (t) +F ∗2 (t) +F ∗3 (t) + (1−F (t)) = 1, we have

the restriction that these four quantities have a sum equal to 1, and that

the set of possible points for {F ∗1 (t), F ∗2 (t), F ∗3 (t), 1 − F (t)} is the four-

dimensional simplex, or {F ∗1 (t), F ∗2 (t), F ∗3 (t)} for the non-singular form.

In this case, for a fixed t, we have that a natural prior choice is the

Dirichlet distribution, and for any t, we have the Dirichlet multivariate

process. In this Section a nonparametric estimator for the distribution

function of the components in an SPS or in a PSS, and using the Dirichlet

process, we have a complete distribution for the set {F ∗1 (t), F ∗2 (t), F ∗3 (t)}.

In this case, our parameters are the functions that we want to estimate,

giving us a nonparametric framework.

Consider a sample of size n and the observed data are (T1, δ1), . . . ,

(Tn, δn), in which Ti =min(X1i,max(X2i, X3i)) for SPS and

Ti =max(X1i,min(X2i, X3i)) for PSS. Besides, δi = j if Ti = Xji, for

i = 1, . . . , n and j = 1, 2, 3. Equivalently, for each t,the random variables

are observed:

nF ∗jn(t) =
n∑
i=1

I(Ti ≤ t, δi = j), for j = 1, 2, 3,

in which I(A) is a indicator function of set A.
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The function F ∗jn is empirical sub-distribution function of jth compo-

nent. If Fn(·) is the empirical distribution function corresponding to the

observations T1, . . . , Tn, thus for each t,

nFn(t) = nF ∗1n(t) + nF ∗2n(t) + nF ∗3n(t).

For each t, let kj(t) the realization of nF ∗jn(t), in which

kj(t) =
n∑
i=1

I(ti ≤ t, δi = j), for j = 1, 2, 3.

In this context, for each t, the likelihood function corresponds to

the likelihood of a multinomial modelM(n; p1(t), p2(t), p3(t), p4(t)) being

pj(t) = F ∗j (t), for j = 1, 2, 3, and p4(t) = 1−F (t) = 1−
∑3

j=1 F
∗
j (t), that

is,

L = P(nF ∗1n = k1(t), nF
∗
2n = k2(t), nF

∗
3n = k3(t))

∝ [F ∗1 (t)]k1(t)[F ∗2 (t)]k2(t)[F ∗3 (t)]k3(t)[1− F (t)]n−
∑3
j=1 kj(t)(2.15)

The prior distribution for (F ∗1 (·), F ∗2 (·), F ∗3 (·)) is constructed from the

characterization of the multivariate Dirichlet process, defined in

Salinas-Torres et al. (1997) and it may have the following simplified ver-

sion.

Definition 5 Let Ω be a sample space, α1, . . . , αm be finite positive mea-

sures defined over Ω, and ρ = (ρ1, . . . , ρm) be a random vector having a

Dirichlet distribution with parameters (α1(Ω), . . . , αm(Ω)). Consider m

Dirichlet processes, P1, . . . , Pm, with Pj ∼ D(αj), j = 1, . . . ,m. All these
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processes and ρ are mutually s-independent random quantities. Define

P ∗ = (P ∗1 , . . . , P
∗
m) = (ρ1P1, . . . , ρmPm). The P ∗ is a Dirichlet multivari-

ate process with parameter measures α1, . . . , αm.

In the context of SPS and PSS, consider Ω = (0,∞), ρj = P(δ = j)

and Pj(t) = P(T ≤ t|δ = j), for j = 1, 2, 3. Then, the vector of compo-

nents sub-distribution functions is F ∗ = (F ∗1 , F
∗
2 , F

∗
3 ) = (ρ1P1, ρ2P2, ρ3P3)

and the prior distribution is given by

F ∗(t) ∼ D(α1(0, t], α2(0, t], α3(0, t];
3∑
j=1

αj(t,∞)). (2.16)

Combining the prior distribution (2.16) and the likelihood function in

(2.15), the posterior distribution of F ∗(t) = (F ∗1 (t), F ∗2 (t), F ∗3 (t)) is, for

each t,

(F ∗1 (t), F ∗2 (t), F ∗3 (t))|Data ∼ D(α1(0, t] + nF ∗1n(t), α2(0, t] + nF ∗2n(t),

α3(0, t] + nF ∗3n(t);
3∑
j=1

αj(t,∞) + n−
3∑
j=1

nF ∗jn(t)).

Thus, the posterior means of F ∗j (t) and F (t) are given by

F̂ ∗j (t) = pα
αj(0, t]

3∑̀
=1

α`(0,∞)

+ (1− pα)F ∗jn(t), (2.17)

where pα =
( 3∑
j=1

αj(0,∞)
)/(

n+
3∑
j=1

αj(0,∞)
)
, and

F̂ (t) =
3∑
j=1

F̂ ∗j (t). (2.18)
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These Bayesian estimators are strongly s-consistent. For instance, us-

ing the Glivenko Cantelli Theorem (Billingsley, 1985), it can be shown

that F̂ ∗j converges to F ∗j uniformly with probability 1.

If αj(0,∞) <∞, the Bayesian estimator of ρj = P(δ = j) is given by

ρ̂j = lim
t↑∞

F̂ ∗j (t) =
αj(0,∞)

n+
3∑̀
=1

α`(0,∞)

+

n∑
i=1

I(δi = j)

n+
3∑̀
=1

α`(0,∞)

. (2.19)

Let the v (≤ n) distinct order statistics of T be T •(1) < . . . < T •(v). Set

Ni =
n∑̀
=1

I(T` < T •(i)), and dji =
n∑̀
=1

I(T` = T •(i), δ` = j), i = 1, . . . , v. Define

Is(t) = exp


1

3∑
j=1

αj(0,∞) + n

t∫
0

−dα1(0, s]

1− F̂ (s)

 , (2.20)

Πs(t) =
∏

i:T •
(i)
≤t

3∑
j=1

αj(T
•
(i),∞) + n−Ni − d1i

3∑
j=1

αj(T •(i),∞) + n−Ni

. (2.21)

Isp(t) = exp


1

3∑
j=1

αj(0,∞) + n

∞∫
t

−dα2(0, s]

F̂ (s)− F̂1(s)

 , (2.22)

Πsp(t) =
∏

i:T •
(i)
>t

3∑
j=1

αj(0,T
•
(i)]+Ni

n+
3∑
j=1

αj(0,∞)
− F̂1(T

•
(i))

3∑
j=1

αj(0,T •(i)]+Ni+d2i

n+
3∑
j=1

αj(0,∞)
− F̂1(T •(i))

. (2.23)
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Ip(t) = exp


1

3∑
j=1

αj(0,∞) + n

∞∫
t

−dα1(0, s]

F̂ (s)

 , (2.24)

Πp(t) =
∏

i:T •
(i)
>t

3∑
j=1

αj(0, T
•
(i)] +Ni

3∑
j=1

αj(0, T •(i)] +Ni + d1i

. (2.25)

Ips(t) = exp


1

3∑
j=1

αj(0,∞) + n

t∫
0

−dα2(0, s]

F̂1(s)− F̂ (s)

 , (2.26)

and

Πps(t) =
∏

i:T •
(i)
≤t

F̂1(T
•
(i))−

3∑
j=1

αj(0,T
•
(i)]+Ni+d2i

n+
3∑
j=1

αj(0,∞)

F̂1(T •(i))−

3∑
j=1

αj(0,T •(i)]+Ni

n+
3∑
j=1

αj(0,∞)

. (2.27)

The main result of this study is given in the following paragraph.

Theorem 6 Suppose that α1(0, ·), α2(0, ·), α3(0, ·) are continuous on (t,∞),

for each t > 0, and F1, F2, and F3 have no common discontinuities. Then,

for t ≤ T(n), and SPS, we have that

F̂1(t) = E[F1(t)|data] (2.28)

= Φs(F̂
∗
1 , F̂

∗
2 , F̂

∗
3 , t) = 1− Is(t)Πs(t),

F̂2(t) = E[F2(t)|data] (2.29)

= Φsp(F̂
∗
1 , F̂

∗
2 , F̂

∗
3 , t) = Isp(t)Πsp(t);
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and, for PSS,

F̂1(t) = E[F1(t)|data] (2.30)

= Φp(F̂
∗
1 , F̂

∗
2 , F̂

∗
3 , t) = Ip(t)Πp(t),

F̂2(t) = E[F2(t)|data] (2.31)

= Φps(F̂
∗
1 , F̂

∗
2 , F̂

∗
3 , t) = 1− Ips(t)Πps(t).

F̂1(t), and F̂2(t) are the nonparametric estimators of F1(t), and F2(t),

respectively, based on posterior means.

As in Theorem 5, it is straightforward to express the nonparametric

estimator of F3(t). In the next section, we extend the estimators to a

general case of m ≥ 4.

2.3 Bayesian estimator for m ≥ 4

The extension of the nonparametric Bayesian estimator for SPS and

PSS, given in Section 2.2, is based on rewriting the system representation

in a proper simplified version of the general case (m ≥ 4) to the one given

with m = 3, which has a solution given in Theorem 6. Considering the

SPS and the PSS presented in Fig. 2.1, we specify how to rewrite the

system representation and estimation of their components reliabilities in

the following.

We provided how to estimate Y1 (for the SPS), and Z1 (for the PSS),

because the reliability estimation of the other components are straight-

forward once these two are given. The idea of the extension is to represent

the systems in a simple version with three components (Figures 1.3a and
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(a) (b)

Figure 2.1: (a) SPS (b) PSS

1.4a). In this case, to estimate the reliability of Y1, we use the SPS so-

lution considering X1 = max(Y3, Y4), X2 = Y1, and X3 = Y2 (Figure

2.2a); and for the estimation of Z1, we use the PSS solution considering

X1 = min(Y3, Y4), X2 = Y1, and X3 = Y2 (Figure 2.2b). It must be noted

that other more complex systems can also be considered, but the task

is only to simplify the representation of the system as one of either the

PSS or SPS given in Figures 1.3a and 1.4a.

(a) (b)

Figure 2.2: (a) SPS (b) PSS

Furthermore, both the classes (SPS and PSS) are important so as

to have a more general solution, because we have the restriction that

two different components cannot have the same failure time, which in

turn would result in different representations giving more options to the

reliability estimation problem. Considering the PSS given in Figure 2.1b,

we can write their SPS representation as that presented in Figure 2.3. The

component’s reliability of the original PSS (Figure 2.1b) can be estimated

using the PSS result of Theorem 6, which has a simple solution. However,
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as the SPS representation (Figure 2.3) has some components repeated,

the SPS result of Theorem 6 is not applicable. Thus, the solutions for

both SPS and PSS are important and can be used in different situations.

Figure 2.3: The SPS representation of the PSS in Figure 2.1b.

2.4 Simulated datasets

This section presents two examples to demonstrate the estimation

steps and to show the quality of the Bayesian nonparametric estimator.

The estimation steps for the PSS are very similar to those for the SPS,

and for the sake of brevity, we have omitted them. The estimation steps

for SPS are as follows.

1. Defining priors: The prior measures (α1, α2, α3) are prior guesses of

the SDF (F ∗1 , F ∗2 , F ∗3 ), but it is not simple to elicit these measures. It

is easier to elicit the priors for the DF (F1, F2, F3), and use (2.13) for

the SPS to evaluate the prior measures (for PSS we can use (2.14)).

We chose the exponential distribution with mean 1 as the prior

guess for each of the three components DF. By evaluating the prior

measures using (2.13), we have α1(0, v] = (e−3v − 3e−2v + 2)/3, and

α2(0, v] = α3(0, v] = (2e−3v − 3e−2v + 1)/6. Note that this prior is

not very informative because the measure of the whole param-

eter space is only one (α1(Ω) + α2(Ω) + α3(Ω) = 1). Also, we
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have that dα1(0, v] = 2e−2v − e−3vdv, and dα2(0, v] = dα3(0, v] =

e−2v − e−3vdv.

2. Obtaining Posteriors: The posterior processes for the SDF func-

tions are D((e−3t − 3e−2t + 2)/3+ nF ∗1n(t), (2e−3t − 3e−2t + 1)/6+

nF ∗2n(t), (2e−3t − 3e−2t + 1)/6+ nF ∗3n(t)); and from (2.17), we have

F̂ ∗1 (t) =
nF ∗1n(t) + (e−3t − 3e−2t + 2)/3

n+ 1
,

F̂ ∗2 (t) =
nF ∗2n(t) + (2e−3t − 3e−2t + 1)/6

n+ 1
,

F̂ ∗3 (t) =
nF ∗3n(t) + (2e−3t − 3e−2t + 1)/6

n+ 1
,

which are the estimators of SDF.

3. Computing system’s reliability: (2.18) provides the estimator of the

system distribution function. For the prior defined earlier, we have

F̂ (t) =
nF ∗n(t) + e−3t − 2e−2t + 1

n+ 1
.

4. Computing components reliabilities: Theorem 6 gives the estima-

tors of the components DF. Using (2.28), we obtain the estimate

for component 1 DF; and from (2.29), we obtain the estimate for

component 2 DF. For Component 3 DF, we substitute dα2(0, v] by

dα3(0, v] (in the integral part Isp), and d2i by d3i (in the product

part Πsp) in (2.29). Also, the integral part of the estimator can

be solved by using a numerical procedure, such as the Simpson’s

rule. For more details and other numerical integration methods, see

Davis e Rabinowitz (1984).
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2.4.1 Simulated dataset 1

We obtained 100 observations of SPS presented in Figure 2.1a, where

all the components had gamma distributions; the first component (Y1)

had a mean of 4 and a standard deviation (SD) of 2.83, the second com-

ponent (Y2) had a mean of 6 and a SD of 4.9, the third component (Y3)

had a mean of 8 and a SD of 5.67, and the fourth component (Y4) had

a mean of 3 and a SD of 2.45. The Bayesian estimators are based on

(T1, δ1), . . . , (T100, δ100). The simulated values are listed in Table A.1 in

Appendix A.

To estimate components 1–4, we rewrote the representation of the sys-

tem as follows. For component 1, we considered that X1 = max(Y3, Y4),

X2 = Y1, and X3 = Y2; then F̂Y1(t) = F̂2(t), where F̂Y1 is the DF estimate

of component 1, and F̂2 is the proposed estimator for SPS (2.29). In a sim-

ilar way, for component 2, we considered X1 = max(Y3, Y4), X2 = Y2, and

X3 = Y1; for component 3, we considered X1 = max(Y1, Y2), X2 = Y3,

and X3 = Y4; and for component 4, we considered X1 = max(Y1, Y2),

X2 = Y4, and X3 = Y3 (see Section 2.3). We found that the propor-

tions of censored data for components 1–4 are 77%, 64%, 73%, and 86%,

respectively.

Figure 2.4 presents the estimates of the five distribution functions as-

sociated with components 1–4 and the system. In all plots, the true distri-

bution functions (dashed lines) and the prior mean (dashed-dot line) are

also illustrated. The conditional reliabilities of the components relative to

the system are ρ̂1 ∼= 0.2294, ρ̂2 ∼= 0.3581, ρ̂3 ∼= 0.2690, and ρ̂4 ∼= 0.1403.
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(a) (b) (c)

(d) (e)

Figure 2.4: Estimates for the Example 2.4.1.

