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1. INTRODUCTION

Significance testing of precise (or sharp) hypotheses is an old and controversial
problem: it has been central in statistical inference. Both frequentist and Bayesian
schools of inference have presented solutions to this problem, not always prioritizing
the consideration of fundamental issues such as the meaning of precise hypotheses
or the inferential rationale for testing them. The Full Bayesian Significance Test,
FBST, is an alternative solution to the problem, which attempts to ease some of
the questions met by frequentist and standard Bayes tests based on Bayes factors.
FBST was introduced by Pereira and Stern (1999) and reviewed by Pereira, Stern
and Wechsler (2008).

The discussion here is restricted to univariate parameter and (sufficient statis-
tic) sample spaces;

Θ ⊂ R and X ⊂ R

A sharp hypothesis H is then a statement of the form H : θ = θ0 where
θ0 ∈ Θ. The posterior probability (density) for θ is obtained after the observation
of x ∈ X. While a frequentist looks for the set, C, of sample points at least as
inconsistent with θ0 as x is, a Bayesian could look for the tangential set T of
parameter points that are more consistent with x than θ0 is. This understanding
can be interpreted as a partial duality between sampling and Bayesian theories.
The evidence in favor of H is for frequentists the usual p-value, while for Bayesian
it should be ev = 1− ev:

pv = Pr{x ∈ C|θ0} and ev = 1− ev = 1− Pr{θ ∈ T |x}.

The larger pv and ev, the stronger the evidence favoring H.
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In the general case, the posterior distribution is sufficient for ev to be calcu-
lated, without any complication due to dimensionality of neither the parameter nor
of the sample space. This feature ceases the need for nuisance parameters elimi-
nation, a problem that disturbs some statisticians (Basu, 1977). If one feels that
the goal of measuring consistency between data and a null hypothesis should not
involve prior opinion about the parameter, the normalized likelihood, if available,
may replace the posterior distribution. The computation of ev needs no asymptotic
methods, although numerical optimization and integration may be needed.

The fact that the frequentist and Bayesian measures of evidence, pv and ev,
are probability values – therefore defined in a zero to one scale – does not easily
help to answer the question “How small is significant?”. For p-values, the NP
lemma settles the question by means of subjective arbitration of critical values.
For Bayesian assessment of significance through evaluation of ev, decision theory
again clears the picture. Madruga et al. (2001) show that there exist loss functions
the minimization of which render a test of significance based on ev into a formal
Bayes test.

The FBST has successfully solved several relevant problems of statistical
inference: see Pereira, Stern and Wechsler (2008) for a list of publications.

2. FBST DEFINITION

Significance FBST was created under the assumption that a significance test
of a sharp hypothesis had to be performed. At this point, a formal definition of a
sharp hypothesis is presented.

Consider general statistical spaces, where Θ ⊂ Rm is the parameter space
and X ⊂ Rk is the sample space.

Definition 1. A sharp hypothesis H states that θ belongs to a sub-
manifold ΘH of smaller dimension than Θ.

The subset ΘH has null Lebesgue measure whenever H is sharp. A probability
density on the parameter space is an ordering system, notwithstanding having
every point probability zero. In the FBST construction, all sets of same nature
are treated accordingly in the same way. As a consequence, the sets that define
sharp hypotheses keep having nil probabilities. As opposed to changing the nature
of H by assigning positive probability to it, the tangential set T of points, having
posterior density values higher than any θ in ΘH , is considered. H is rejected if
the posterior probability of T is large. The formalization of these ideas is presented
below.

Let us consider a standard parametric statistical model; i.e., for an integer
m, the parameter is θ ∈ Θ ⊂ Rm, g(•) a probability prior density over Θ, x is the
observation (a scalar or a vector), and Lx(•) is the likelihood generated by data x.
Posterior to the observation of x, the sole relevant entity for the evaluation of the
Bayesian evidence ev is the posterior probability density for θ given x, denoted by

gx(θ) = g(θ|x) ∝ g(θ)Lx(θ).
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Of course, one is restricted to the case where the posterior probability distri-
bution over Θ is absolutely continuous; i.e., gx(θ) is a density over Θ. For simplicity,
H is used for ΘH in the sequel.

Definition 2. (evidence): Consider a sharp hypothesis H : θ ∈ ΘH

and
g∗ = supH gx(θ) and T = {θ ∈ Θ : gx(θ) > g∗}.

The Bayesian evidence value against H is defined as the posterior
probability of the tangential set, i.e.,

ev = Pr{θ ∈ T |x} =
∫

T

gx(θ)dθ.

One must note that the evidence value supporting H, ev = 1−ev, is not an evidence
against A, the alternative hypothesis (which is not sharp anyway). Equivalently,
ev is not evidence in favor of A, although it is against H.

