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The present article concerns statistical concepts that are usually presented in the statistical 
classroom. Examples are presented in a way that simple applications of these concepts produce 
incoherent conclusions. The examples illustrate that: iid random variables are in fact strongly 
dependent; conditional probabilities may depend on how the conditioning arguments were 
learned; confidence intervals may have the property of diminished precision when information is 
increasing; and significance tests may not reject impossible hypotheses. 
 
INTRODUCTION 

Learning of basic disciplines such as mathematics or physics has become a hurdle in the 
education of professionals who are to deal with scientific and technological challenges of modern 
society. Students’ apathy for technical disciplines, which demand a more logical and abstract 
reasoning, has become universal. On the other hand, modern society has been modifying its 
values at the same pace at which new technologies are incorporated to our everyday life.  
 Curiously enough, the superb power of adaptation of young people to new technology is 
not matched by any interest in how such technology is developed nor in the concepts used for its 
creation. Young people rapidly become excellent users of new technology, as opposed to adults 
who were educated under a totally different cultural paradigm. Today’s adult questioned the 
necessity of the new available technology when he was young. It was important to know how and 
why technological apparatus were built and used. At present, it seems that there is no time to be 
“wasted” on such conceptual questioning. This may produce the (possibly mistaken) idea that 
young people are only interested in knowledge of immediately application and, in many 
instances, of easy learning. 

How a teacher should convince a student that analysis, and not only calculus, is important 
for the statistician’s logical thinking? In the past, it was not common to a student to question a 
teacher about the usefulness of a subject being taught. A teacher used to be a Master! Today a 
teaching professional is being evaluated by her/his productivity, that it is sometimes judged by the 
number of approved students. The Master used to look for a strong student background. Today 
teachers may only look for the minimum learning that a student requires to advance to a next 
college step. 

The demand for statisticians has also changed and the market is now looking for a 
professional with an MSc degree. A regular graduate diploma is not enough anymore! As 
expected, one looks for a statistician with strong knowledge. Maybe in the near future a PhD 
diploma will be necessary for the new professional in statistics. These additional degrees used to 
be needed only for scientific and academic rather than professional purposes. 

Instead of criticizing students the objective of this paper is to question concepts that are 
usually introduced in statistical classes. The author’s opinion is: the fact that students are not 
interested in foundations is a consequence of the imprecise way in which important statistical 
concepts are introduced. These concepts are discussed using examples throughout the text. In the 
second section we discuss probabilistic and statistical independence. The third section is devoted 
to conditional independence and we call attention to how conditioning arguments should be 
learned. The fourth section is about incoherent practical solutions when using confidence 
intervals. Finally we show how p-values provide misleading responses.  

  
PROBABILISTIC AND STATISTICAL INDEPENDENCE  
 In statistics, the concept of dependence is closely related to the concept of association. It 
is common sense that two phenomena are associated if one influences the other. For example, the 
occurrence of one will increase the chance of the other occurring; this is the case of positive 
association. There are also cases of negative association in which the occurrence of one event 
decreases the chance of the other occurring. It is important to recall that the equivalent concepts 
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of association or dependence of two random quantities, x and y, have a symmetric property; that 
is, if x depends on y then, y depends on x at the same level.  
 The lack of dependence is known as independence. There are no distinct levels of 
independence! Two random quantities are independent whenever the observation of one does not 
alter the probability distribution of the other. Equivalently, x and y are independent random 
quantities if p(y|x) = p(y) for every possible value of (x;y). That is, the conditional probability of y 
given x is equal to the marginal probability of y, for every possible value of (x;y). A good 
homework for the reader is to prove the equivalence of the following three equalities: 

1. p(y) = p(y|x), 
2. p(x) = p(x|y), and 
3. p(x)p(y) = p(x;y). 
This concept of independence is naturally extended to conditional independence, whenever 

another random quantity, z, is considered. The random quantities x and y are conditionally 
independent given z if, for every possible value of (x;y;z), p(x,y|z) = p(x!z)p(y|z). That is, if z is to 
be known, x and y are independent. Again, the reader should check the equivalence among the 
next tree equalities: 

4. pIy|z) = p(y|x,z), 
5. p(x|z) = p(x|y,z), and 
6. p(x|z)p(y|z) = p(x,y|z). 
In statistics one may say that x and y are iid with common distribution p that depend on an 

unknown parameter, say z. Hence, the statistical independence between x and y should be 
understood as the conditional independence with the parameter playing the role of z in the above 
discussion. In the next three examples the differences between probabilistic and statistical 
independence are illustrated.  

 
Example 1 (Standard Normal Distribution): Let x and y be independent random quantities with 
standard normal common distribution, N(0,1). It is most probable that neither variable will 
assume values outside of the interval [-6;6], although we know they may assume any value in the 
whole real line. Knowing, for example, that x = 3 will not change at all our expectation about the 
value y assumes in [-6,6]. This is an illustration of probabilistic independence. 
 