2.4.2 Simulated dataset 2

In this example, we considered a PSS represented in Figure 2.1b. One

of the components had the distribution function of a mixture of an expo-

nential distribution and a discrete distribution, with positive probability

to fail at times 1 and 3, and is given by

F (t) =



0, if t ≤ 0,

0.6(1− e−t/4), if t < 1,

0.6(1− e−t/4) + 0.25, if t < 3,

0.6(1− e−t/4) + 0.4, if t ≥ 3.

(2.32)

We obtained 100 observed systems, where the first component (Z1)

had a gamma distribution with a mean of 4 and a SD of 2.83, the second
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component (Z2) had a Weibull distribution with a mean of 4.51 and a

SD of 3.06, the third component (Z3) had a mixture of an exponential

and a discrete distribution (2.32) with a mean of 3.1 and a SD of 3.34,

and the fourth component (Z4) had a log-normal distribution with a

mean of 4.59 and a SD of 2.45. The Bayesian estimators are based on

(T1, δ1), . . . , (T100, δ100). The simulated values are listed in Table A.2 in

Appendix A.

To estimate the parameters for components 1 through 4, we rewrote

the representation of the system as follows. For component 1, we consid-

ered thatX1 = min(Z3, Z4),X2 = Z1, andX3 = Z2; then, F̂Z1(t) = F̂2(t),

where F̂Z1 is the DF estimate of component 1, and F̂2 is the proposed es-

timator for PSS (2.31). In a similar way, for component 2, we considered

X1 = min(Z3, Z4), X2 = Z2, and X3 = Z1; for component 3, we consid-

ered X1 = min(Z1, Z2), X2 = Z3, and X3 = Z4; and for component 4,

we considered X1 = min(Z1, Z2), X2 = Z4, and X3 = Z3 (see Section

2.3). We found that the proportion of the censored data for components

1 through 3 is 71%, and that for component 4 is 87%.

Figure 2.5 presents the estimates of the five distribution functions:

components 1 through 4 and the system. In all the plots, the true distri-

bution functions (dashed lines) and the prior mean (dashed-dot line) are

also illustrated. The conditional reliabilities of the components relative to

the system are ρ̂1 ∼= 0.2887, ρ̂2 ∼= 0.2887, ρ̂3 ∼= 0.2887, and ρ̂4 ∼= 0.1303.
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(a) (b) (c)

(d) (e)

Figure 2.5: Estimates for the Example 2.4.2.
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Chapter 3

Weibull model

We present a Bayesian parametric approach for inferences about com-

ponents’ reliabilities in coherent systems when system failure time and

status of each component in moment of system failure are available. For

that, the method does not need the assumption of identically distributed

components lifetimes. The main assumption is that components’ lifetime

are mutually independent.

We assume the three-parameter Weibull distribution as the compo-

nent failure time distribution, presented in Section 3.1, a very general

distribution that can approximate most of the lifetimes distributions.

The Weibull model is presented in Section 3.2. In Section 3.3 simulated

datasets are considered and in Section 3.4 a real dataset is considered in

order to show the applicability of presented model.

39
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3.1 Three-parameter Weibull distribution

The Weibull distribution was thus named after Waloddi Weibull pre-

sented it to the world scientific community in 1951 (Weibull, 1951), but

previously considered this distribution in data of resistance of materials

(Weibull, 1939).

The Weibull distribution is undoubtedly one of the most popular

models in statistics because of its ability to fit data from a variety of areas,

from survival data to weather data or observations made in economics,

hydrology, biology or engineering (Rinne, 2008).

The three-parameter Weibull reliability function is given by

R(t | θj) = exp

[
−
(
t− µj
ηj

)βj]
, (3.1)

for t > 0, where θj = (βj, ηj, µj) and βj > 0 (shape), ηj > 0 (scale) and

0 < µj < t (location). The three-parameter Weibull density function is

f(t | θj) =
βj
ηj

(
t− µj
ηj

)βj−1
exp

[
−
(
t− µj
ηj

)βj]
. (3.2)

The Weibull distribution has characteristics that make this distribu-

tion a great candidate to model components lifetimes. One of them is

that variation of parameter values implies changes in both distribution

shape and hazard rates. We can have increasing, decreasing and con-

stant failure rates in this family of Weibull distributions Rinne (2008).

Besides, the three-parameter Weibull family is a very rich family since

most real situations will have random aspects that can be represented by

an element of the family.
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The Weibull distribution with two parameters (µj = 0) is the most

celebrated case in the literature. However, the location parameter µj that

represents the baseline lifetime has an important meaning in reliability

and survival analysis. In reliability, a component under test may be used

at an earlier moment and the beginning of the test is not necessarily the

beginning of the component’s life. In medicine for instance, a patient may

have the disease before the onset medical appoitment. Not taking account

this initial time can underestimates the other parameters. Clearly, in a

situation of new component testing µj may be 0.

3.2 Weibull model

We assume that X1, . . . , Xm are mutually independent. This assump-

tion is necessary under the considered approach, as it is proved in a

Theorem at Rodrigues et al. (2018).

Considering the reliability and density functions in (3.1) and (3.2) in

the likelihood function presented in (1.3), the likelihood function for the

Weibull parameters θj is given by

L(θj | lj,uj) =
n∏
i=1

{
βj
ηj

(
lji − µj
ηj

)βj−1
exp

[
−
(
lji − µj
ηj

)βj]}I{lji=uji}

{
exp

[
−
(
lji − µj
ηj

)βj]
− exp

[
−
(
uji − µj
ηj

)βj]}1−I{lji=uji}

, (3.3)

where I{TRUE} = 1 or I{FALSE} = 0, lj = (lj1, . . . , ljn) and uj = (uj1, . . . , ujn).

The posterior density of θj = (βj, ηj, µj) comes out to be

π(βj, ηj, µj | lj,uj) ∝
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π(βj, ηj, µj)
n∏
i=1

{(
lji − µj
ηj

)βj−1 βj
ηj

exp

[
−
(
lji − µj
ηj

)βj]}I{lji=uji}

×

{
exp

[
−
(
lji − µj
ηj

)βj]
− exp

[
−
(
uji − µj
ηj

)βj]}1−I{lji=uji}

,(3.4)

for which π(βj, ηj, µj) is the prior density of θj = (βj, ηj, µj) that we

consider to be:

π(βj, ηj, µj) =
1

ηj

1

βj
. (3.5)

Even (3.5) being not a proper prior − its integral is not finite − the

posterior density in Equation (3.4) is proper, as stated by the following

result (Rodrigues et al., 2018).

Theorem 7 Let a class of non-informative prior given by

π(βj, ηj, µj) =
1

ηjβbj
, b ≥ 0.

Although, for b ≥ 0, n = 1 and the existence of a failure, the posterior in

(3.4) is not proper, for n > 1, the posterior in (3.4) is proper.

The proof of this result can be seen at Rodrigues et al. (2018). The

importance of the above result is that one can perform Bayesian infer-

ences even with low prior information.

Because the posterior density (3.4) has not a closed form, statistical

inferences about the parameters can rely on Markov-Chain Monte-Carlo

(MCMC) simulations. Here we consider an adaptive-Metropolis-Hasting

algorithm with a multivariate distribution (Haario et al., 2005).

Discarding burn-in (first generated values discarded to eliminate the

effect of the assigned initial values for parameters) and jump samples
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(spacing among generated values to avoid correlation problems) a sam-

ple of size np from the joint posterior distribution of θj is obtained. For

the jth component, the sample from the posterior can be expressed as

(β
(1)
j , β

(2)
j , . . . , β

(np)
j ), (η

(1)
j , η

(2)
j , . . . , η

(np)
j ) and (µ

(1)
j , µ

(2)
j , . . . , µ

(np)
j ). Con-

sequently, posterior quantities of reliability function R(t | θj) can be eas-

ily obtained (Robert e Casella, 2010). For instance, the posterior mean

of the reliability function is

E
[
R(t | θj) | lj,uj

]
=

1

np

np∑
k=1

R
(
t | θ(k)j

)
, for each t > 0. (3.6)

3.3 Simulated datasets

3.3.1 Parallel system simulated data

A sample of n = 30 parallel systems withm = 3 components was gen-

erated. In the generation process, X1 was generated from a log-normal

distribution with mean 5.5 and variance 7,X2 from a Weibull distribution

with mean 4 and variance 12 and X3 was generated from three-parameter

Weibull distribution with mean 5 and variance 3. In a parallel structure,

the system works when at least one component works, so the system life-

time is given by T = max{X1, X2, X3}. The generated data are presented

in Table B.1, Appendix B. In this structure, when a given component is

not the last to fail, it is censored to the left. In observed sample, com-

ponent 1 presents 60% of left-censored data and components 2 and 3 are

70% left-censored data each.

To obtain posterior quantities based on posterior density (3.4) through
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MCMC simulations, 20,000 samples were generated, in which the first

10,000 of them were discarded as burn-in samples and jump of size

10 was chosen to avoid correlation problems. Consequently, samples of

size np = 1,000 were obtained of each posterior quantitites. The chains

convergence was monitored for good convergence results to be obtained

(Robert e Casella, 2010). Posterior measures of Weibull parameters βj, ηj

and µj, for j = 1, 2, 3, are presented in Table 3.1 and posterior measures

of R(t | θj) for some values of t are shown in Table 3.2. The posterior

means of reliability functions can be visualized in Figure 3.1 besides the

empirical 95% HPD intervals (Highest Posterior Density). The reliability

posterior means are close to the true reliability curves, in general. Even

for values of t that the posterior mean is more distant from the true val-

ues, the lower or upper limit of HPD interval is very close to the true

curve.

Table 3.1: Posterior measures of Weibull parameters for components involved
in parallel system.

Component 1
Min 1Qt Median Mean 3Qt Max SD CI 95%

β1 0.297 0.636 0.780 0.817 0.959 2.053 0.258 0.360 - 1.359
η1 0.258 1.619 2.297 2.495 3.144 6.574 1.215 0.454 - 5.062
µ1 0.014 1.794 2.386 2.184 2.783 3.131 0.764 0.465 - 3.131

Component 2
Min 1Qt Median Mean 3Qt Max SD CI 95%

β2 0.132 0.612 0.874 0.935 1.182 2.557 0.422 0.272 - 1.774
η2 0.016 1.522 2.598 2.656 3.713 7.318 1.423 0.156 - 5.078
µ2 0.005 0.709 1.656 1.642 2.581 3.156 0.998 0.109 - 3.137

Component 3
Min 1Qt Median Mean 3Qt Max SD CI 95%

β3 0.164 0.734 1.005 1.157 1.449 3.635 0.581 0.340 - 2.421
η3 0.124 1.008 1.557 1.883 2.528 5.405 1.142 0.250 - 4.328
µ3 0.003 1.856 2.630 2.295 2.971 3.156 0.862 0.365 - 3.156
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Table 3.2: Posterior measures of reliability functions for some values of t in
parallel components.

Component 1
t Min 1Qt Median Mean 3Qt Max SD CI 95%

0.50 0.899 1.000 1.000 0.998 1.000 1.000 0.009 0.997 - 1.000
10.00 0.010 0.051 0.073 0.083 0.106 0.271 0.043 0.015 - 0.170
16.50 0.000 0.006 0.014 0.022 0.030 0.154 0.022 0 - 0.068

Component 2
t Min 1Qt Median Mean 3Qt Max SD CI 95%

1.00 0.565 0.975 1.000 0.971 1.000 1.000 0.061 0.831 - 1.000
11.50 0.000 0.019 0.037 0.045 0.063 0.244 0.035 0 - 0.112
17.00 0.000 0.002 0.008 0.016 0.023 0.146 0.022 0 - 0.063

Component 3
t Min 1Qt Median Mean 3Qt Max SD CI 95%

0.30 0.958 1.000 1.000 1.000 1.000 1.000 0.002 0.998 - 1.000
9.00 0.000 0.007 0.017 0.024 0.034 0.182 0.025 0 - 0.076
12.50 0.000 0.000 0.002 0.007 0.007 0.140 0.013 0 - 0.032
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Figure 3.1: Generating reliability functions, posterior means and 95% HPD
intervals (CI 95%) for the components involved in parallel structure with three
components.

3.3.2 2-out-of-3 system simulated data

A sample of n = 50 2-out-of-3 systems was generated. In the genera-

tion process, X1 was generated from a Weibull distribution with mean 15

and variance 8, X2 from a gamma distribution with mean 18 and variance

12 and X3 from a lognormal distribution with mean 20 and variance 10.

In a 2-out-of-3 structure, the system stops working when the second com-

ponent fails, so the system lifetime is given by T = max{min{X1, X2},

min{X1, X3},min{X2, X3}}. The generated data are presented in Table

B.2, Appendix B.
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In this structure, when a given component is not the second compo-

nent to fail, it is censored either to the right or to the left side. In observed

sample, component 1 presents 76% of censored data (70% to the left and

6% to the right), component 2 presents 48% of censored data (22% to

the left and 26% to the right) and component 3 presents 76% of censored

data (8% to the left and 68% to the right).

To obtain posterior quantities based on posterior density (3.4) through

MCMC simulations, 20,000 samples were generated, in which the first

10,000 of them were discarded as burn-in samples and jump of size

10 was chosen to avoid correlation problems. Consequently, samples of

size np = 1,000 were obtained of each posterior quantitites. The chains

convergence was monitored for good convergence results to be obtained

(Robert e Casella, 2010). Posterior measures of Weibull parameters βj, ηj

and µj, for j = 1, 2, 3, are presented in Table 3.3 and posterior measures

of R(t | θj) for some values of t are shown in Table 3.4. The posterior

means of reliability functions can be visualized in Figure 3.2 besides the

empirical 95% HPD intervals. The reliability posterior means are close to

the true reliability curves mainly for components 1 and 3. For component

2, even for values of t that the posterior mean is more distant from the

true values of the reliability, the upper limit of HPD interval is very close

to the true curve.
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Table 3.3: Posterior measures of Weibull parameters for 2-out-of-3 compo-
nents.

Component 1
Min 1Qt Median Mean 3Qt Max SD CI 95%

β1 0.552 1.480 2.281 2.619 3.562 7.297 1.394 0.601 - 5.376
η1 1.232 3.819 6.262 7.260 10.240 16.540 4.088 1.651 - 15.101
µ1 0.001 5.443 9.328 8.416 11.900 13.310 3.950 0.708 - 13.212

Component 2
Min 1Qt Median Mean 3Qt Max SD CI 95%

β2 1.006 2.268 3.169 3.622 4.606 9.703 1.693 1.442 - 7.192
η2 4.107 6.409 8.445 9.612 12.190 19.520 3.968 4.364 - 17.503
µ2 0.035 6.255 9.974 8.816 12.020 13.350 3.813 1.077 - 13.347

Component 3
Min 1Qt Median Mean 3Qt Max SD CI 95%

β3 0.922 2.381 3.396 3.992 5.243 12.540 2.028 1.318 - 8.005
η3 6.135 9.210 11.810 12.750 15.740 24.440 4.107 7.122 - 20.820
µ3 0.001 5.656 9.752 8.666 12.290 13.350 4.035 0.837 - 13.353

Table 3.4: Posterior measures of reliability functions for some values of t in
2-out-of-3 components.