Definition 3. (test): The FBST (Full Bayesian Significance Test)
is the procedure that rejects H whenever ev = 1− ev is small.

The following example illustrates the use of the FBST and two standard tests,
McNemar and Jeffreys’ Bayes Factor. Irony et al. (2000) discuss this inference
problem introduced by McNemar (1955).

Example 1. McNemar vs FBST.

Two professors, Ed and Joe, from the Department of Dentistry evaluated the skills
of 224 students in dental fillings preparation. Each student was evaluated by both
professors. The evaluation result could be approval (A) or disapproval (F). The
Department wants to check whether the professors are equally exigent. Table 1
presents the data.

Table 1. Results of the evaluation of 224 students.
Joe

Ed A F Total
A 62 41 103
F 25 96 121

Total 87 137 224

This is a four-fold classification with probabilities p11, p12, p21, and p22. Using
standard notation, the hypothesis to be tested is H : p1· = p·1 which is equivalent
to H : p12 = p21 (against A : p12 6= p21). In order to have the likelihood function
readily available, we will consider a uniform prior, i.e., a Dirichlet density with
parameter (1, 1, 1, 1).

The McNemar exact significance for this data set is pv = .064. Recall that this
test is based in a partial likelihood function, a binomial with p = p12(p12 + p21)−1

3



and n = 66. With the normal approximation, the pv become .049 with the partial
likelihood used by McNemar, the FBST evidence is ev = .045. The value of the
Bayes Factor under the same uniform prior is BF = .953. If one assigns probability
1/2 to the sharp hypothesis H, its posterior probability attains π = .488. Hence, the
posterior probability π barely differs from 1/2, the probability previously assigned
to H, while pv and ev seem to be more conclusive against H. While, in the three
dimension full model, ev = 0.265 may seem to be a not low value and the test
cannot be performed without a criterion. In other words, a decision is not made
until ev is compared to a “critical value”. The derivation of such a criterion –
resulting from the identification of the FBST as a genuine Bayes procedure – is the
subject of Madruga et al. (2001).

The strong disagreement among the values of ev, pv, and BF seldom occurs in
situations where Θ is a subset of the real line. The speculation is that this is related
to the elimination of nuisance parameters: By conditioning in McNemar case and
by marginalization in the Bayes Factor case. In higher dimension, elimination of
nuisance parameters seems to be problematic, as pointed by Basu (1977).

3. FBST THEORY

From a theoretical perspective, on the other hand, it may be propounded that
if the computation of ev is to have any inferential meaning, then it ought to proceed
to a declaration of significance (or not). To this – in a sense – simultaneously NPW
and Fisherian viewpoint can be opposed the identification of ev as an estimator of
the indicator function φ = I(θ ∈ ΘH). In fact, Madruga et al. (2001) show that
there are loss functions the minimization of which makes ev a Bayes estimator of
φ (see Hwang et al., 1992).

Madruga et al. (2001) prove that the FBST procedure is the posterior mini-
mization of an expected loss λ defined as follows:

λ(Rejection of H, θ) = a{1− I[θ ∈ T ]} and
λ(Acceptance of H, θ) = b+ dI[θ ∈ T ].

Here, a, b and d are positive real numbers. The operational FBST procedure is
given by the criterion according to which H is to be rejected if, and only if, the
evidence ev is smaller than c = (b+d)/(a+d). One should notice that the evidence
ev is the Bayesian formal test statistic and that positive probability for H is never
required. A complete discussion of the above approach can be found in Pereira,
Stern and Wechsler (2008).

4. FINAL REMARKS

The following list states several desirable properties attended by ev :

1. ev is a probability value derived from the posterior distribution on the full
parameter space.
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2. Both ev and FBST possesses versions which are invariant for alternative pa-
rameterizations.

3. The need of approximations in the computation of ev is restricted to numerical
maximization and integration.

4. FBST does not violate the Likelihood Principle.

5. FBST neither requires nuisance parameters elimination nor the assignment
of positive prior probabilities to sets of zero Lebesgue measure.

6. FBST is a formal Bayes test and therefore has critical values obtained from
considered loss functions.

7. ev is a possibilistic support for sharp hypotheses, complying with the Onus
Probandi juridical principle (In Dubio Pro Reo rule), Stern (2003).

8. Derived from the full posterior distribution, ev is a homogeneous computation
calculus with the same two steps: constrained optimization and integration
with the posterior density.

9. Computing time was not a great burden whenever FBST was used. The
sophisticated numerical algorithms used could be considered a more serious
obstacle to the popularization of the FBST.

ev was developed to be the Bayesian pv alternative, while maintaining the
most desirable (known or perceived) properties in practical use. The list presented
above seems to respond successfully to the challenge: the FBST is conceptually
simple and elegant, theoretically coherent, and easily implemented for any sta-
tistical model, as long as the necessary computational procedures for numerical
optimization and integration are available.
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