Example 2 (Normal Distribution with Unknown Mean): Let x and y be independent and 
identically distributed random quantities with normal distribution, N(z,1), where z is the unknown 
parameter. Now, there are no intervals with higher expectations of occurrence than others of the 
same length. Both, x and y, can assume values in the real line without any preference. Now, the 
observation x = 3 is should carry a lot of information about y. Recall that, before the observation 
of x, the only expectation one has is that y is any real number. The other important fact is that the 
value of x is most probable to be in the interval [z-6;z+6]. Since x = 3, one could say that, with 
high probability, 3 < z+6 and 3 > z-6: i. e., -3 < z < 9. Consequently, after observing x = 3, it is 
improbable that y lies outside of the interval [-9;15]. In the beginning, y could be any real number 
but after observing that x = 3, one could say that with high probability -9 < y < 15. Hence, x and y 
are statistically independent but strongly dependent! 
 To really pique the reader a more extreme example is presented next. 
 
Example 3 (Uniform with Unknown Mean): Let x and y be independent and identically distributed 
random quantities with uniform distribution in the interval [z-1;z+1]. Again, z is the unknown 
parameter belonging to the real line. As before, x and y can assume any value in the real line. In 
particular, assume x = 3 is the actual observation. For this case, with probability one, y belongs to 
the finite interval [1;5]. This is a consequence of z-1 < 3 < z+1 and z-1 < y < z+1. Again, x and y 
are statistically independent but strongly dependent! 
 The last two examples show that statistical independence involves in fact strong 
dependence in most cases. Whenever a probabilistic structure is given to the parameter, one can 
identify statistical independence with conditional independence. For the case of identically 
distributed random quantities, the common parameter is the element that causes the dependence 
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among the quantities. Instead of statistical independence one could say, x and y are independent if 
z is to be known. 
 
CONDITIONAL INDEPENDENCE AND INFORMATION 
 The example discussed in this section is equally important to emphasize the differences 
between probabilistic and statistical work. However, the reader must understand that one 
complements, rather than replaces, the other. 
 The example highlights the role of likelihood functions. It also tries to show the 
difference between sampling distribution and likelihood function. Both are obtained from the 
statistical model, which is a function of two quantities, f(x|z), x assuming values in the sample 
space and z in the parameter space. The sampling model is the set of probability functions defined 
in the sample space for each possible value of the parameter. The likelihood function is the 
probability of the actual observation of x calculated to every value of the parameter z. For the 
uniform example 3, the likelihood for x = 3 is L(z|3) = f(3|z) = ½ for every z in the interval of 
possibilities for z, [2;4]. 
 
Example 4 (Pair of siblings): The neighborhood dance school participates yearly in a national 
competition with its group of 10 girls. Lily, the teacher, has learnt that the family of the two 
sisters that belong to the group will emigrate soon to another country. She heard that a new 
family, with two kids is moving to the apartment of the two ballerinas. Lily thinks that she could 
have another two dancers if both new kids are females. She could train them to join the group. 
Lily assigned a probability of ¼ to the event of two new girls in the neighborhood. For her, the 
sample space was {(m;m),(m;f),(f;m),(f;f)}, m and f representing male and female. Clearly, for 
her, every sample point had the same probability ¼. When talking to Jony, her brother who 
handles the rent of the apartment to the new family, she learned that at least one of the kids is 
female. In fact he was at the telephone talking to the kids’ mother when she shouted to someone 
saying “be quiet girl” saying that she was talking to one of her kids. Lily then was happy since her 
space now become a set of e equally probable sample points, {(m;f),(f;m),(f;f)}; i.e., she now 
considers that her probability of (f;f) is 1/3. As soon Lily reached this conclusion Jony’s wife, 
Mary, enters the office and said that a daughter of the new family was downstairs in her car. Lily 
then runs to the car and was happier since her probability now became ½. This conclusion arose 
from the fact that she looked for the gender of the other kid and the sample space became {m,f}, a 
set of two equally probable points. To accept Lily´s analysis one should agree that the event “at 
least one sibling is a female” produces different probabilities depending on whether it is learned 
by different channels: auditory or visual.  
 The statistician’s eyes allow the incorporation of other kinds of information in the 
learning process. Let us consider all the nuances of the process. The parameter of interest takes 
the values z = 1 if the state of nature is (f;f) and z = 0 otherwise. Considering the three point 
sample space, let the prior probability be p(z=1) = 1/3. As the sample observation, let x = 0 if 
Mary had brought a male kid and x = 1 a female. The likelihood function is L(z|1) = p(1|z) that 
takes the values L(1|1) = 1 and L(0|1) = q ∈[0;1]. The reader should confirm that the posterior 
probability of interest is p(z=1|x=1) = (1+2q)-1. Lily was correct when considering that q = ½ 
producing ½ as the posterior probability. However, after listening to the Lily’s arguments, Mary 
reported that the mother had asked her to bring that girl to try out a skirt in the female clothing 
store next door. In that case she should consider that q = 1 and then the posterior would be 1/3 just 
like the prior.  
 The reader must understand that a statistician has to consider a model for the data 
generator; the likelihood. A probability expert usually looks at the future, considering the present. 
The statistician, being interested in understanding the present, looks at the past to ascertain how 
the information was obtained.  
 