Component 1
t Min 1Qt Median Mean 3Qt Max SD CI 95%

7.70 0.811 0.997 1.000 0.994 1.000 1.000 0.017 0.959 - 1.000
15.00 0.204 0.405 0.471 0.471 0.532 0.725 0.090 0.307 - 0.637
20.00 0.002 0.023 0.038 0.043 0.056 0.191 0.027 0.003 - 0.094

Component 2
t Min 1Qt Median Mean 3Qt Max SD CI 95%

9.45 0.955 0.999 1.000 0.998 1.000 1.000 0.004 0.990 - 1.000
16.00 0.520 0.665 0.705 0.703 0.745 0.858 0.058 0.588 - 0.807
22.00 0.001 0.028 0.048 0.055 0.074 0.259 0.037 0.003 - 0.131

Component 3
t Min 1Qt Median Mean 3Qt Max SD HPD 95%

14.00 0.830 0.955 0.973 0.967 0.985 0.999 0.024 0.919 - 0.997
22.00 0.038 0.205 0.277 0.288 0.368 0.654 0.113 0.067 - 0.492
26.00 0.000 0.007 0.035 0.067 0.100 0.482 0.079 0.000 - 0.227
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Figure 3.2: Generating reliability functions, posterior means and 95% HPD
intervals (CI 95%) for the components involved in 2-out-of-3 structure.

3.3.3 Bridge system simulated data

A sample of n = 100 bridge systems as representation in Figure

1.5 was simulated. In the generation process, X1 was generated from a

Weibull distribution with mean 17 and variance 8, X2 from a log-normal

distribution with mean 16 and variance 22, X3 from a log-normal distri-

bution with mean 15 and variance 15,X4 from a gamma distribution with

mean 15 and variance 6 and X5 from a gamma distribution with mean

20 and variance 12. In a bridge structure, the system stops depending on

a combination of components failures, so the system lifetime is given by

T = max{min{X1, X4},min{X2, X5},min{X1, X3, X5},min{X2, X3, X4}}.

The generated data are presented in Table B.3, in Appendix B. In ob-

served sample, component 1 presents 83% of censored data (31% to the

left and 52% to the right), component 2 presents 71% of censored data

(49% to the left and 22% to the right), component 3 presents 89% of cen-

sored data (64% to the left and 25% to the right), component 4 presents

74% of censored data (56% to the left and 18% to the right) and com-
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ponent 5 presents 83% of censored data (11% to the left and 72% to the

right).

To obtain posterior quantities based on posterior density (3.4) through

MCMC simulations, 30,000 samples were generated, in which the first

10,000 of them were discarded as burn-in samples and jump of size

20 was chosen to avoid correlation problems. Consequently, samples of

size np = 1,000 were obtained of each posterior quantitites. The chains

convergence was monitored for good convergence results to be obtained

(Robert e Casella, 2010). Posterior measures of Weibull parameters βj, ηj

and µj, for j = 1, . . . , 5, are presented in Table 3.5 and posterior measures

of R(t | θj) for some values of t are shown in Table 3.6. The posterior

means of reliability functions can be visualized in Figure 3.3 besides the

empirical 95% HPD intervals. The reliability posterior means are close

to the true reliability curves for all components, mainly for component

2. Even for values of t that the posterior mean is more distant from the

true values, the lower or upper limit of HPD interval is very close to the

true curve.



50 WEIBULL MODEL 3.3

Table 3.5: Posterior measures of Weibull parameters for the components in
the bridge structure.

Component 1
Min 1Qt Median Mean 3Qt Max SD CI 95%

β1 0.993 3.561 4.523 4.611 5.560 8.665 1.409 2.061 - 7.335
η1 7.236 11.766 14.245 14.089 16.596 19.790 2.971 8.861 - 18.917
µ1 0.010 1.909 4.145 4.408 6.708 10.801 2.913 0.010 - 9.436

Component 2
Min 1Qt Median Mean 3Qt Max SD CI 95%

β2 1.163 2.219 2.785 2.829 3.408 5.509 0.822 1.333 - 4.343
η2 5.009 9.398 11.644 11.742 14.328 17.710 3.066 6.035 - 16.791
µ2 0.001 2.563 5.043 4.955 7.264 10.684 2.924 0.008 - 9.78

Component 3
Min 1Qt Median Mean 3Qt Max SD CI 95%

β3 0.568 1.272 1.608 1.830 2.174 4.951 0.776 0.772 - 3.534
η3 2.607 5.124 6.389 7.558 9.088 16.909 3.241 3.534 - 14.742
µ3 0.018 6.399 9.036 7.907 10.273 10.899 3.029 1.282 - 10.899

Component 4
Min 1Qt Median Mean 3Qt Max SD CI 95%

β4 1.203 2.167 2.641 3.039 3.605 8.107 1.197 1.403 - 5.491
η4 4.137 5.280 6.341 7.464 8.811 16.534 2.916 4.284 - 14.346
µ4 0.008 7.096 9.495 8.320 10.468 10.897 2.813 1.674 - 10.897

Component 5
Min 1Qt Median Mean 3Qt Max SD CI 95%

β5 1.034 2.570 3.342 3.597 4.450 7.778 1.289 1.562 - 6.098
η5 9.044 12.236 14.542 15.060 17.716 24.581 3.373 9.823 - 21.195
µ5 0.028 4.185 7.301 6.662 9.555 10.894 3.231 0.777 - 10.894

Table 3.6: Posterior measures of components’ reliability functions for some
values of t in the bridge structure.

Component 1
t Min 1Qt Median Mean 3Qt Max SD CI 95%

8.95 0.922 0.990 0.995 0.993 0.999 1.000 0.008 0.976 - 1.000
15.00 0.598 0.727 0.758 0.757 0.790 0.869 0.046 0.671 - 0.845
22.00 0.001 0.031 0.059 0.070 0.098 0.346 0.052 0.001 - 0.174

Component 2
t Min 1Qt Median Mean 3Qt Max SD CI 95%

6.50 0.927 0.988 0.998 0.992 1.000 1.000 0.012 0.967 - 1.00
18.00 0.142 0.233 0.259 0.261 0.286 0.404 0.041 0.190 - 0.351
32.00 0.000 0.000 0.000 0.001 0.000 0.012 0.002 0 - 0.004

Component 3
t Min 1Qt Median Mean 3Qt Max SD CI 95%

7.50 0.767 0.992 1.000 0.987 1.000 1.000 0.030 0.92 - 1.000
13.00 0.348 0.576 0.626 0.624 0.677 0.834 0.074 0.485 - 0.769
24.00 0.000 0.010 0.021 0.028 0.036 0.174 0.025 0 - 0.079

Component 4
t Min 1Qt Median Mean 3Qt Max SD CI 95%

9.00 0.933 0.996 1.000 0.995 1.000 1.000 0.011 0.971 - 1.000
14.00 0.427 0.610 0.651 0.649 0.689 0.801 0.057 0.542 - 0.756
20.00 0.001 0.013 0.022 0.026 0.036 0.145 0.019 0.001 - 0.063

Component 5
t Min 1Qt Median Mean 3Qt Max SD CI 95%

12.00 0.896 0.967 0.978 0.975 0.986 0.998 0.015 0.947 - 0.997
20.00 0.295 0.455 0.503 0.503 0.550 0.697 0.073 0.371 - 0.654
29.50 0.000 0.002 0.012 0.032 0.041 0.319 0.048 0 - 0.142
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Figure 3.3: Generating reliability functions, posterior means and 95% HPD
intervals (CI 95%) for the components involved in the bridge structure.

3.4 Device-G dataset

A dataset presented by Meeker e Escobar (2014) is considered. A sam-

ple of n = 30 units were installed in typical service environments. Cause

of failure information was determined for each unit that failed. Mode S

failures were caused by an accumulation of randomly occurring damage

from power-line voltage spikes during electric storms. Mode W failures

were caused by normal product wear that began to appear after many

cycles of use. The causes W and S competed to be responsible for device-

G failure, i.e., it is a system with 2 components in series. The observed

dataset is presented in Table B.5 (Appendix B), in which 23.33% of

observed system failure because of component W (component S is right-
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censored), 50% of systems failed because of component S failure (com-

ponent W is right-censored) and the remaining 26.67% were censored

systems and for them, both components are right-censored observations.

To obtain posterior quantities related to the posterior distribution of

θ = (β, η, µ) from posterior distribution in (3.4) through MCMC simula-

tions, we discarded the first 10,000 as burn-in samples and jump of size

10 to avoid correlation problems, obtaining a sample of size np = 1,000.

The chains convergence was monitored for all simulation scenarios and

good convergence results were obtained.

Table 3.7 lists the posterior quantities for the parameters of shape

(β), scale (η) and location (µ). The posterior measures of R(t | θj) for

some values of t are shown in Table 3.8 and posterior means of reliability

functions can be visualized in Figure 3.4 besides the empirical 95% HPD

intervals.

Table 3.7: Posterior measures of Weibull parameters for Device-G dataset.

Componente W (j = 1)
Min 1Qt Median Mean 3Qt Max SD CI 95%

β1 1.440 3.329 4.117 4.246 4.999 9.931 1.314 1.895 - 6.875
η1 265.166 315.879 335.632 341.645 360.237 581.516 37.428 283.810 - 418.451
µ1 0.001 0.479 1.004 0.994 1.518 1.999 0.587 0.004 - 1.894

Componente S (j = 2)
Min 1Qt Median Mean 3Qt Max SD CI 95%

β2 0.271 0.521 0.613 0.620 0.709 1.296 0.148 0.372 - 0.913
η2 102.848 238.267 294.820 311.932 367.790 722.754 98.473 163.956 - 535.053
µ2 0.001 0.881 1.558 1.357 1.871 2.000 0.593 0.204 - 2.000
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Table 3.8: Posterior measures of reliability functions for some values of t in
Device-G dataset.

Componente W
t Min 1Qt Median Mean 3Qt Max SD CI 95%

11.046 0.996 1.000 1.000 1.000 1.000 1.000 0.000 0.999 - 1.000
150.230 0.761 0.938 0.966 0.955 0.982 0.999 0.039 0.875 - 0.999
250.023 0.423 0.687 0.748 0.741 0.804 0.940 0.086 0.58 - 0.896

Componente S
t Min 1Qt Median Mean 3Qt Max SD CI 95%

14.988 0.573 0.811 0.861 0.850 0.898 0.984 0.063 0.728 - 0.956
120.191 0.353 0.512 0.564 0.564 0.614 0.778 0.071 0.437 - 0.702
250.071 0.187 0.359 0.404 0.408 0.456 0.600 0.067 0.275 - 0.528
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Figure 3.4: Generating reliability functions, posterior means and 95% HPD
intervals (CI 95%) for the components involved in Device-G dataset.
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Chapter 4

Masked data

Chapters 2 and 3 considered the problem of component estimation

in coherent systems under the Bayesian paradigm in nonparametric and

parametric approaches, respectively. In both cases the status of each com-

ponent at the time of system failure is considered to be known. In some

situation, however, the component that causes the system failure is not

identified exactly and can only be narrowed down to a smaller set of

components, known as masked data failure cause.

Flehinger et al. (2002) presents a masked data problem in which con-

sists of computer hard-drives failure times monitored over a period of 4

years. There were three possible causes of failure competing to be com-

puter hard-drives failures: eletronic hard, head flyability and head/disc

magnetics. For some units, the real cause of hard-drive failure is not

identified only that it belongs to a subset of components candidates to

be system failure cause.

The masked data problem formulation is developed and a Bayesian

three-parameter Weibull model for marginal components’ reliabilities in

55
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masked data scenario is presented. This chapter is based on the work of

Rodrigues et al. (2017) and we suggest seeing this article for more details.

In Section 4.1 masked data problem is discussed. Weibull model for

masked data scenario is presented in 4.2. Section 4.3 presents simulated

datasets for some system structures and Section 4.4 presents computer

hard-drives dataset solution.

4.1 Masked data scenario

Consider again that a random sample of n = 10 2-out-of-3 systems

(Figure 1.7) is observed. Unlike the previous situations, the component

whose failure causes the system failure is not identified for all units. A set

of components index, say s, which includes the component responsible

for the system failure is specified. The data are presented in Table 4.1.

For instance, system ID=4 failed at time 2.55 but the component that

cause the system failure is not identified, it is just known that the failure

of component 2 or the failure of component 3 caused system failure, once

s = {2, 3}. If your interest is inference about component 2, por example,

it is not known whether the failure of component 2 produced the failure

of the system or if component 2 is left-censored at time 2.55.

Note that for system ID=5 there is only one component in set s,

s = {1}. Thus, it is not a case of masked data, in which component 1

failed at time 1.89 and its failure caused the system to fail.
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Table 4.1: Observed data of n = 10 2-out-of-3 systems in masked data sce-
nario.

System ID t s
1 1.95 {1,3}
2 2.09 {1,2}
3 3.56 {2}
4 2.55 {2,3}
5 1.89 {1}
6 3.01 {2,3}
7 2.43 {1,2}
8 1.51 {2}
9 3.55 {1}
10 2.35 {2,3}

4.2 Weibull model

Consider again a system ofm components and Xj denoting the failure

time of the jth component, j = 1, . . . ,m. We assume thatX1, X2, . . . , Xm

are mutually independent. Let T the random variable that represents

the system failure time and t a observation of T . Associated to each

component j, let δj an indicator of censor.

The observation of Xj can be: Xj = t, the failure time of Xj it is not

censored (δj = 1); Xj > t, the failure time is right censored (δj = 2); and

Xj ≤ t, the failure time is left censored (δj = 3). Also, jth component

can belong to the masked set or not.

Let s be the set of index indicating possible components that produced

the failure of the system, that is, components that have their failure time

masked, s is a subset of {1, . . . ,m}.

Let t1, . . . , tn a sample of system failure time of size n, and si is the set

of masked components in the ith sample, i = 1, . . . , n. Also, υji = 1 if the

jth component has the failure time masked (j ∈ si and si is not unitary),
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and υji = 0 otherwise (j /∈ si), for j = 1, . . . ,m. The observation of jth

component will be one of the following:

uncensored; not masked: δji = 1 and υji = 0;

right censored; not masked: δji = 2 and υji = 0;

left censored; not masked: δji = 3 and υji = 0;

masked: υji = 1.

If a component has the failure time masked, the component can be the

one that produced the failure of the system (uncensored), right censored

or left censored. Consider that

λ1j(t) = Pr(υj = 1 | t, δj = 1),

λ2j(t) = Pr(υj = 1 | t, δj = 2),

λ3j(t) = Pr(υj = 1 | t, δj = 3),

where λ1j(t) is the conditional probability of the jth component be

masked, given the failure time of the system t, and the censor type

δj = 1. λ2j(t) and λ3j(t) are analogous to λ1j(t). Here, we consider that

λ1j(t) = λ1j, λ2j(t) = λ2j, and λ3j(t) = λ3j, that is, the probability of a

component be masked does not depend on the failure time t.

