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THE HARDY-WEINBERG EQUILIBRIUM UNDER A
BAYESIAN PERSPECTIVE

Carlos Alberto de Braganga Pereira and André Rogatko

ABSTRACT

This paper presents Bayesian counterparts for the trinity of the classical
Statistical analysis (test of hypothesis, estimation, and confidence regions) of the
Hardy-Weinberg populational equilibrium. Numerical results are presented to illustrate
the techniques and the main advantages of using these alternative methods.

1. INTRODUCTION

One of the concerns of a geneticist when analyzing a population is
to know if it follows Hardy-Weinberg (HW) equilibrium (Hardy, 1908;
Weinberg, 1908; Li, 1976). Several methods were developed to test the
equilibrium hypothesis (Hogben, 1946; levene, 1949; Haldane, 1954;
Cannings and Edwards, 1969; Smith, 1970; Vithayasai, 1975; Emigh and
Kempthome, 1975; Chapco, 1976; Elston and Forthofer, 1977), all of them
based on a chi-square test for goodness of fit where the maximum likelihood
estimate is substituted for the unknown parameter or on variations of Fisher’s:
exact test for small samples. Frequentely the oull hypothesis is not rejected
but further analysis is hindered since the power of the test cannot be evaluated.

The analysis presented in this work leads to a Bayesian counterpart
for the trinity of the classical statistical analysis (test of hypothesis, estima-
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tion, and confidence regions) and allows the computation of the two kinds of
errors.

Let AjA,;, A{A,, and A, A, be the genotypes related to a pair of
alleles, A| and A,;n,, n,, and n3 their sample frequencies (n, + ny + n3 =n);
and py, py, and pj their populational proportions (p, +p, + p3 =1 and p; =0,
i=1,2,3) respectively. The likelihood function may be written as

n! n, n; N3
Ll (p].’ p3) e —— pl p2 P3 3

nl!n2!n3!

since p, = 1-p, -p5 and the parameter space may be represented by the set

© = {(p1p3);py1 =0,p3>0,andp; + p3 <1}.

A population follows HW equilibrium if and only if there is a num-
ber p (0 < p < 1) such that p, = p2, p, = 2p(1-p), and p3 = (1 -p)?. There-
fore, under HW equilibrium, the likelihood function may be written as

n! Ny 2ﬂl+ﬂ2 2113 +1,
Lp)= — 2 7p a-p
ng ! ny ! nj !
where 0<p<1.
The above equilibrium restrictions hold if and only if p; = (1 - Vp3)?
2

P2

P1P3
clear that, under the equilibrium hypothesis, the parameter space is reduced

to the set

[this may be written as p3 = (1-V'p;)?] which is equivalent to =4.1tis

0, ={(P1,p3);p3 = (1-Vpy)? and 0<p, <1}

which is a subset of ©. These two sets @ and @, are shown in Figure 1.

The Bayes factor discussed in Section 2 is a Bayesian counterpart of
the HW equilibrium chi-square test. As a Bayesian counterpart for the estima-
tion problem, a Bayes estimator for the parameter 6 = p3/p, p5 together with
its variance is introduced in Section 3. The construction of credible regions
(which may be viewed as Bayesian confidence regions) is discussed in Section
4. Finally, numerical examples illustrating the previous methodological results
are shown in Section 5.



Hardy-Weinberg Equilibrium 691

0.75+

0.50—

0.25~

0 T T T —>
0.25 0.50 0.75 B

Figure 1 - The set ©is the region inside the triangle. The set @0 is the region covered
by the curve y = (1 -\/;)2. Clearly, @, C Q@

The choice of priors for (py,p,,p3) is restricted, in this paper, to the
class of Dirichlet distributions because it is a conjugate class and enables the
authors to obtain general analytic expressions.

2. THE BAYES FACTOR

The analysis discussed in this section is based on the Bayes factor for
sharp hypotheses (Jeffreys, 1939). Although the choice of priors for (p,,p3)
was restricted to the class of Dirichlet (generalized Beta) distributions, the
technique used here is general and may be used for any assessed prior. The
notation (py,p3) Vv D(qy, 04, 05) where a; > 0 (i = 1,2,3), indicates that
(py,p3) is distributed as Dirichlet with parameters ¢ ,0, and ¢ . Its density
is given by
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I'(a) o -1 oy-1 oy-1
D()T(,)T(e) T8 P2 P2

where (p;,p3) €0, o= & + @, + 0 , and I'(+) is the gamma function.