CONFIDENCE AND CREDIBILITY 
 This section is about interval estimation. The most controversial statistical concept, for 
the author, is the confidence interval. Most of the time, the statistician has to explain to scientists 
that the confidence of an interval is not the probability that the true value of the parameter 
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belongs to the interval. Confidence of an interval is the frequency of intervals that contain the true 
value of the parameter whenever repetitions of the experiment are performed. However, most of 
the experiments cannot be repeated and for some scientists confidence factors do not make much 
sense. To better understand these arguments the following example illustrates the difference 
between confidence and credibility. By interval credibility we understand the posterior probability 
that the interval contains the parameter value. 
  
Example 5 (Uniform with unknown mean): Let (u;v;x;y) be a vector of four independent and 
identically distributed random quantities with uniform distribution in the interval [z-½;z+½]. 
Again, it is a case of statistical independence where z is the unknown parameter belonging to the 
real line. The interest now is to obtain a confidence interval for z. Let m and M represent the 
minimum and the maximum of the sample: m = min(u;v;x;y) and M = max(u;v;x;y). It is not 
difficult to prove that the interval [m;M] is an interval with 87.5% of confidence: i.e, using the 
sample distribution, p([m;M] ⊃ z| z) = .875. In fact, (½)4 is the probability that all four 
observations are smaller (or larger) than z. Hence, (½)3 = .125 is the chance that all four 
observations lie in the same half side of the interval and finally the chance of {[m;M] ⊃ z} for any 
fixed z should be 1- (½)3 = .875. After observing a sample, it is not unusual for a statistician to 
present to his client the observed interval attached to the confidence level, 87.5% in this case. For 
example, suppose that the observed sample vector was (1.11;1.27;1.43;1.59). In this case, a 
careless statistician would present to his client the interval [1.11;1.59] and the number 87.5% to 
indicate his high confidence.  
 To discuss the method used in the above example, let us change the value of M and 
evaluate what could be given to the client. Let us consider three other possibilities for the 
maximum, say 1.50, 1.62, and 1.91. Let us now consider the four 87.5% confidence intervals with 
their lengths, L’s: I1 = [1.11;1.59], L1=.48; I2 = [1.11;1.50], L2=.39; I3 = [1.11;1.62], L3=.51; and I4 
= [1.11;1.91], L4=.80. A smart statistician who believes that there is more thinking involved than 
the simple use of a method, would understand that m > z-½ and M < z+½ or, equivalently, for 
sure M-½ < z < m+½. This statistician could present to his client the following 100% confidence 
intervals together with their lengths: S1 = [1.08;1.61], l1=.53; S2 = [1.00;1.61], l2=.61; S3 = 
[1.12;1.61], l3=.49; and S4 = [1.41;1.61] ,l4=.20. Note that the smaller the interval is, the more 
precise an answer is given to the client. Comparing the answers of the two statisticians, the 
second presented two more precise intervals, besides giving 100% of confidence. The important 
fact to be noticed is that the larger M – m is, the more informative is the sample. Hence the first 
statistician’s answer has less precision whenever the sample is more informative. Finally, suppose 
that a probabilistic structure is given to z. For example, let z have a uniform prior distribution in 
the interval [-100;100]. Consequently, for the four samples, z would have uniform posterior 
distributions in the intervals S1, S2, S3, and S4. With these four posterior distributions one obtains 
the following four 87.5% credible intervals together with their lengths: C1 = [1.12;1.58], l1=.46; 
C2 = [1.04;1.57], l2=.53; C3 = [1.15;1.58], l3=.43; and C4 = [1.42;1.60], l4=.18. With this Bayesian 
method, the less (more) informative sample, the one with M = 1.50 (1.91), produces a less (more) 
precise interval. The classical method, used by most statisticians, went in the wrong direction. 
Hence, this method produces incoherence! Table 1 summarizes this discussion. 
 