For each component, we can observe the triple (ti, δji, υji), i, . . . , n.

Our interest consists in the estimation of the distribution function, F ,

of the j-h component. We consider a parametric family model for F

with parameter θj, then the estimation of the parameter θj induces the
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distribution function F . The available information from the data is one

of the following types:

1. Pr(Xji ∈ (ti, ti], υi = 0 | θj) = f(ti | θj)(1 − λ1j), if the ith

observation is uncensored and not masked;

2. Pr(Xji ∈ (ti,∞), υi = 0 | θj) = [1 − F (ti | θj)](1 − λ2j), if the ith

observation is right censored and not masked;

3. Pr(Xji ∈ (0, ti], υi = 0 | θj) = F (ti | θj)(1 − λ3j), if the ith

observation is left censored and not masked;

4. Pr(Xji ∈ (ti, ti], υi = 1 | θj) = f(ti | θj)λ1j, if the ith observation

is uncensored and masked;

5. Pr(Xji ∈ (ti,∞), υi = 1 | θj) = [1 − F (ti | θj)]λ2j, if the ith

observation is right censored and masked; and

6. Pr(Xji ∈ (0, ti], υi = 1 | θj) = F (ti | θj)λ3j, if the ith observation

is left censored and masked.

However, we do not have information about the cases 4 to 6, since

when the data is masked, we do not know if that component was cen-

sored or not. Considering an augmented data procedure (latent variable),

define d1ji = 1 if the masked observation is not censored or d1ji = 0 oth-

erwise, d2ji = 1 if the masked observation is right censored or d2ji = 0

otherwise, and d3ji = 1 if the masked observation is left censored or

d3ji = 0 otherwise. Besides, dji = (d1ji, d2ji, d3ji) and
∑3

l=1 dlji = 1.

Let R(ti | θj) = 1− F (ti | θj) the reliability function. The likelihood

function of the jth component can be writen as a part of non-masked
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data and a part for masked data (augmented data), that is,

L(θj, λ1j, λ2j, λ3j,dj | t, δj,υj) =
∏

i: υji=0

{
[f(ti | θj) (1− λ1j)]I(δji=1)

×[R(ti | θj) (1− λ2j)]I(δji=2)[F (ti | θj) (1− λ3j)]I(δji=3)
}

×
∏

i: υji=1

{
[f(ti | θj) λ1j]d1ji [R(ti | θj) λ2j]d2ji [F (ti | θj) λ3j]d3ji

}
,(4.1)

where I(A) = 1, if A is true, and I(A) = 0 otherwise, t = (t1, . . . , tn),

υj = (υj1, . . . , υjn), dj = (dji : i ∈ {υji = 1}) and δj = (δji : i ∈ {υji =

0}).

The likelihood function in (4.1) is defined generically and it is straight-

forward to any probability distribution. We propose the three-parameter

Weibull distribution. Thus, the reliability and density functions are given

in (3.1) and (3.2), respectively.

The estimation work is performed under a Bayesian perspective of

inference, and thus, the priori distribution for (θj, λ1j, λ2j, λ3j,dj) needs

to be defined. The prior distributions of all parameters are considered

independent with gamma distribution with mean 1 and variance 1000

for βj, ηj, µj and uniform distribution over (0, 1) for λ1j, λ2j and λ3j.

Besides, Pr(dlji = 1) = Pr(dlji = 0) = 0.5, for l = 1, 2, 3.

Here, no prior information about component’s operation is known and

noninformative prior is considered. However, it is possible to express a

prior information about the component functioning in the system through

the opinion of an expert and/or through past experiences.

The posterior density of (θj, λ1j, λ2j, λ3j,dj) comes out to be

π(θj, λ1j, λ2j, λ3j,dj | t, δj,υj) ∝
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π(θj, λ1j, λ2j, λ3j,dj)L(θj, λ1j, λ2j, λ3j,dj | t, δj,υj), (4.2)

where π(θj, λ1j, λ2j, λ3j,dj) is the prior distribution of (θj, λ1j, λ2j, λ3j,dj).

The posterior density in Equation (4.2) has not close form. An al-

ternative is to rely on Markov-Chain Monte-Carlo (MCMC) simulations.

Here we consider Metropolis within Gibbs algorithm. This algorithm is

suitable in this situation because it is possible direct sampling from condi-

tional distribution for some parameters but for others this is not possible

(Tierney, 1994). The algorithm works in the following steps:

1. Attribute initial values θ(0)j , λ(0)1j , λ
(0)
2j and λ(0)3j for θj = (βj, ηj, µj),

λ1j, λ2j and λ3j, respectively, and set b = 1;

2. For i ∈ {υj = 1}, draw d(b)
ji from π(dji | t, δj,υj,θ(b−1)j , λ

(b−1)
1j , λ

(b−1)
2j , λ

(b−1)
3j ),

in which:

π(dji | t, δj,υj,θj, λ1j, λ2j, λ3j) ∝
{
λ1jf(ti|θj)

}d1ji{
λ2jR(ti|θj)

}d2ji
×
{
λ3jF (ti|θj)

}d3ji
,

that is, dji | t, δj,υj,θj, λ1j, λ2j, λ3j ∼ Multinomial(1; p1ji, p2ji, p3ji)

in which p1ji = λ1jf(ti|θj)/C, p2ji = λ2jR(ti|θj)/C and p3ji =

λ3jF (ti|θj)/C, where C = λ1jf(ti|θj) + λ2jR(ti|θj) + λ3jF (ti|θj);

3. Draw θ
(b)
j from π(θj | t, δj,υj,d(b)

j , λ
(b−1)
1j , λ

(b−1)
2j , λ

(b−1)
3j ) through

Metropolis-Hastings algorithm (Robert e Casella, 2010), where

π(θj | t, δj,υj,dj, λ1j, λ2j, λ3j) ∝ π(θj)
∏

i: υji=0

{
[f(ti | θj) (1− λ1j)]I(δji=1)

×[R(ti | θj) (1− λ2j)]I(δji=2)[F (ti | θj) (1− λ3j)]I(δji=3)
}
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×
∏

i: υji=1

{
[f(ti | θj) λ1j]d1ji [R(ti | θj) λ2j]d2ji [F (ti | θj) λ3j]d3ji

}
.

4. Simulate λ1j from π(λ1j | t, δj,υj,d(b)
j ,θ

(b)
j , λ

(b−1)
2j , λ

(b−1)
3j ) in which

π(λ1j | t, δj,υj,dj,θj, λ2j, λ3j) ∝ λ

∑
i: υji=1

d1ji

1j (1− λ1j)nf ,

that is, λ1j | (t, δj,υj,dj,θj, λ2j, λ3j) ∼ Beta(
∑

i: υji=1

d1ji+1, nf+1),

in which nf is the number of systems in which component j is known

to be the responsible of system failure.

5. Simulate λ2j from π(λ2j | t, δj,υj,d(b)
j ,θ

(b)
j , λ

(b−1)
1j , λ

(b−1)
3j ) in which

π(λ2j | t, δj,υj,dj,θj, λ1j, λ3j) ∝ λ

∑
i: υji=1

d2ji

2j (1− λ2j)nr ,

that is, λ2j | (t, δj,υj,dj,θj, λ1j, λ3j) ∼ Beta(
∑

i: υji=1

d2ji + 1, nr +

1), in which nr is the number of systems in which component j is

observed to be right-censored.

6. Simulate λ3j from π(λ3j | t, δj,υj,d(b)
j ,θ

(b)
j , λ

(b−1)
1j , λ

(b−1)
2j ) in which

π(λ3j | t, δj,υj,dj,θj, λ1j, λ2j) ∝ λ

∑
i: υji=1

d3ji

3j (1− λ3j)nl ,

that is, λ3j | (t, δj,υj,dj,θj, λ1j, λ2j) ∼ Beta(
∑

i: υji=1

d3ji + 1, nl +

1), in which nl is the number of systems in which component j is

observed to be left-censored.

7. Let b = b + 1 and repeat steps 2) to 7) until b = B, where B is

pre-set number of simulated samples of (θj, λ1j, λ2j, λ3j,dj).
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Discarding burn-in (first generated values discarded to eliminate the

effect of the assigned initial values for parameters) and jump samples

(spacing among generated values to avoid correlation problems), a sam-

ple of size np from the joint posterior distribution of (θj, λ1j, λ2j, λ3j,dj)

is obtained. For the jth component, the sample from the posterior can be

expressed as (θ
(1)
j ,θ

(2)
j , . . . ,θ

(np)
j ), (λ

(1)
1j , λ

(2)
1j , . . . , λ

(np)
1j ), (λ

(1)
2j , λ

(2)
2j , . . . , λ

(np)
2j ),

(λ
(1)
3j , λ

(2)
3j , . . . , λ

(np)
3j ) and (d

(1)
j ,d

(2)
j , . . . ,d

(np)
j ). Consequently, posterior quan-

tities of reliability functionR(t | θj) can be easily obtained (Robert e Casella,

2010). For example, the posterior mean of the reliability function is given

by

E[R(t | θj) | Data] =
1

np

np∑
k=1

R
(
t | θ(k)j

)
, for each t > 0.

4.3 Simulated datasets in masked scenario

We consider two simulated examples of complex system structure.

The system 1, the 2-out-of-3 system is presented in Figure 1.7. System

in Figure 4.1, system 2, can be denoted as a series system of components

1 and 2 with components 3, 4 and 5.

1

2

3 4

5

Figure 4.1: System 2 representation.

For these simulated examples, we consider that si consists of compo-

nents that no longer work in the system failure, that is, there is no right

censored for components in si, which leads to λ2j = 0. Besides, for si
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not unitary, j ∈ si only if j belongs to the minimal cut set that caused

the ith system failure. A cut set is a set of components which by failing

causes the system to fail. A cut set is said to be minimal if it can not be

reduced without loosing its status as a cut set. For the bridge system, for

instance, there are four minimal cut sets, they are: {1, 2}, {4, 5}, {1, 3, 5}

and {2, 3, 4}.

Imagine a situation that this bridge system fail and the components

1, 2 and 3 do not work at the moment of system failure. Then, only

components 1 and 2 belong to set s, once the component 3 does not

belong to the minimal cut that caused the system failure and, in fact,

the component 3 is observed to be left censored failure time. In this

approach, we fit the proposed model under symmetric assumption (that

is, λ1j = λ3j).

The simulated systems have the following characteristics:

• System 1 (2-out-of-3): m = 3 and X1 was generated from a Weibull

distribution with mean 15 and variance 8, X2 from a gamma dis-

tribution with mean 18 and variance 12, X3 from a lognormal dis-

tribution with mean 20 and variance 10 and the system failure

time is T = max{min{X1, X2},min{X1, X3},min{X2, X3}} Be-

sides, n = 300 and p = 0.4, where p is the proportion of masked

data system.

• System 2: m = 5 and X1 was generated from a Weibull distri-

bution with mean 12 and variance 15, X2 from a gamma distri-

bution with mean 11 and variance 11, X3 from a three-parameter

Weibull distribution with mean 12 and variance 9, X4 from a log-
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normal distribution with mean 12 and variance 7 and X5 from

a three-parameter Weibull distribution with mean 11 and vari-

ance 14. In this structure, the system lifetime is given by T =

min{max{X1, X2},max{min{X3, X4}, X5}}, n = 100 and the pro-

portion of masked data systems is p = 0.3.

For all systems, we generated 30,000 values of each parameter, dis-

regarding the first 10,000 iterations as burn-in samples and jump of size

20 was chosen to avoid correlation problems, obtaining a sample of size

np = 1,000. The chains convergence was monitored and good convergence

results were obtained.

4.3.1 System 1

The generated data are presented in Table C.1 in Appendix C. Table

4.2 presents the percentages of observations types of each component.

Component 1, for instance, has 46.67% of censored observations (40.67%

to the left and 6% to the right) and it has 37.33% of systems in masked

scenario.

Posterior measures of Weibull parameters βj, ηj and µj, for j = 1, 2, 3,

are presented in Table 4.3. The posterior quantities of R(t | θj) for some

values of t are shown in Table 4.4. The posterior means of reliability

functions can be visualized in Figure 4.2 besides the empirical 95% HPD

intervals. The reliability posterior means are close to the true reliability

curves, in general. Even for values of t that the posterior mean is more

distant from the true values, the lower or upper limit of HPD interval is

very close to the true curve.



66 MASKED DATA 4.3

Table 4.2: Percentages of type of observations for each component in
2-out-of-3 structure in masked scenario.

Components Type Number of systems %
1 Known failure 48 16.00%

Left censored 122 40.67%
Right censored 18 6.00%

Masked 112 37.33%
2 Known failure 75 25.00%

Left censored 49 16.33%
Right censored 99 33.00%

Masked 77 25.67%
3 Known failure 57 19.00%

Left censored 9 3.00%
Right censored 183 61.00%

Masked 51 17.00%

Table 4.3: Posterior measures of Weibull parameters for 2-out-of-3 compo-
nents in masked scenario.

Componente 1
Min 1Qt Median Mean 3Qt Max SD IC 95%

β1 3.722 4.894 5.242 5.250 5.645 7.090 0.532 4.209 - 6.244
η1 14.420 15.440 15.650 15.630 15.850 16.610 0.305 15.029 - 16.207
µ1 1.64E-09 4.16E-08 1.46E-07 4.42E-07 4.68E-07 3.30E-06 6.58E-07 1.63E-09 - 2.04E-06

Componente 2
Min 1Qt Median Mean 3Qt Max SD IC 95%

β2 3.648 4.690 4.964 4.962 5.230 6.448 0.439 4.101 - 5.833
η2 17.850 18.500 18.690 18.690 18.870 19.780 0.288 18.169 - 19.274
µ2 1.08E-07 5.18E-07 9.55E-06 1.92E-05 2.70E-05 0.000221 3.05E-05 1.08E-07 - 6.13E-05

Componente 3
Min 1Qt Median Mean 3Qt Max SD IC 95%

β3 5.308 6.695 7.118 7.143 7.557 9.216 0.610 6.008 - 8.296
η3 19.640 20.380 20.620 20.610 20.820 21.830 0.339 19.987 - 21.333
µ3 0.000 0.002 0.023 0.113 0.225 0.864 0.144 1.08E-04 - 0.362

Table 4.4: Posterior measures of components’ reliability functions involved in
2-out-of-3 masked system for some values of t.