Combining the above. prior with likelihood L,, the predictive proba-
bility function (the marginal probability function of the data) under hypo-
thesis H, of no equilibrium restriction is given by

g(_pl ’p3) =

fi(ny,ng,n3) =1 (ny,n,,n3/Hy) =

’ ! 3 O
=f(1) fcl) . g(x,y)L; (x,y)dy dx = m ['() o D+ o)
C(n+o)i=1n I'(ey)

which is the probability function of a Dirichlet-Multinomial (DM) distribu-
tion with parameter (n;oy,0, ,04). This distribution has been extensively
studied (see, for example, Basu and Pereira, 1982).

Under hypothesis Hj of HW equilibrium, the likelihood as a func-
tion of (p;,p3) may be expressed in two “different” reparametrizations:

! 2ny + ] 2
LV ——— 27w AV
Ny nj.n3:
and
2n3+n
LE \/—)-——z OBV SR

fl

Although these two expressions lead to the same inference (under H ) for
every classical non-Bayesian analysis based on likelihoods, when a Bayesian
view is considered this does not necessarily occur. For 2 Bayesian statistician,
those likelihood functions are considered as conditional probabilities of the
data given the parameters - the first expression above has p, as the condi-
tioning argument while the second has pj;. Therefore, equivalent analysis
based on L; V/Pp;) and on L; (1-v/p3) may produce different results. This
fact is known as the Borel-Kolmogorov paradox (Kolmogorov, 1950; Lindley,
1982): The information that an event has happened may be improved if one
tells how one learned about it. In the case discussed here, there is no reason
for a choice between Lz /p1)and Lz(l -\/P3). Since a joint distribution for
(p1,p3) is being considered to measure prior information, the following
likelihood function - which is an average of the previous ones and thus
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depends on both p; and pj3 - was chosen here to play the role of likelihood

under Ho:

Lo@1p2)= 4 [LEW/FD) + L (1 -VE3)].

The predictive probability function under H,, obtained by com-
bining L (p1,p3) with the prior for (py,p3), is given by

fo(n1,n2,n3) = f(ny,05,n3 | Hy) =

B n! 2n2-1{E[(\/i)2n1 +0, (i_ﬂ)2n3+n2]+

-nl!nz!ﬂ3!
CBLAVD My My

where X, used for p;, and Y, used for ps;, have Beta distributions with
parameters (o ,0- &5 ) and (03, - 0(3), respectively, and E [ - ]is the expecta-
tion operator. By using (1-x) = (1 -\/SE) (1 +V/X), an alternatjve expression
for this probability function is written as:

fo(y,n5,n3)=

n! n,  B(00+0y 05+ Oy + 0ty -1
- 2 2{ ( 1 1->%3 2) E[(1+Z) 2 3 ]+
n1!n2!n3! B(C!l;a3 +0t2)

+ 0y -1

@y
E[2-W) 1}

B(o+ oy ;05+03)
+

Bty +y;03)

where &} = 20y +n,+ 0, &3 = 2n3+n,+043, B(a;b)is the Beta function at
point (a,b), and Z and W have Beta distributions with parameters (aj+ 0y ;
03+ 0y) and (o+ Oy ; GG+ 013), respectively. For the symmetric prior (o
= &, = 03), the above expression is reduced to

fo (ny,n3,n3) =

_ 0122 B(a+oy; ol o) {E[(1+Z)2a
ny'n,ing! B(og; 2 o)

1‘1

]+

cE(en ™y,
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where Z now has Beta distribution with parameter (o + o ; o3+ o) = (2n,
+N5 +204;2n3 +n, + 20 ). Finally, for the uniform prior (a¢; =0, = 03 = 1),
the predictive probability function under H, is:
n
6n!2 °

fo(ny,ny,n3)= ————— B(2n; +n, +2;2n3+n,+2).
n;'n,injg!