Table 1: Estimation intervals: 87.5% confidence, exact and 87.5% credible 
 

 Intervals Length 
sample confidence sure credible confidence sure credible 

1 [1.11;1.59] [1.08;1.61] [1.12;1.58] 0.48 0.53 0.46 
2 [1.11;1.50] [1.00;1.61] [1.04;1.57] 0.39 0.61 0.53 
3 [1.11;1.62] [1.12;1.61] [1.51;1.58] 0.51 0.49 0.43 
4 [1.11;1.91] [1.41;1.61] [1.42;1.60] 0.80 0.20 0.18 
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 The above discussion is a more elaborated version of the one presented in page 400 of 
DeGroot (1986). See Basu (1988) for a discussion on information provided by an observed 
sample. 
 
SIGNIFICANCE AND EVIDENCE 
 This section is about significance tests or p-values. The very simple example discussed 
here was originally presented by Pereira and Wechsler (1993). It is not uncommon that the 
definition of a p-value presented in classroom disregards the alternative hypothesis. There are 
cases were the teacher gives the idea that p-values are the tails of the null distribution, the sample 
distribution under the consideration that the null hypothesis holds. In the next example the central 
area, not tails, should be the p-value. In Pereira and Wechsler, another example shows that a p-
value could be a composition of tail and central areas.  
  
Example 6 (Urn and Balls): There is an urn with three balls of different colors; white, black and 
red. A sample of three balls is selected from the urn and one records the values of x and y; x being 
the sampling number of white balls and y of black balls. Both, x and y, can take values in the set 
{0;1;2;3}. With the observed sample, (x;y) = (1;1), one wants to test the null hypothesis “H: the 
sample was taken with replacement,” against the alternative hypothesis “A: the sample was taken 
without replacement.” Table 2 illustrates the null probability distribution multiplied by 27. 
 

Table 2: Null Probabilities 
 

     y
x 

0 1 2 3

0 1 3 3 1
1 3 6 3 0
2 3 3 0 0
3 1 0 0 0

 
If the definition of p-value includes the observed sample, its value is 100% of significance in 
favor of H. If it does not include the observed sample then its value would be 77.78% 
corresponding to the probability value 21/27. The conclusion is that the sample evidence favors 
the null hypothesis, H, against A. Also it is interesting to note that the observation (1;1) is the 
sample point that most favors H. Again incoherence is present! The reason is that (x;y) = (1;1) is 
the only sample point that can be observed under A. All other sample points are impossible under 
the alternative hypothesis A. The statistic t = (x-1)2+(y-1)2, known as the χ2 statistic, could work 
as a classical test statistic. 
 Any statistician should look at the likelihood function! In this case the likelihood is 
L(H|1;1) = p(x=1,y=1|H) = 6/27 and L(A|1;1) = p(x=1,y=1|A) = 1. The likelihood ratio here is 
given by LR(1;1) = L(A|1;1)/L(H|1;1) = 27/6 = 4.5, favoring A against H. If a priori one considers 
a priori equal probabilities for the hypotheses, p(H) = p(A) = ½, then, a posteriori, the null 
hypothesis will have probability equal to p(H|1;1) = (1+27/6)-1 = 2/11. Clearly this favors A rather 
than H.  
 Consider in the above example an urn with 4 balls of different colors: black, white, red 
and blue. A sample of four balls is selected from this urn. Let x, y and z be, respectively, the 
sampling numbers of white, black and red balls. The sampling null distribution is the multinomial 
distribution p(x,y,z|H) = [(32/3)(x!y!z!)]-1. The most probable sample point for this distribution is 
(x;y;z) = (1;1;1). Again, applying the standard definition for the p-value, as before, we obtain a 
significance of 100% for (1;1;1), strongly favoring H against A. The likelihood ratio, in this case 
is LR(1;1;1) = 32/3 = 10.67 and the posterior probability of H for a flat prior would be 3/35, 
strongly favoring A. Application of the standard concept again produces incoherence!  
 



ICOTS-7, 2006: Pereira (Refereed) 

 6

FINAL REMARKS  
 This paper is a consequence of the many encouragements the author has received from his 
colleagues and friends, mostly classical statisticians. They knew that the author’s former 
supervisor, Dev Basu, was the master of counter examples and had many public debates with 
Oscar Kempthorne who also liked the adversarial environment. The idea was to try to have rich 
conflicts also in our community. Whenever public debates about statistical concepts are present, 
Students would benefit from the time they would need to choose a side in the discussions. This is 
the moment when a student feels that he is not being trained, but instead challenged, to thinking 
and to having his own judgments. To better understand this discussion, readers are recommended 
to complement these ideas in Basu (1988), Good (1983), and Kempthorne and Folks (1971). For a 
Bayesian training the reader should also look for Barlow (1998), Blackwell (1969) and mainly de 
Finetti (1972). 
 In the classroom, the author tries to make the students choose a way among alternatives. 
He is against the training to use methodologies without discussing how and on which bases they 
were developed. For the author the lemma to be followed is: Nothing is just good! 
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