Component 1
t Min 1Qt Median Mean 3Qt Max SD CI 95%

3.5 0.995 0.999 1.000 0.999 1.000 1.000 0.001 0.998 - 1.000
10.0 0.788 0.889 0.908 0.905 0.927 0.966 0.029 0.842 - 0.951
20.0 0.007 0.021 0.026 0.028 0.033 0.059 0.009 0.012 - 0.046

Component 2
t Min 1Qt Median Mean 3Qt Max SD CI 95%

8.5 0.938 0.975 0.980 0.979 0.984 0.994 0.007 0.965 - 0.992
15.0 0.602 0.692 0.712 0.712 0.732 0.793 0.030 0.660 - 0.772
26.0 0.001 0.003 0.006 0.007 0.009 0.056 0.006 0.001 - 0.020

Component 3
t Min 1Qt Median Mean 3Qt Max SD CI 95%

12.5 0.936 0.968 0.974 0.973 0.978 0.989 0.008 0.958 - 0.986
20.0 0.347 0.437 0.460 0.458 0.480 0.555 0.034 0.392 - 0.528
25.0 0.001 0.012 0.021 0.024 0.033 0.119 0.016 0.002 - 0.056
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Figure 4.2: Generating reliability functions, posterior means and 95% HPD
intervals (CI 95%) for the components involved in 2-out-of-3 structure in
masked scenario.

4.3.2 System 2

The generated data are presented in Table C.5 in Appendix C. Table

4.5 presents the percentages of observations types of each component.

Component 3, for instance, has 81% of censored observations (26% to the

left and 55% to the right) and it has 9% of systems in masked scenario.

Posterior measures of Weibull parameters βj, ηj and µj, for j =

1, . . . , 5, are presented in Table 4.6. The posterior quantities of R(t | θj)

for some values of t are shown in Table 4.7. The posterior means of re-

liability functions can be visualized in Figure 4.3 besides the empirical

95% HPD intervals. The reliability posterior means are close to the true

reliability curves, mainly for component 3. Even for values of t that the

posterior mean is more distant from the true values, the lower or upper

limit of HDP interval is very close to the true curve.
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Table 4.5: Percentages of type of observations for each component in 4.1
structure.

Components Type Number of systems %
1 Known failure 13 13.00%

Left censored 37 37.00%
Right censored 37 37.00%

Masked 13 13.00%
2 Known failure 12 12.00%

Left censored 48 48.00%
Right censored 27 27.00%

Masked 13 13.00%
3 Known failure 10 10.00%

Left censored 26 26.00%
Right censored 55 55.00%

Masked 9 9.00%
4 Known failure 12 12.00%

Left censored 30 30.00%
Right censored 47 47.00%

Masked 11 11.00%
5 Known failure 16 16.00%

Left censored 54 54.00%
Right censored 22 22.00%

Masked 8 8.00%

Table 4.6: Posterior measures of Weibull parameters for components in 4.1
structure in masked scenario.

Component 1
Min 1Qt Median Mean 3Qt Max SD IC 95%

β1 1.017 2.188 2.568 2.572 2.922 4.449 0.558 1.561 - 3.677
η1 10.650 12.190 12.700 12.780 13.290 16.590 0.815 11.287 - 14.242
µ1 1.49E-33 6.03E-27 3.44E-24 8.25E-13 8.34E-19 2.48E-11 3.15E-12 0 - 0

Component 2
Min 1Qt Median Mean 3Qt Max SD IC 95%

β2 1.340 2.415 2.812 2.842 3.240 5.844 0.624 1.634 - 4.016
η2 9.101 10.730 11.120 11.100 11.440 13.110 0.579 9.982 - 12.162
µ2 9.79E-38 5.69E-35 2.86E-34 7.33E-23 6.66E-30 3.90E-21 4.50E-22 0 - 0

Component 3
Min 1Qt Median Mean 3Qt Max SD IC 95%

β3 2.283 4.195 4.789 4.844 5.454 8.149 0.944 3.130 - 6.838
η3 11.690 12.660 12.960 13.040 13.360 15.530 0.566 12.023 - 14.212
µ3 5.45E-19 1.49E-17 7.45E-16 7.03E-13 4.91E-13 1.52E-11 1.90E-12 0 - 0

Component 4
Min 1Qt Median Mean 3Qt Max SD IC 95%

β4 1.858 3.867 4.391 4.412 4.925 6.707 0.774 2.95 - 5.943
η4 11.330 12.530 12.830 12.880 13.180 15.800 0.505 12.009 - 13.887
µ4 4.09E-20 2.53E-18 2.13E-17 3.33E-12 1.20E-13 2.77E-10 2.40E-11 0 - 0

Component 5
Min 1Qt Median Mean 3Qt Max SD IC 95%

β5 1.559 2.562 2.914 2.932 3.300 4.524 0.534 1.947 - 3.96
η5 9.526 10.820 11.120 11.130 11.450 13.190 0.513 10.224 - 12.307
µ5 1.99E-23 2.11E-22 1.48E-19 4.95E-12 4.26E-16 1.92E-10 1.81E-11 0 - 0
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Table 4.7: Posterior measures of components reliability functions involved in
structure 4.1 in masked scenario for some values of t.

Component 1
t Min 1Qt Median Mean 3Qt Max SD IC 95%

3.5 0.779 0.944 0.963 0.956 0.977 0.997 0.029 0.900 - 0.996
11.0 0.340 0.463 0.499 0.500 0.535 0.651 0.051 0.394 - 0.591
18.5 0.001 0.041 0.072 0.085 0.121 0.297 0.057 0.001 - 0.194

Component 2
t Min 1Qt Median Mean 3Qt Max SD IC 95%

4.00 0.760 0.914 0.945 0.935 0.964 0.998 0.040 0.851 - 0.990
12.00 0.162 0.252 0.287 0.288 0.319 0.446 0.049 0.181 - 0.371
17.00 0.001 0.017 0.035 0.044 0.061 0.226 0.037 0.001 - 0.115

Component 3
t Min 1Qt Median Mean 3Qt Max SD IC 95%

6.00 0.874 0.963 0.975 0.971 0.984 0.998 0.018 0.937 - 0.998
11.00 0.461 0.604 0.638 0.635 0.670 0.767 0.049 0.535 - 0.722
15.00 0.008 0.083 0.134 0.143 0.191 0.408 0.075 0.020 - 0.289

Component 4
t Min 1Qt Median Mean 3Qt Max SD IC 95%

6.00 0.772 0.951 0.965 0.961 0.976 0.994 0.022 0.917 - 0.994
12.00 0.273 0.440 0.477 0.476 0.516 0.643 0.053 0.369 - 0.571
16.00 0.005 0.041 0.069 0.082 0.115 0.357 0.053 0.005 - 0.182

Component 5
t Min 1Qt Median Mean 3Qt Max SD IC 95%

4.50 0.755 0.902 0.930 0.923 0.953 0.986 0.038 0.845 - 0.979
12.00 0.165 0.260 0.286 0.289 0.317 0.470 0.044 0.203 - 0.376
16.00 0.004 0.037 0.057 0.062 0.081 0.210 0.033 0.007 - 0.127
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Figure 4.3: Generating reliability functions, posterior means and 95% HPD
intervals (CI 95%) for components involved in 4.1 structure in masked scenario.
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4.4 Computer hard-drive dataset

The dataset is available in Flehinger et al. (2002) which consists of

172 observed failure times of computer hard-drives monitored over a pe-

riod of 4 years. There were three possible causes of failure: eletronic

hard (component j = 1), head flyability (component j = 2) and head-

/disc magnetics (component j = 3). That is, the hard-drives are system

with three components in series. However, for some of them (38%) the

cause of hard-drive fail was not identified. For these masked data sys-

tems, s = {1, 3} or s = {1, 2, 3}, that is, there is no possible masked set

s = {1, 2} or s = {2, 3}. Note that in our proposal approach the con-

figuration of set s is not a big deal, once the important information for

estimation of jth component reliability is if j belongs to s or not. More de-

tails about the detection of failure causes can be found in Flehinger et al.

(2001) and in Craiu e Reiser (2006). The dataset is presented in Table

C.6 in Appendix C.

Since the components in si are right censored or responsible for sys-

tem failure, λ3j = 0, for j = 1, 2, 3, and no hard-drive is subject of

left censored failure time. Table 4.8 presents the percentages of observa-

tions types of each component. The component 1 caused the failure of

20.35% of systems, 11.05% of systems failured because of component 2

and component 3 was responsible for 30.23% of system failure. Besides,

or component 1 or component 3 caused the failure of 18.60% of systems

and the remaining 19.77% of systems broken down because of any of

three components.

We generated 35,000 values of each parameter, disregarding the first
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5,000 iterations as burn-in samples and jump of size 30 to avoid cor-

relation problems, obtaining a sample of size np = 1,000. The chains

convergence was monitored and good convergence results were obtained.

Posterior measures of Weibull parameters βj, ηj and µj, for j = 1, 2, 3,

are presented in Table 4.9. The posterior quantities of R(t | θj) for some

values of t are shown in Table 4.10. The posterior means of reliability

functions can be visualized in Figure 4.4 besides the empirical 95% HPD

intervals.

Table 4.8: Percentages of type of observations for each component in computer
hard-drive dataset.

Components Type Number of systems %
1 Known failure 35 20.35%

Right censored 71 41.28%
Masked 66 38.37%

2 Known failure 19 11.05%
Right censored 119 69.19%

Masked 34 19.77%
3 Known failure 52 30.23%

Right censored 54 31.40%
Masked 66 38.37%

Table 4.9: Posterior measures of Weibull parameters for components in com-
puter hard drive dataset.

Component 1
Min 1Qt Median Mean 3Qt Max SD IC95%

β1 0.603 0.919 1.017 1.025 1.130 1.613 0.156 0.734 - 1.312
η1 4.890 7.586 9.135 9.668 10.790 34.550 3.098 5.299 - 15.499
µ1 2.03E-160 1.72E-129 3.55E-85 1.36E-35 1.03E-60 9.68E-33 3.11E-34 0 - 0

Component 2
Min 1Qt Median Mean 3Qt Max SD IC95%

β2 0.607 1.295 1.480 1.502 1.684 2.584 0.305 0.994 - 2.184
η2 5.168 8.151 9.783 10.870 12.060 76.190 5.027 5.350 - 19.275
µ2 1.84E-201 2.45E-161 8.25E-120 2.17E-36 1.00E-78 7.55E-34 3.11E-35 0 - 0

Component 3
Min 1Qt Median Mean 3Qt Max SD IC95%

β3 2.689 3.479 3.725 3.737 3.992 5.027 0.399 2.971 - 4.522
η3 3.273 3.539 3.617 3.626 3.704 4.340 0.129 3.378 - 3.869
µ3 4.67E-29 1.75E-21 1.93E-16 1.73E-11 8.58E-14 8.46E-10 7.75E-11 0 - 0
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Table 4.10: Posterior measures of components’ reliability function involved in
computer hard-drive dataset for some values of t.

Component 1
t Min 1Qt Median Mean 3Qt Max SD IC95%

0.049 0.973 0.993 0.995 0.994 0.997 1.000 0.004 0.986 - 0.999
1.502 0.739 0.835 0.852 0.850 0.869 0.932 0.026 0.797 - 0.899
4.480 0.409 0.571 0.612 0.610 0.651 0.837 0.060 0.495 - 0.730

Component 2
t Min 1Qt Median Mean 3Qt Max SD IC95%

0.049 0.988 0.999 1.000 0.999 1.000 1.000 0.001 0.998 - 1.000
1.502 0.845 0.927 0.939 0.938 0.952 0.985 0.018 0.903 - 0.971
4.480 0.499 0.683 0.728 0.724 0.769 0.878 0.064 0.607 - 0.850

Component 3
t Min 1Qt Median Mean 3Qt Max SD IC95%

0.049 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.999 - 1.000
1.502 0.907 0.954 0.963 0.961 0.971 0.987 0.013 0.933 - 0.982
4.480 0.012 0.084 0.107 0.113 0.138 0.336 0.042 0.041 - 0.197
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Figure 4.4: Generating reliability functions, posterior mean and 95% HPD
intervals (CI 95%) for the components involved in computer hard-drive dataset.



Appendix A

Datasets - Chapter 2

Table A.1: Simulated sample of example 2.4.1

T δ T δ T δ T δ T δ
1.25 2 1.27 4 1.35 3 1.38 3 1.43 3
1.47 2 1.54 4 1.61 4 1.89 4 1.92 1
2.22 2 2.40 3 2.43 2 2.58 1 2.59 1
2.60 3 2.94 4 2.98 2 3.01 1 3.03 1
3.05 1 3.12 2 3.14 4 3.15 2 3.16 1
3.17 2 3.40 1 3.41 1 3.42 1 3.46 2
3.55 3 3.67 3 3.68 2 3.72 3 3.83 4
3.88 1 4.14 3 4.17 2 4.24 2 4.40 3
4.50 1 4.66 4 4.67 4 4.72 4 4.80 1
4.81 3 4.85 3 4.89 1 4.98 1 5.00 3
5.06 3 5.12 1 5.15 2 5.18 2 5.22 2
5.23 2 5.38 2 5.51 2 5.67 4 5.68 1
5.78 2 5.81 3 5.92 2 6.01 4 6.05 1
6.10 2 6.12 3 6.28 2 6.41 2 6.57 3
6.67 4 6.76 3 6.87 3 6.95 4 7.08 2
7.09 2 7.14 1 7.41 3 7.48 2 7.60 1
7.62 2 7.77 1 8.38 2 8.44 3 8.48 2
8.69 2 8.74 2 9.02 3 9.36 2 10.04 2

10.07 2 10.16 1 11.07 2 11.27 2 11.38 3
11.74 3 11.89 3 13.36 3 13.51 1 15.27 3
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Table A.2: Simulated sample of example 2.4.2

T δ T δ T δ T δ T δ
0.66 2 0.71 3 1.00 3 1.00 3 1.00 3
1.00 3 1.00 3 1.06 2 1.08 2 1.18 4
1.34 2 1.38 1 1.45 1 1.54 3 1.72 1
1.73 1 1.78 1 1.81 2 1.85 1 1.87 4
1.92 4 1.96 3 1.99 1 2.09 1 2.15 2
2.17 2 2.23 3 2.26 2 2.27 2 2.28 1
2.30 1 2.34 1 2.39 3 2.49 1 2.52 3
2.53 4 2.55 4 2.56 2 2.59 1 2.64 1
2.65 1 2.73 1 2.74 4 2.87 1 2.88 4
2.97 2 3.00 3 3.00 3 3.00 3 3.00 3
3.00 3 3.00 3 3.00 3 3.00 3 3.00 3
3.04 1 3.05 1 3.06 2 3.08 3 3.12 2
3.15 2 3.24 4 3.25 3 3.36 2 3.53 3
3.71 3 3.78 2 3.96 4 4.05 1 4.27 1
4.53 2 4.62 4 4.65 1 4.85 1 4.91 2
4.92 4 5.05 2 5.18 2 5.21 2 5.22 1
5.23 1 5.24 3 5.25 1 5.41 2 5.46 2
5.51 1 5.56 2 5.58 2 5.59 1 5.64 2
5.67 1 5.79 2 5.96 3 6.64 2 6.66 4
6.88 4 8.01 3 8.04 2 8.75 3 9.53 3
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Datasets - Chapter 3

Table B.1: Observed data of n = 30 parallel systems.