Let £ be the probability that H, (the HW equilibrium hypothesis)
holds prior to the observation of the data (that is, £ is the prior probability
of H,) and denote by £ (ny,n,,n5) the posterior (after the data have been
observed) probability of H,,- By applying the Bayes formula,

Efo(nn»nz,ﬂs)
Efo(nlsn2’n3)+ (1 _E)fl (ﬂl,nz,ﬂ3) .

£(ny,ny,n3) =

The decision criterion to accept or reject H, is based on the odds of

g

H,. The prior odds are 0 = —— and the posterior odds are 0(n,,n,n3)
f (ny,n,,n ) '
= : o{s>n12,03) which is the prior odds times the likelihood ratio.
1-§£  f,(n,ny,n3)
For the particular case of uniform priors the posterior odds have the follow-
ing sample expression:

£ (22>

0(ny,ny,n3)=3 — ———— B(2n;+n,+2;2n3+n,+2).

1-£ ny!'n,! n4!

Usually, when O(ny,n;,n3) < 1 the decision is against Hj and
conversely 0(n;,n,,n3) > 1 favors H,,- However, a decision criterion may be
properly reached by a suitable choice of a number ¢ such that if 0(n,,n,,n3)
< c then H is rejected and it is accepted otherwise. Corresponding to this
rule, there is a region R, ={(ny,n;,n3);0(ny,n,,n3) <c} of sample points
leading to the rejection of H . Based on R, the probabilities of the first kind
and the second kind of errors are defined respectively as:

a = Z.f,(ny,n,,n3)and

1-2_f,(ny,n5,03)

where Z . indicates the summation over all points of R. The analogy with
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significance level and power of a test is natural. Table I shows the values of &
and §3 for some. different sample sizes (n), where ¢ = 1 and the uniform prior
were chosen.

Table I -Values of & and ﬁ for different sample sizes (n). Uniform prior and ¢ = | were
chosen.

n 10 20 30 40 50 60 70 80 90 100

o .1878 .1164 0968 .0900 .0786 .0720 .0658 .0587 .0566 0534
B 4545 4113 3669 .3310 .3107 .2924 2786 2689 .2568 .2475

These probabiliies may explain why in most situations, where one
expects to rcject hypothesis H ,, the data support non-rejection of H .

In order to illusirate the advantages of the method described in this
section, numerical results are presented in Section 5.

If one decides to use LJ(/py) [or L] (1-v/p3)] as the likelihood,
one needs to use a prior distribution for p; [or p3] coherent with the prior
for (py,p3) atready assessed. In the particular case of this work, p,; and p,
have (in the prior) marginal Beta distributions with parameters (0 ;0 + &(3)
and (0t3;00,+ @), respectively. Nevertheless, as already pointed out, the
predictive distribution under Hj when L: (V'py) is used differs from that
obtained with L} (1 -V/p3). The study of Dickey and Lientz (1970) on sharp
hypothesis problems presents alternative choices of likelihoods for the case
where the parameter space is contained in the real line.

3. BAYES ESTIMATION

P2

P1P3

Another sitnation that characterizes the HW equilibrium is 6 =

= 4. Therefore 6 is a parameter of interest.

The two following facts simplify the derivation of the Bayes estima-
torof 0 :

1. If (py,p3) is distributed as D(ay ;0 ;0¢3) prior to data, then its
posterior distribution is D (&¢; +ny ;0 +n, ;03 +03).

2. If Xy, X,, and X3 are mutually independent gamma variables with
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parameters (0, +ny ; f8), (@3 +n,;f), and (03 +n3; ), respectively, then

X; X5 X3 o .
; g X ;(— , where X = X; + X,+ Xj,isdistributed asD(c¢;+ ny x5 +n5;
03 +114). Here 3 is the scale parameter. <2
These two results imply that 8 is distributed as and then a
143

simple proof for the following proposition is obtained.