System ID Component 1 Component 2 Component 3
l u l u l u

1 0.00 8.83 8.83 8.83 0.00 8.83
2 5.04 5.04 0.00 5.04 0.00 5.04
3 0.00 5.07 5.07 5.07 0.00 5.07
4 3.99 3.99 0.00 3.99 0.00 3.99
5 0.00 9.73 9.73 9.73 0.00 9.73
6 0.00 5.75 5.75 5.75 0.00 5.75
7 0.00 5.56 0.00 5.56 5.56 5.56
8 0.00 3.17 3.17 3.17 0.00 3.17
9 5.31 5.31 0.00 5.31 0.00 5.31
10 0.00 3.45 0.00 3.45 3.45 3.45
11 16.71 16.71 0.00 16.71 0.00 16.71
12 7.24 7.24 0.00 7.24 0.00 7.24
13 0.00 4.54 0.00 4.54 4.54 4.54
14 0.00 4.56 0.00 4.56 4.56 4.56
15 6.39 6.39 0.00 6.39 0.00 6.39
16 0.00 8.41 0.00 8.41 8.41 8.41
17 0.00 7.22 0.00 7.22 7.22 7.22
18 0.00 4.70 0.00 4.70 4.70 4.70
19 4.19 4.19 0.00 4.19 0.00 4.19
20 0.00 9.59 9.59 9.59 0.00 9.59
21 3.91 3.91 0.00 3.91 0.00 3.91
22 5.39 5.39 0.00 5.39 0.00 5.39
23 0.00 5.57 0.00 5.57 5.57 5.57
24 5.50 5.50 0.00 5.50 0.00 5.50
25 0.00 7.63 7.63 7.63 0.00 7.63
26 0.00 8.25 8.25 8.25 0.00 8.25
27 0.00 7.76 7.76 7.76 0.00 7.76
28 5.18 5.18 0.00 5.18 0.00 5.18
29 0.00 3.16 0.00 3.16 3.16 3.16
30 15.85 15.85 0.00 15.85 0.00 15.85
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Table B.2: Observed data of n = 50 2-out-of-3 systems.

System ID Component 1 Component 2 Component 3
l u l u l u

1 0.00 20.16 20.16 20.16 20.16 ∞
2 18.95 18.95 18.95 ∞ 0.00 18.95
3 0.00 20.12 20.12 20.12 20.12 ∞
4 18.86 18.86 0.00 18.86 18.86 ∞
5 0.00 15.80 15.80 15.80 15.80 ∞
6 0.00 13.35 13.35 13.35 13.35 ∞
7 0.00 14.32 14.32 ∞ 14.32 14.32
8 0.00 16.06 16.06 16.06 16.06 ∞
9 0.00 19.65 19.65 19.65 19.65 ∞
10 15.17 15.17 15.17 ∞ 0.00 15.17
11 0.00 19.36 19.36 19.36 19.36 ∞
12 0.00 16.94 16.94 16.94 16.94 ∞
13 0.00 16.09 16.09 16.09 16.09 ∞
14 0.00 16.42 16.42 16.42 16.42 ∞
15 17.06 ∞ 0.00 17.06 17.06 17.06
16 19.03 19.03 0.00 19.03 19.03 ∞
17 0.00 17.11 17.11 17.11 17.11 ∞
18 0.00 18.82 18.82 18.82 18.82 ∞
19 0.00 16.63 16.63 ∞ 16.63 16.63
20 0.00 21.35 21.35 21.35 21.35 ∞
21 16.63 16.63 16.63 ∞ 0.00 16.63
22 14.31 14.31 0.00 14.31 14.31 ∞
23 0.00 15.90 15.90 15.90 15.90 ∞
24 0.00 16.09 16.09 ∞ 16.09 16.09
25 0.00 15.74 15.74 15.74 15.74 ∞
26 0.00 15.60 15.60 ∞ 15.60 15.60
27 0.00 18.55 18.55 18.55 18.55 ∞
28 0.00 17.11 17.11 17.11 17.11 ∞
29 0.00 22.14 22.14 ∞ 22.14 22.14
30 0.00 17.86 17.86 ∞ 17.86 17.86
31 0.00 16.45 16.45 16.45 16.45 ∞
32 0.00 17.24 17.24 17.24 17.24 ∞
33 14.93 14.93 0.00 14.93 14.93 ∞
34 15.68 15.68 0.00 15.68 15.68 ∞
35 0.00 17.30 17.30 17.30 17.30 ∞
36 0.00 18.58 18.58 ∞ 18.58 18.58
37 0.00 18.44 18.44 ∞ 18.44 18.44
38 0.00 17.27 17.27 17.27 17.27 ∞
39 0.00 18.33 18.33 18.33 18.33 ∞
40 20.47 20.47 0.00 20.47 20.47 ∞
41 0.00 16.60 16.60 16.60 16.60 ∞
42 0.00 20.67 20.67 ∞ 20.67 20.67
43 17.34 17.34 17.34 ∞ 0.00 17.34
44 0.00 16.57 16.57 16.57 16.57 ∞
45 16.11 16.11 0.00 16.11 16.11 ∞
46 0.00 20.49 20.49 20.49 20.49 ∞
47 15.28 15.28 0.00 15.28 15.28 ∞
48 0.00 15.94 15.94 15.94 15.94 ∞
49 19.72 ∞ 0.00 19.72 19.72 19.72
50 15.64 ∞ 0.00 15.64 15.64 15.64
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Table B.3: Observed data of n = 100 bridge systems (continues on the next
page).

System ID Component 1 Component 2 Component 3 Component 4 Component 5
l u l u l u l u l u

1 16.56 ∞ 0.00 16.56 0.00 16.56 16.56 16.56 16.56 ∞
2 18.98 18.98 0.00 18.98 18.98 ∞ 0.00 18.98 18.98 ∞
3 0.00 17.50 17.50 17.50 0.00 17.50 0.00 17.50 17.50 ∞
4 15.21 ∞ 15.21 ∞ 0.00 15.21 15.21 15.21 0.00 15.21
5 0.00 19.49 19.49 19.49 0.00 19.49 19.49 ∞ 19.49 ∞
6 16.37 ∞ 0.00 16.37 16.37 16.37 0.00 16.37 16.37 ∞
7 0.00 17.33 17.33 ∞ 0.00 17.33 17.33 ∞ 17.33 17.33
8 0.00 14.48 14.48 14.48 14.48 ∞ 0.00 14.48 14.48 ∞
9 19.54 ∞ 0.00 19.54 19.54 ∞ 0.00 19.54 19.54 19.54
10 17.69 17.69 0.00 17.69 0.00 17.69 17.69 ∞ 0.00 17.69
11 16.40 ∞ 16.40 ∞ 0.00 16.40 0.00 16.40 16.40 16.40
12 17.22 ∞ 0.00 17.22 0.00 17.22 17.22 17.22 17.22 ∞
13 0.00 21.87 21.87 21.87 0.00 21.87 0.00 21.87 21.87 ∞
14 16.53 ∞ 16.53 ∞ 0.00 16.53 0.00 16.53 16.53 16.53
15 15.48 ∞ 0.00 15.48 15.48 15.48 0.00 15.48 15.48 ∞
16 14.08 14.08 0.00 14.08 14.08 ∞ 0.00 14.08 14.08 ∞
17 0.00 13.84 13.84 13.84 13.84 ∞ 13.84 ∞ 13.84 ∞
18 14.27 ∞ 0.00 14.27 14.27 14.27 0.00 14.27 14.27 ∞
19 0.00 17.52 17.52 17.52 0.00 17.52 17.52 ∞ 17.52 ∞
20 0.00 18.38 18.38 ∞ 0.00 18.38 0.00 18.38 18.38 18.38
21 14.50 ∞ 0.00 14.50 14.50 14.50 0.00 14.50 14.50 ∞
22 15.63 15.63 0.00 15.63 15.63 ∞ 0.00 15.63 15.63 ∞
23 0.00 13.83 13.83 13.83 0.00 13.83 13.83 ∞ 13.83 ∞
24 0.00 14.86 14.86 ∞ 0.00 14.86 14.86 ∞ 14.86 14.86
25 16.77 ∞ 0.00 16.77 16.77 16.77 0.00 16.77 16.77 ∞
26 0.00 19.55 19.55 19.55 0.00 19.55 0.00 19.55 19.55 ∞
27 0.00 19.27 19.27 19.27 0.00 19.27 0.00 19.27 19.27 ∞
28 16.73 16.73 0.00 16.73 0.00 16.73 16.73 ∞ 16.73 ∞
29 16.98 ∞ 16.98 ∞ 0.00 16.98 0.00 16.98 16.98 16.98
30 13.21 ∞ 0.00 13.21 13.21 13.21 0.00 13.21 13.21 ∞
31 0.00 15.79 15.79 15.79 15.79 ∞ 0.00 15.79 15.79 ∞
32 15.79 ∞ 0.00 15.79 15.79 ∞ 15.79 15.79 0.00 15.79
33 18.68 ∞ 18.68 ∞ 0.00 18.68 0.00 18.68 18.68 18.68
34 0.00 12.55 12.55 12.55 12.55 ∞ 12.55 ∞ 12.55 ∞
35 15.69 ∞ 0.00 15.69 0.00 15.69 15.69 15.69 15.69 ∞
36 0.00 19.26 19.26 19.26 0.00 19.26 0.00 19.26 19.26 ∞
37 0.00 23.57 23.57 23.57 0.00 23.57 0.00 23.57 23.57 ∞
38 15.78 15.78 0.00 15.78 15.78 ∞ 0.00 15.78 15.78 ∞
39 18.31 18.31 0.00 18.31 0.00 18.31 18.31 ∞ 0.00 18.31
40 16.00 16.00 0.00 16.00 16.00 ∞ 0.00 16.00 16.00 ∞
41 17.42 ∞ 17.42 17.42 0.00 17.42 0.00 17.42 17.42 ∞
42 13.23 ∞ 0.00 13.23 0.00 13.23 13.23 13.23 13.23 ∞
43 13.29 ∞ 0.00 13.29 13.29 ∞ 13.29 13.29 0.00 13.29
44 17.19 ∞ 0.00 17.19 0.00 17.19 17.19 17.19 17.19 ∞
45 0.00 13.68 13.68 ∞ 13.68 ∞ 13.68 13.68 0.00 13.68
46 0.00 13.80 13.80 13.80 0.00 13.80 13.80 ∞ 13.80 ∞
47 13.57 ∞ 13.57 ∞ 0.00 13.57 0.00 13.57 13.57 13.57
48 16.04 ∞ 0.00 16.04 16.04 16.04 0.00 16.04 16.04 ∞
49 16.93 ∞ 16.93 ∞ 0.00 16.93 16.93 16.93 0.00 16.93
50 0.00 17.55 17.55 17.55 0.00 17.55 0.00 17.55 17.55 ∞
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Table B.4: Continuation - observed data of n = 100 bridge systems.

System ID Component 1 Component 2 Component 3 Component 4 Component 5
l u l u l u l u l u

51 18.12 ∞ 18.12 18.12 0.00 18.12 0.00 18.12 18.12 ∞
52 17.66 ∞ 0.00 17.66 17.66 17.66 0.00 17.66 17.66 ∞
53 14.93 14.93 0.00 14.93 0.00 14.93 14.93 ∞ 14.93 ∞
54 19.76 ∞ 0.00 19.76 0.00 19.76 19.76 19.76 19.76 ∞
55 0.00 21.56 21.56 ∞ 21.56 ∞ 0.00 21.56 21.56 21.56
56 13.89 ∞ 0.00 13.89 13.89 13.89 0.00 13.89 13.89 ∞
57 16.93 ∞ 16.93 ∞ 0.00 16.93 0.00 16.93 16.93 16.93
58 0.00 17.62 17.62 ∞ 17.62 ∞ 17.62 17.62 0.00 17.62
59 0.00 21.44 21.44 21.44 0.00 21.44 0.00 21.44 21.44 ∞
60 14.11 ∞ 14.11 14.11 0.00 14.11 0.00 14.11 14.11 ∞
61 13.65 ∞ 13.65 ∞ 0.00 13.65 13.65 13.65 0.00 13.65
62 12.93 ∞ 0.00 12.93 0.00 12.93 12.93 12.93 12.93 ∞
63 18.67 18.67 0.00 18.67 18.67 ∞ 0.00 18.67 18.67 ∞
64 14.86 ∞ 14.86 14.86 0.00 14.86 0.00 14.86 14.86 ∞
65 17.47 ∞ 17.47 ∞ 0.00 17.47 0.00 17.47 17.47 17.47
66 0.00 15.57 15.57 ∞ 0.00 15.57 15.57 ∞ 15.57 15.57
67 17.17 ∞ 0.00 17.17 0.00 17.17 17.17 17.17 17.17 ∞
68 16.90 ∞ 0.00 16.90 0.00 16.90 16.90 16.90 16.90 ∞
69 13.56 ∞ 0.00 13.56 0.00 13.56 13.56 13.56 13.56 ∞
70 16.82 ∞ 16.82 ∞ 0.00 16.82 0.00 16.82 16.82 16.82
71 14.96 ∞ 0.00 14.96 14.96 ∞ 0.00 14.96 14.96 14.96
72 16.98 16.98 16.98 ∞ 0.00 16.98 16.98 ∞ 0.00 16.98
73 14.89 ∞ 14.89 14.89 0.00 14.89 0.00 14.89 14.89 ∞
74 0.00 19.49 19.49 ∞ 0.00 19.49 0.00 19.49 19.49 19.49
75 0.00 15.17 15.17 15.17 15.17 ∞ 15.17 ∞ 15.17 ∞
76 14.83 ∞ 0.00 14.83 0.00 14.83 14.83 14.83 14.83 ∞
77 14.51 14.51 0.00 14.51 14.51 ∞ 0.00 14.51 14.51 ∞
78 14.92 ∞ 0.00 14.92 0.00 14.92 14.92 14.92 14.92 ∞
79 16.97 ∞ 0.00 16.97 16.97 16.97 0.00 16.97 16.97 ∞
80 0.00 15.53 15.53 15.53 0.00 15.53 0.00 15.53 15.53 ∞
81 17.73 17.73 0.00 17.73 0.00 17.73 17.73 ∞ 17.73 ∞
82 14.91 ∞ 14.91 ∞ 14.91 ∞ 14.91 14.91 0.00 14.91
83 0.00 16.80 16.80 16.80 16.80 ∞ 0.00 16.80 16.80 ∞
84 16.12 ∞ 0.00 16.12 0.00 16.12 16.12 16.12 16.12 ∞
85 16.41 ∞ 16.41 16.41 0.00 16.41 0.00 16.41 16.41 ∞
86 13.57 ∞ 0.00 13.57 0.00 13.57 13.57 13.57 13.57 ∞
87 16.28 ∞ 0.00 16.28 0.00 16.28 16.28 16.28 16.28 ∞
88 16.15 ∞ 0.00 16.15 0.00 16.15 16.15 16.15 16.15 ∞
89 16.46 16.46 0.00 16.46 16.46 ∞ 0.00 16.46 16.46 ∞
90 21.26 21.26 0.00 21.26 21.26 ∞ 0.00 21.26 21.26 ∞
91 15.34 ∞ 0.00 15.34 0.00 15.34 15.34 15.34 15.34 ∞
92 10.90 10.90 0.00 10.90 10.90 ∞ 10.90 ∞ 10.90 ∞
93 0.00 19.03 19.03 19.03 0.00 19.03 0.00 19.03 19.03 ∞
94 0.00 17.06 17.06 ∞ 0.00 17.06 0.00 17.06 17.06 17.06
95 16.40 16.40 0.00 16.40 0.00 16.40 16.40 ∞ 16.40 ∞
96 0.00 14.63 14.63 14.63 0.00 14.63 0.00 14.63 14.63 ∞
97 19.26 ∞ 0.00 19.26 19.26 19.26 0.00 19.26 19.26 ∞
98 0.00 17.60 17.60 17.60 17.60 ∞ 0.00 17.60 17.60 ∞
99 19.22 ∞ 19.22 19.22 0.00 19.22 0.00 19.22 19.22 ∞
100 16.51 ∞ 0.00 16.51 0.00 16.51 16.51 16.51 16.51 ∞
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Table B.5: Device-G observed data.