Proposition. If a; +n; > 1 and «g +n4 > 1, then the Bayes estimator (the

~ 0y +ny) (Qy+ny+1
posterior mean) of 8 is § = (@2 +0) (@3 +m3 + 1) . In addition, if n, +
(o +oy-1) (a3 +n3-1)

oy >2and 14 + 03 > 2, then the posterior variance of 8 is

. (0, +n,+2) (0 +ny+3) -

Var[ 6 ,0j, =6 : -81.
ar[61(ny,0,,03)] [(a1+n1-2) (03 +03-2) i
. X3 X3
Proof. Since 8 = E[X ], Var [ 6 | (ny,n3,n5)] = Var| ],and
1% 123

X1, X4, and X3 are mutually independent, the proof is completed by properly
using the following moments:

(i) For any positive integer, k '
(0 +ny) (@ +my +1) .. . (0 +ny +k-1)

ﬁk

E(Xf] =

(ii) for o+n;>1,i=1,2,3

_B

o+ n;- 1

(i) For og+n;>2,i=1,2,3
g

El?1= BIX'] —— O
1 1

E[X;']=

By looking at (ii) and (iii) it becames clear that, changing the restric-
tions on Qg +ny, general expressions for other moments of 6 may be obtain-
ned.

Numerical illustrations of the above results are presented-in Section 5.
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‘4. CREDIBLE REGIONS

The Bayesian counterpart for confidence regions of level « is the
smallest subset, O, of the parameter space © such that, in the posterior
distribution the event (p,, p3) €8, has probability «.

2
Definition. The credible region of level « for the parameter 6 = p?;; is the
1P3

2
image ', of the function 8: ©,~> @, where 6 (x,y) = % and O,

is defined above.

Usually, it is not very simple to obtain this region @, . However, a
good approximation may be obtained by using the mean and the variance of
the posterior distribution of § presented in Section 3.

Another alternative way to test hypothesis H  of HW equilibrium is
to verify whether the set ©,, N 9 is empty or not. 'Ihe intuition here follows
the classical test based on conﬁdenoe regions.

To solve the equation leading to a credible region o for (py,p3) 2
double integration is required. However, one of the integration limits cannot
be set in an explicit form because it is a solution of

1 N3 N,
y (A-x-y) "=

where ¢ is a constant. Hence, an evaluation of the credible region cannot be
reached by means of numerical methods. Nevertheless, a good approximation
can be obtained by simulation.

Recall that if X,,X,, and X5 are mdependent variables with gamma
distribution with parameters (nl +1; 1) (ny + 1;1),and (nj + 1;1) respectively,

;1 Xo
then for X = X, + X, + X3, ( ‘)'(‘ —X— Y) is distributed as

‘D(ny+1;n,+ 1;n3+1).

Since methods to simulate the. gamma distribution are available
(Robinson and Lewis, 1975; Schmeiser and Lal, 1979) a set P of N points
(P1,P3), P1 = Xy/X and pj3 = X3/X, was obtained through the simulation of
N values of X, N values of X,, and N values of X3. The values of L, {(p;,p3)
were evaluated for each point of P and then sorted in a descending way. The
«N points of P which correspond to the greatest values of L (py, ps) were
plotted. This procedure is numerically illustrated in the following section.



698 ) Pereira and Rogatko

5. NUMERICAL ILLUSTRATIONS

In this section, numerical applications of the results discussed in the
previous sections are presented. For simplicity, the uniform distribution was
chosen to be used as the prior in all fllustrations.

The triangular arrays presented in the appendix show the integer
part of the Bayes factor for each possible value of (ny,n3) in the casesof
n = 10i where i = 1,2,3 and 5. For large sample sizes the agreement wlth the
equilibrium curve in Figure 1 is suggestive.

Tables II and DI present, for the sample size n = 20, the integer part
of the Bayes estimator, é, multiplied by 10 and the posterior standard devia-
tion of 8 multiplied by 10, respectively.

Figure 2 shows the likelihood function L, (p;,p3) for the sample
(ny,n,,n3) = (25, 50, 25). Figures 3 and 4 show the 95% credible regions
(zeros) for samples (25, 50, 25) and (49, 2, 49), respectively. They were
obtained by the procedure described in Section 3 for N = 1300 generated
points in each case. In Figure 3 the intersection between the credible region
and the equilibrium curve (“E” characters) is not empty. Conversely, in Fig-
ure 4, the set of equilibrium points, represented by the equilibrium curve, and
the credible region are disjoint. It is concluded that in the first case the
population is in HW equilibrium, and in the second case it is not. Both
conclusions are based on a “credible level” of ar=.95.

6. FINAL REMARKS

The methods presented in this article to test the HW equilibrium
hypothesis have the advantage that they can be applied to samples of any
size. However, the magnitude of the « error and especially of the f error
indicate that satisfactory decisions can only be reached for samples of sub-
stantial size.

This paper exemplifies how the Bayesian methodology may produce
powerful tools to help the researcher to reach good decisions which can be
accurately evaluated.
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Table I - Integer part of the Bayes estimator é multiplied by 10 for sample size n = 20,
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Table T - Integer part of the posterior standard deviation of & multiplied by 10 for sample size n = 20,

20
19
18
17
16
15
14
13
12

—_ =
(=

5 O =W A WL OO

=]
w

19
27
37

50

68
50
121
163
223
314
465
755
1524

[oaal B . S PSR ]

22
30
40
55
75
103
147
221
365
758

(2 T S

16
23
31
43
60
87
132
221
465

N W N

10
14
20
27
39
57
87
147
214

O AN AW =

13
18
26
36
60
103
223

12
18
27
43
75
163

O N AN =

O O\ & O =t

13
20
31
55
121

O A D =

14
23
40
90

[an I - O N S

30
68

10

[ RN S N N

50

11

@ L W =

16
37

12

W WS =

11
27

13

O N WD -




)
2
. {* )
.
YRHN 30
I, 6
oA
:"‘.im‘:.‘ "\“ﬁ"‘?"f"ﬁ. R
2
. %) ,:::}‘1 %u;é': B
VSN
Yo ‘:"4"{?:"."]“!“""?'4'
i

o

VN
il

0

Nt

T
I

R

e

g
o

it
O

3
N

Nl
T O S — NI
S % ‘l,‘:."t‘.mlﬁ:"
. == )
KN
i o
BARARIG
' WA
Dttt iy,
ST
TNy
Y X
AR A
RhaRasNL s
AT s
RN
SRS
R TRV )
ot
RNy
“"A'Q"‘I"‘l‘.‘l"“‘l’
. D R AR
e

3 i
o Uy
(Y \
DRI A
RIS
B RS
v ’A'A‘»'n“,":,y,‘v“n

0
]
“ ,’i“n"l.“: WK

!

the sample vector (25,50, 25).

J
i
N
nitralede
AN

Figure 2 - Likelihood function Lj(py,p3) of

701



- 0C00A00COREDUO00..
-000000000E 000 .. ..

sewesssnnaana00000800£D0020.0..,
~-ascaunasas 0000000£0000000.,..-
weaas.D00000E0000000D, ..
«00000F00000000. .
aeccaevsaaasaD000ED0000000.0 cnwnuea
ssencas=v~==0000Z000000000acscnccas
senws aeD00E000000.0cecacecns

snm .

aceacanabo

easazaesbos

sassbocn
esevtan
aasefwnn

emeobans

awebloanecans

reiaEenn

sEancmecs
efvcormcannan
lecannnnana

[ AR ——
fouaanen

Eancecenamoana

Figure 3 - 95% credible region (zeros) obtained by simulation, where

1300 points were generated for the sample vector (25,
t 50, 25). The equilibrium curve is represented by “E”
b characters.

702



ssmamenncaban

-+-..000000.
..0000C0C.
-..000080.
.. 000000
0.00000.

ccasaccenelione

esssansaslaas

ea42202000000.
«se00C000-
«=s000000.
~«»0C000.

E Figure 4 - 95% credible region (z¢ros) obtained by simulation, where
[

i .. 1300 points were generated for the sample vectos (49, 2,
- 49). The equitibrium curve is represented by “E” characters.

703



704 ’ Pereira and Rogatko

ACKNOWLEDGMENTS
We are grateful to FAPESP for financial support.
RESUMO

Este trabalho descreve uma alternativa Bayesiana para a trindade da Analise
Estatistica Clissica (teste de hipdtese, estimagdo e regido de confianga) do equilibrio
populacional de Hardy e Weinberg. Resultados numéricos sio apresentados para ilustrar
esta metodologia e suas principais vantagens em relagdo i clissica.
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APPENDIX
This Appendix presents tables for the integer part of the Bayes

factor for four different sample sizes. The columns correspond to the values
of n; and the rows to the values of nj.
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