Device-G ID Component W Component S
l u l u

1 275 275 275 ∞
2 13 ∞ 13 13
3 147 147 147 ∞
4 23 ∞ 23 23
5 181 181 181 ∞
6 30 ∞ 30 30
7 65 ∞ 65 65
8 10 ∞ 10 10
9 300 ∞ 300 ∞
10 173 ∞ 173 173
11 106 ∞ 106 106
12 300 ∞ 300 ∞
13 300 ∞ 300 ∞
14 212 212 212 ∞
15 300 ∞ 300 ∞
16 300 ∞ 300 ∞
17 300 ∞ 300 ∞
18 2 ∞ 2 2
19 261 ∞ 261 261
20 293 293 293 ∞
21 88 ∞ 88 88
22 247 ∞ 247 247
23 28 ∞ 28 28
24 143 ∞ 143 143
25 300 ∞ 300 ∞
26 23 ∞ 23 23
27 300 ∞ 300 ∞
28 80 ∞ 80 80
29 245 245 245 ∞
30 266 266 266 ∞
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Appendix C

Datasets - Chapter 4

Table C.1: Observed data of n = 300 2-out-of-3 systems in masked scenario
(continues on the next pages).

System ID t δ1 υ1 δ2 υ2 δ3 υ3
1 16.91 3 0 1 0 2 0
2 19.31 2 0 3 0 1 0
3 17.12 3 0 2 0 1 0
4 19.17 - 1 2 0 - 1
5 15.58 3 0 1 0 2 0
6 18.04 3 0 1 0 2 0
7 17.89 1 0 3 0 2 0
8 15.39 1 0 3 0 2 0
9 12.71 - 1 - 1 2 0
10 19.82 1 0 3 0 2 0
11 19.49 1 0 3 0 2 0
12 16.38 1 0 2 0 3 0
13 23.86 3 0 1 0 2 0
14 15.74 1 0 3 0 2 0
15 18.55 3 0 2 0 1 0
16 15.32 3 0 1 0 2 0
17 14.69 1 0 3 0 2 0
18 16.85 3 0 2 0 1 0
19 19.62 1 0 3 0 2 0
20 19.41 1 0 3 0 2 0
21 18.88 3 0 2 0 1 0
22 17.67 - 1 - 1 2 0
23 16.09 3 0 1 0 2 0
24 23.96 3 0 1 0 2 0
25 15.52 3 0 1 0 2 0
26 18.82 1 0 3 0 2 0
27 15.06 1 0 3 0 2 0
28 16.42 3 0 2 0 1 0
29 16.77 - 1 - 1 2 0
30 17.21 3 0 1 0 2 0
31 16.70 1 0 3 0 2 0
32 20.66 - 1 2 0 - 1
33 19.46 3 0 2 0 1 0
34 13.22 - 1 - 1 2 0
35 18.83 - 1 - 1 2 0
36 16.91 - 1 2 0 - 1
37 18.23 - 1 2 0 - 1
38 17.14 - 1 2 0 - 1
39 14.45 3 0 2 0 1 0
40 18.57 1 0 3 0 2 0

81



82 DATASETS - CHAPTER 4 C.0

Table C.2: Continuation of Table C.1 (continues on the next pages).
System ID t δ1 υ1 δ2 υ2 δ3 υ3

41 19.87 - 1 2 0 - 1
42 15.52 3 0 1 0 2 0
43 16.28 3 0 1 0 2 0
44 19.72 3 0 2 0 1 0
45 18.44 3 0 1 0 2 0
46 19.92 3 0 2 0 1 0
47 17.24 1 0 3 0 2 0
48 13.34 - 1 - 1 2 0
49 14.51 - 1 - 1 2 0
50 14.91 1 0 3 0 2 0
51 15.97 1 0 3 0 2 0
52 15.79 - 1 - 1 2 0
53 15.33 3 0 1 0 2 0
54 18.07 1 0 3 0 2 0
55 17.46 3 0 2 0 1 0
56 19.11 - 1 2 0 - 1
57 17.86 3 0 1 0 2 0
58 17.46 3 0 2 0 1 0
59 20.46 3 0 2 0 1 0
60 15.73 - 1 - 1 2 0
61 19.31 1 0 3 0 2 0
62 16.91 1 0 2 0 3 0
63 17.22 2 0 3 0 1 0
64 16.70 - 1 - 1 2 0
65 19.33 - 1 - 1 2 0
66 16.25 3 0 1 0 2 0
67 17.12 3 0 1 0 2 0
68 19.38 - 1 2 0 - 1
69 16.53 3 0 1 0 2 0
70 16.13 3 0 1 0 2 0
71 17.45 2 0 1 0 3 0
72 19.09 3 0 1 0 2 0
73 20.38 3 0 2 0 1 0
74 17.92 3 0 2 0 1 0
75 19.51 - 1 - 1 2 0
76 14.42 - 1 - 1 2 0
77 18.51 2 0 - 1 - 1
78 18.97 - 1 - 1 2 0
79 17.94 - 1 2 0 - 1
80 18.84 2 0 3 0 1 0
81 14.92 1 0 3 0 2 0
82 22.99 - 1 2 0 - 1
83 15.07 2 0 1 0 3 0
84 17.71 3 0 2 0 1 0
85 17.72 1 0 2 0 3 0
86 20.89 3 0 1 0 2 0
87 16.72 3 0 1 0 2 0
88 15.81 - 1 - 1 2 0
89 15.12 - 1 2 0 - 1
90 15.74 - 1 - 1 2 0
91 19.85 3 0 2 0 1 0
92 18.10 - 1 2 0 - 1
93 17.77 - 1 - 1 2 0
94 18.59 - 1 - 1 2 0
95 16.39 - 1 - 1 2 0
96 17.43 3 0 2 0 1 0
97 19.85 3 0 1 0 2 0
98 17.21 2 0 - 1 - 1
99 14.93 - 1 - 1 2 0
100 16.78 3 0 1 0 2 0
101 16.16 1 0 2 0 3 0
102 18.70 3 0 1 0 2 0
103 19.52 3 0 2 0 1 0
104 20.51 3 0 2 0 1 0
105 17.58 2 0 1 0 3 0
106 15.85 1 0 3 0 2 0
107 16.89 3 0 1 0 2 0
108 18.40 3 0 2 0 1 0
109 17.15 - 1 2 0 - 1
110 15.48 - 1 2 0 - 1
111 19.61 - 1 2 0 - 1
112 14.99 - 1 2 0 - 1
113 18.56 3 0 2 0 1 0
114 15.00 - 1 2 0 - 1
115 18.12 2 0 - 1 - 1
116 18.27 - 1 2 0 - 1
117 17.08 3 0 1 0 2 0
118 16.24 3 0 1 0 2 0
119 17.27 3 0 1 0 2 0
120 15.54 3 0 2 0 1 0
121 20.99 3 0 1 0 2 0
122 21.00 - 1 - 1 2 0
123 17.25 3 0 2 0 1 0
124 14.92 - 1 - 1 2 0
125 21.30 - 1 - 1 2 0
126 13.24 - 1 2 0 - 1
127 18.60 3 0 1 0 2 0
128 19.34 3 0 1 0 2 0
129 19.11 1 0 3 0 2 0
130 15.65 1 0 3 0 2 0
131 17.15 3 0 2 0 1 0
132 17.21 1 0 3 0 2 0
133 17.02 3 0 2 0 1 0
134 16.77 3 0 1 0 2 0
135 14.85 3 0 1 0 2 0
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Table C.3: Continuation of Table C.1 (continues on the next pages).
System ID t δ1 υ1 δ2 υ2 δ3 υ3

136 16.61 3 0 1 0 2 0
137 21.86 3 0 2 0 1 0
138 18.65 3 0 1 0 2 0
139 17.09 - 1 - 1 2 0
140 17.23 3 0 2 0 1 0
141 18.78 - 1 - 1 2 0
142 19.94 - 1 2 0 - 1
143 15.79 - 1 2 0 - 1
144 16.16 - 1 2 0 - 1
145 18.60 3 0 2 0 1 0
146 17.27 1 0 3 0 2 0
147 18.63 3 0 1 0 2 0
148 15.88 - 1 - 1 2 0
149 17.37 - 1 - 1 2 0
150 16.48 3 0 1 0 2 0
151 14.61 3 0 1 0 2 0
152 15.69 - 1 2 0 - 1
153 15.79 - 1 2 0 - 1
154 16.66 3 0 2 0 1 0
155 20.69 2 0 3 0 1 0
156 13.89 - 1 2 0 - 1
157 20.72 - 1 2 0 - 1
158 14.09 - 1 - 1 2 0
159 15.09 - 1 - 1 2 0
160 18.32 - 1 2 0 - 1
161 19.23 3 0 1 0 2 0
162 16.88 3 0 2 0 1 0
163 17.26 3 0 2 0 1 0
164 20.15 1 0 3 0 2 0
165 15.07 - 1 - 1 2 0
166 19.37 3 0 1 0 2 0
167 14.74 1 0 3 0 2 0
168 17.58 3 0 1 0 2 0
169 18.53 - 1 2 0 - 1
170 19.87 3 0 1 0 2 0
171 17.32 3 0 2 0 1 0
172 23.58 3 0 1 0 2 0
173 16.80 - 1 - 1 2 0
174 16.13 1 0 3 0 2 0
175 17.41 1 0 3 0 2 0
176 18.18 - 1 - 1 2 0
177 14.88 3 0 1 0 2 0
178 16.17 - 1 - 1 2 0
179 12.14 3 0 1 0 2 0
180 18.35 1 0 3 0 2 0
181 20.28 1 0 3 0 2 0
182 16.74 3 0 1 0 2 0
183 17.61 - 1 2 0 - 1
184 17.45 - 1 2 0 - 1
185 17.33 3 0 2 0 1 0
186 16.65 3 0 1 0 2 0
187 17.47 3 0 2 0 1 0
188 20.64 3 0 1 0 2 0
189 17.16 - 1 - 1 2 0
190 20.18 3 0 1 0 2 0
191 18.13 2 0 3 0 1 0
192 14.92 1 0 3 0 2 0
193 19.13 3 0 1 0 2 0
194 15.50 3 0 2 0 1 0
195 17.44 - 1 2 0 - 1
196 19.16 - 1 - 1 2 0
197 17.27 3 0 1 0 2 0
198 12.25 3 0 1 0 2 0
199 21.15 3 0 2 0 1 0
200 18.96 - 1 - 1 2 0
201 18.02 - 1 - 1 2 0
202 18.06 3 0 2 0 1 0
203 18.37 2 0 - 1 - 1
204 19.00 3 0 2 0 1 0
205 16.61 1 0 3 0 2 0
206 16.04 2 0 - 1 - 1
207 19.09 - 1 - 1 2 0
208 19.79 3 0 2 0 1 0
209 18.33 - 1 - 1 2 0
210 16.67 2 0 1 0 3 0
211 18.89 - 1 - 1 2 0
212 18.02 3 0 2 0 1 0
213 21.58 - 1 2 0 - 1
214 15.38 1 0 3 0 2 0
215 16.16 3 0 2 0 1 0
216 19.15 1 0 3 0 2 0
217 18.50 1 0 2 0 3 0
218 13.89 1 0 3 0 2 0
219 17.63 3 0 1 0 2 0
220 19.56 - 1 - 1 2 0
221 15.24 2 0 - 1 - 1
222 17.91 - 1 - 1 2 0
223 14.81 - 1 - 1 2 0
224 17.64 3 0 1 0 2 0
225 17.27 - 1 - 1 2 0
226 16.02 - 1 - 1 2 0
227 20.84 3 0 2 0 1 0
228 17.19 3 0 1 0 2 0
229 18.30 1 0 3 0 2 0
230 18.40 1 0 3 0 2 0
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Table C.4: Continuation of Table C.1.
System ID t δ1 υ1 δ2 υ2 δ3 υ3

231 15.69 - 1 - 1 2 0
232 15.98 3 0 2 0 1 0
233 17.80 - 1 2 0 - 1
234 16.55 3 0 2 0 1 0
235 20.64 - 1 2 0 - 1
236 19.07 3 0 1 0 2 0
237 16.41 - 1 - 1 2 0
238 17.51 - 1 - 1 2 0
239 15.20 3 0 2 0 1 0
240 16.37 3 0 1 0 2 0
241 12.10 3 0 1 0 2 0
242 21.94 3 0 1 0 2 0
243 18.64 - 1 - 1 2 0
244 14.55 3 0 1 0 2 0
245 18.32 - 1 - 1 2 0
246 22.90 - 1 - 1 2 0
247 16.40 3 0 2 0 1 0
248 16.62 2 0 - 1 - 1
249 16.69 - 1 2 0 - 1
250 16.13 3 0 1 0 2 0
251 17.64 - 1 2 0 - 1
252 14.90 - 1 - 1 2 0
253 21.53 - 1 2 0 - 1
254 16.88 - 1 - 1 2 0
255 16.99 1 0 3 0 2 0
256 17.45 - 1 - 1 2 0
257 16.46 3 0 1 0 2 0
258 17.02 2 0 - 1 - 1
259 14.39 3 0 1 0 2 0
260 16.80 - 1 - 1 2 0
261 17.04 1 0 3 0 2 0
262 13.86 - 1 - 1 2 0
263 18.99 3 0 1 0 2 0
264 15.30 - 1 2 0 - 1
265 15.25 1 0 3 0 2 0
266 17.67 3 0 2 0 1 0
267 19.95 - 1 - 1 2 0
268 17.91 3 0 1 0 2 0
269 19.34 3 0 2 0 1 0
270 20.29 - 1 2 0 - 1
271 15.47 1 0 3 0 2 0
272 19.85 2 0 3 0 1 0
273 16.33 1 0 3 0 2 0
274 21.96 - 1 2 0 - 1
275 17.49 - 1 - 1 2 0
276 18.01 3 0 1 0 2 0
277 15.25 3 0 1 0 2 0
278 14.77 - 1 - 1 2 0
279 18.61 3 0 1 0 2 0
280 15.35 - 1 - 1 2 0
281 16.77 - 1 - 1 2 0
282 20.02 3 0 1 0 2 0
283 16.98 3 0 1 0 2 0
284 17.00 - 1 2 0 - 1
285 21.59 3 0 2 0 1 0
286 20.09 3 0 2 0 1 0
287 18.47 1 0 3 0 2 0
288 14.25 3 0 1 0 2 0
289 20.32 - 1 - 1 2 0
290 21.25 - 1 - 1 2 0
291 20.21 - 1 - 1 2 0
292 20.80 3 0 2 0 1 0
293 13.34 - 1 - 1 2 0
294 19.98 - 1 - 1 2 0
295 16.87 - 1 2 0 - 1
296 15.78 - 1 2 0 - 1
297 24.28 - 1 - 1 2 0
298 20.09 - 1 - 1 2 0
299 19.03 - 1 - 1 2 0
300 18.48 1 0 3 0 2 0
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Table C.5: Observed data of n = 100 systems as 4.1 in masked scenario.
System ID t δ1 υ1 δ2 υ2 δ3 υ3 δ4 υ4 δ5 υ5

1 11.39 3 0 1 0 2 0 2 0 2 0
2 10.12 2 0 3 0 2 0 3 0 3 0
3 11.87 2 0 2 0 2 0 1 0 3 0
4 11.64 1 0 3 0 - 1 - 1 - 1
5 10.01 3 0 2 0 3 0 - 1 1 1
6 11.25 3 0 2 0 2 0 3 0 3 0
7 9.30 3 0 3 0 2 0 2 0 2 0
8 9.56 3 0 1 0 2 0 - 1 - 1
9 12.99 1 0 3 0 3 0 3 0 2 0
10 11.43 1 0 3 0 2 0 2 0 3 0
11 13.84 2 0 3 0 2 0 3 0 3 0
12 9.59 - 1 - 1 3 0 2 0 3 0
13 10.24 - 1 - 1 3 0 2 0 3 0
14 9.20 2 0 2 0 2 0 3 0 1 0
15 10.44 2 0 3 0 2 0 1 0 3 0
16 8.92 2 0 3 0 2 0 3 0 1 0
17 14.41 2 0 2 0 1 0 2 0 3 0
18 8.75 - 1 - 1 2 0 2 0 3 0
19 11.10 3 0 1 0 2 0 3 0 2 0
20 9.11 2 0 3 0 2 0 1 0 3 0
21 8.92 1 0 3 0 2 0 2 0 3 0
22 14.93 2 0 3 0 - 1 2 0 3 1
23 8.09 - 1 - 1 2 0 3 0 3 0
24 11.14 3 0 2 0 3 0 2 0 1 0
25 14.22 3 0 3 0 2 0 2 0 2 0
26 12.56 2 0 2 0 1 0 2 0 3 0
27 14.31 3 0 2 0 2 0 1 0 3 0
28 9.76 - 1 - 1 2 0 1 0 3 0
29 11.44 2 0 2 0 1 0 2 0 3 0
30 12.71 3 0 3 0 2 0 2 0 3 0
31 8.78 2 0 2 0 3 0 2 0 3 0
32 12.28 3 0 2 0 2 0 1 0 3 0
33 8.72 2 0 2 0 1 0 2 0 3 0
34 9.32 2 0 3 0 2 0 1 0 3 0
35 8.09 3 0 3 0 2 0 2 0 2 0
36 11.72 2 0 3 0 2 0 3 0 3 0
37 11.47 1 0 3 0 2 0 2 0 3 0
38 6.76 2 0 2 0 2 0 3 0 3 0
39 12.10 2 0 3 0 - 1 - 1 3 1
40 9.66 - 1 - 1 1 0 2 0 3 0
41 11.78 2 0 3 0 3 0 3 0 3 0
42 12.52 3 0 2 0 3 0 2 0 1 0
43 13.12 3 0 1 0 2 0 2 0 2 0
44 10.78 3 0 1 0 3 0 3 0 2 0
45 9.26 3 0 2 0 3 0 2 0 1 0
46 11.51 2 0 3 0 1 0 2 0 3 0
47 11.93 2 0 3 0 2 0 1 0 3 0
48 11.93 1 0 3 0 2 0 3 0 2 0
49 10.98 2 0 2 0 3 0 3 0 1 0
50 11.06 2 0 2 0 2 0 1 0 3 0
51 6.87 1 0 3 0 3 0 3 0 2 0
52 10.74 2 0 3 0 3 0 - 1 1 1
53 9.24 3 0 2 0 1 0 2 0 3 0
54 9.50 3 0 2 0 2 0 3 0 1 0
55 6.88 3 0 1 0 2 0 3 0 2 0
56 9.10 3 0 2 0 3 0 2 0 1 0
57 7.25 - 1 - 1 2 0 3 0 1 0
58 10.18 2 0 2 0 2 0 3 0 3 0
59 8.72 - 1 - 1 3 0 2 0 2 0
60 10.83 - 1 - 1 2 0 3 0 1 0
61 12.96 1 0 3 0 2 0 2 0 3 0
62 11.76 2 0 3 0 2 0 1 0 3 0
63 10.10 3 0 3 0 2 0 2 0 3 0
64 10.83 - 1 - 1 2 0 3 0 2 0
65 9.66 - 1 - 1 2 0 2 0 2 0
66 10.12 2 0 3 0 2 0 1 0 3 0
67 10.37 3 0 2 0 3 0 3 0 3 0
68 8.57 3 0 1 0 3 0 2 0 2 0
69 12.36 1 0 3 0 3 0 3 0 2 0
70 9.81 3 0 1 0 - 1 3 0 - 1
71 11.13 3 0 1 0 2 0 2 0 2 0
72 12.24 3 0 3 0 2 0 - 1 - 1
73 9.43 3 0 3 0 2 0 - 1 - 1
74 12.46 2 0 2 0 1 0 2 0 3 0
75 15.48 2 0 2 0 2 0 1 0 3 0
76 10.76 2 0 3 0 - 1 3 0 3 1
77 15.81 2 0 3 0 - 1 2 0 1 1
78 10.44 3 0 3 0 3 0 2 0 2 0
79 11.55 2 0 3 0 2 0 - 1 3 1
80 11.84 1 0 3 0 2 0 2 0 3 0
81 7.27 3 0 2 0 2 0 - 1 3 1
82 10.19 - 1 - 1 2 0 3 0 3 0
83 11.41 1 0 3 0 2 0 - 1 - 1
84 11.61 3 0 3 0 - 1 2 0 - 1
85 12.46 3 0 1 0 3 0 2 0 2 0
86 9.40 3 0 3 0 - 1 2 0 - 1
87 11.06 2 0 3 0 3 0 3 0 1 0
88 12.96 2 0 2 0 3 0 2 0 3 0
89 12.07 2 0 3 0 - 1 2 0 3 1
90 10.16 3 0 1 0 3 0 2 0 2 0
91 12.83 1 0 3 0 2 0 2 0 2 0
92 14.96 3 0 3 0 2 0 2 0 3 0
93 11.24 3 0 1 0 2 0 2 0 3 0
94 8.51 3 0 3 0 2 0 - 1 3 1
95 6.46 1 0 3 0 3 0 3 0 2 0
96 10.74 3 0 2 0 1 0 2 0 3 0
97 11.96 2 0 3 0 3 0 2 0 3 0
98 9.95 - 1 - 1 1 0 2 0 3 0
99 11.70 2 0 3 0 3 0 3 0 1 0
100 11.61 2 0 3 0 2 0 3 0 1 0
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Table C.6: Observed data of n = 172 computer hard-drive data (continues on
the next page).

System ID t δ1 υ1 δ2 υ2 δ3 υ3
1 0.018 1 0 2 0 2 0
2 0.036 1 0 2 0 2 0
3 0.043 - 1 2 0 - 1
4 0.045 1 0 2 0 2 0
5 0.074 - 1 - 1 - 1
6 0.119 1 0 2 0 2 0
7 0.131 - 1 - 1 - 1
8 0.143 - 1 2 0 - 1
9 0.171 1 0 2 0 2 0
10 0.261 - 1 2 0 - 1
11 0.316 1 0 2 0 2 0
12 0.334 1 0 2 0 2 0
13 0.368 2 0 1 0 2 0
14 0.475 1 0 2 0 2 0
15 0.484 2 0 1 0 2 0
16 0.489 2 0 1 0 2 0
17 0.494 - 1 2 0 - 1
18 0.594 1 0 2 0 2 0
19 0.604 1 0 2 0 2 0
20 0.664 2 0 1 0 2 0
21 0.697 1 0 2 0 2 0
22 0.712 1 0 2 0 2 0
23 0.743 1 0 2 0 2 0
24 0.743 2 0 1 0 2 0
25 0.749 - 1 - 1 - 1
26 0.752 2 0 1 0 2 0
27 0.789 2 0 1 0 2 0
28 0.831 1 0 2 0 2 0
29 0.833 2 0 2 0 1 0
30 0.867 - 1 - 1 - 1
31 0.874 2 0 1 0 2 0
32 0.890 - 1 2 0 - 1
33 0.955 2 0 2 0 1 0
34 1.030 - 1 2 0 - 1
35 1.040 2 0 2 0 1 0
36 1.100 2 0 2 0 1 0
37 1.110 1 0 2 0 2 0
38 1.170 - 1 - 1 - 1
39 1.210 - 1 - 1 - 1
40 1.300 1 0 2 0 2 0
41 1.310 1 0 2 0 2 0
42 1.310 2 0 2 0 1 0
43 1.330 2 0 2 0 1 0
44 1.350 - 1 - 1 - 1
45 1.350 - 1 - 1 - 1
46 1.370 1 0 2 0 2 0
47 1.420 2 0 2 0 1 0
48 1.460 2 0 2 0 1 0
49 1.490 1 0 2 0 2 0
50 1.530 1 0 2 0 2 0
51 1.570 - 1 2 0 - 1
52 1.580 - 1 2 0 - 1
53 1.580 - 1 2 0 - 1
54 1.610 - 1 2 0 - 1
55 1.610 - 1 - 1 - 1
56 1.630 - 1 - 1 - 1
57 1.640 2 0 2 0 1 0
58 1.660 2 0 2 0 1 0
59 1.670 - 1 - 1 - 1
60 1.680 1 0 2 0 2 0
61 1.680 2 0 2 0 1 0
62 1.680 2 0 1 0 2 0
63 1.710 2 0 2 0 1 0
64 1.720 2 0 2 0 1 0
65 1.730 1 0 2 0 2 0
66 1.750 2 0 1 0 2 0
67 1.820 2 0 2 0 1 0
68 1.880 - 1 2 0 - 1
69 2.000 - 1 2 0 - 1
70 2.030 - 1 - 1 - 1
71 2.040 - 1 2 0 - 1
72 2.040 2 0 2 0 1 0
73 2.050 1 0 2 0 2 0
74 2.050 1 0 2 0 2 0
75 2.070 - 1 2 0 - 1
76 2.090 2 0 2 0 1 0
77 2.120 2 0 2 0 1 0
78 2.150 2 0 1 0 2 0
79 2.180 2 0 2 0 1 0
80 2.220 2 0 2 0 1 0
81 2.230 1 0 2 0 2 0
82 2.260 2 0 2 0 1 0
83 2.260 - 1 2 0 - 1
84 2.270 - 1 - 1 - 1
85 2.290 - 1 - 1 - 1
86 2.300 1 0 2 0 2 0
87 2.350 - 1 - 1 - 1
88 2.370 - 1 - 1 - 1
89 2.390 1 0 2 0 2 0
90 2.400 2 0 1 0 2 0
91 2.410 - 1 2 0 - 1
92 2.410 2 0 2 0 1 0
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Table C.7: Continuation - observed data of n = 172 computer hard-drive data.

System ID t δ1 υ1 δ2 υ2 δ3 υ3
93 2.410 2 0 1 0 2 0
94 2.430 - 1 - 1 - 1
95 2.490 2 0 2 0 1 0
96 2.520 - 1 2 0 - 1
97 2.570 - 1 - 1 - 1
98 2.640 2 0 2 0 1 0
99 2.660 - 1 - 1 - 1
100 2.670 2 0 2 0 1 0
101 2.700 - 1 2 0 - 1
102 2.740 - 1 2 0 - 1
103 2.750 - 1 2 0 - 1
104 2.750 2 0 2 0 1 0
105 2.760 2 0 2 0 1 0
106 2.790 2 0 2 0 1 0
107 2.820 2 0 2 0 1 0
108 2.830 - 1 2 0 - 1
109 2.850 2 0 2 0 1 0
110 2.860 2 0 2 0 1 0
111 2.870 - 1 - 1 - 1
112 2.950 2 0 1 0 2 0
113 2.960 - 1 - 1 - 1
114 2.980 2 0 2 0 1 0
115 3.030 - 1 2 0 - 1
116 3.040 1 0 2 0 2 0
117 3.070 1 0 2 0 2 0
118 3.070 1 0 2 0 2 0
119 3.080 - 1 - 1 - 1
120 3.110 2 0 1 0 2 0
121 3.120 - 1 2 0 - 1
122 3.130 2 0 2 0 1 0
123 3.150 2 0 2 0 1 0
124 3.150 - 1 2 0 - 1
125 3.160 2 0 2 0 1 0
126 3.160 2 0 1 0 2 0
127 3.180 2 0 2 0 1 0
128 3.190 2 0 2 0 1 0
129 3.210 - 1 - 1 - 1
130 3.240 2 0 2 0 1 0
131 3.250 2 0 1 0 2 0
132 3.270 - 1 2 0 - 1
133 3.280 - 1 - 1 - 1
134 3.370 - 1 - 1 - 1
135 3.420 2 0 1 0 2 0
136 3.430 - 1 - 1 - 1
137 3.460 1 0 2 0 2 0
138 3.510 2 0 2 0 1 0
139 3.630 2 0 2 0 1 0
140 3.650 2 0 2 0 1 0
141 3.650 2 0 2 0 1 0
142 3.650 - 1 2 0 - 1
143 3.670 - 1 2 0 - 1
144 3.670 1 0 2 0 2 0
145 3.700 2 0 2 0 1 0
146 3.720 1 0 2 0 2 0
147 3.770 2 0 2 0 1 0
148 3.770 2 0 2 0 1 0
149 3.770 - 1 - 1 - 1
150 3.780 2 0 2 0 1 0
151 3.790 - 1 2 0 - 1
152 3.790 - 1 - 1 - 1
153 3.800 1 0 2 0 2 0
154 3.810 2 0 2 0 1 0
155 3.810 - 1 - 1 - 1
156 3.830 1 0 2 0 2 0
157 3.830 - 1 - 1 - 1
158 3.840 - 1 - 1 - 1
159 3.840 2 0 1 0 2 0
160 3.850 2 0 2 0 1 0
161 3.860 - 1 - 1 - 1
162 3.860 - 1 2 0 - 1
163 3.870 - 1 - 1 - 1
164 3.890 - 1 2 0 - 1
165 3.910 - 1 2 0 - 1
166 3.910 - 1 2 0 - 1
167 3.930 2 0 2 0 1 0
168 3.950 2 0 2 0 1 0
169 3.950 - 1 - 1 - 1
170 3.960 2 0 2 0 1 0
171 3.980 2 0 2 0 1 0
172 3.980 2 0 2 0 1 0
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