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A Discussion of “On Bayesian Estimation of a
Survival Curve: Comparative Study and

Examples”
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∗Federal University of São Carlos, Brazil
†Florida State University, USA
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Abstract. A small mistake when introducing a new methodology could completely ruin the possi-
bility a success of it. In the context of reliability for the case of series systems, Polpo and Sinha [8]
presented the corrected version of an estimator introduced by Salinas-Torres et al. [10]. Recently,
Salinas et al. [9] applied the former results to built estimators for survival functions and compare
them to standard ones. Again, the same kind of equivocal development was committed. Besides
introducing the correct estimates, we show the desired asymptotic properties in fact hold.
Keywords: Competing-risks, right censoring, series system, Bayesian nonparametric.
PACS: 02.50.Tt, 02.50.Ng, 02.60.Gf.

1. INTRODUCTION

In survival analysis, data censored at right has been studied by many authors. For a
review, we refer to Ibrahim et al. [3], under a Bayesian perspective, and Lawless [5]
for a frequentist view. A review of Nonparametric Bayesian data analysis can be found
in Müller and Quintana [6]. The present paper discusses the estimator introduced by
Polpo and Sinha [8] performing an analysis similar to the one of Salinas et al. [9]. In
addition we discuss the question of choosing an appropriate prior for the non-parametric
estimator of Polpo and Sinha [8].
All notations used here are similar to those used by Salinas-Torres et al. [10]. Consider

a series systemwith r components. Let Xj, j= 1, . . . ,r the failure time of the j-th compo-
nent. The observed sample of size n is (Zi,δi), i= 1, . . . ,n, where Zi =min(X1i, . . . ,Xri),
and δ = j if the j-th component was the responsible to system failure, that is Zi = Xji,
j = 1, . . . ,r. Also, consider that the failure time of all components are independent.
Define S∗j(t) = Pr(Z > t,δ = j) and S j(t) = Pr(Z > t) as the subsurvial and survival

functions of the j-th component, respectively. The objective is to construct a nonpara-
metric estimator of S j(·). Restricting ourselves to the case with two components (r= 2),
Peterson [7] define a functional that relates the subsurvival functions with the survival
function of a component.

XI Brazilian Meeting on Bayesian Statistics
AIP Conf. Proc. 1490, 268-277 (2012); doi: 10.1063/1.4759611

©   2012 American Institute of Physics 978-0-7354-1102-9/$30.00

268

Downloaded 25 Oct 2012 to 189.100.3.89. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



Theorem 1 (Theorem 2.1 of Peterson [7])

1. The subsurvival functions S∗1(·) and S∗2(·) determine (uniquely) the survival function
S1(t) for t ≤ t∗ according to the following explicit expression:

S1(t) = ϕ(S∗1(·),S
∗
2(·), t), (1)

where

ϕ(S∗1(·),S
∗
2(·), t) = exp

⎡⎣⊂t∫
0

dS∗1(s)
S∗1(s)+S∗2(s)

⎤⎦×
exp

⎡⎢⎢⎣ ∑
s: jump point of S∗1(·)

t≤t∗

log
(
S∗1(s

+)+S∗2(s
+)

S∗1(s−)+S
∗
2(s−)

)⎤⎥⎥⎦ ,

and ⊂
t∫
0

means integration over the (open) intervals of points less than t for which

S∗1(·) is continuous.
2. If S1(t∗) = 0, then S1(t) = 0 for t > t∗.

Proof. See Peterson [7]. �

Using (1), Peterson [7] express the Kaplan-Meier estimator in terms of empirical
estimator of subsurvival function, S∗jn(t) =

1
n∑ni=1 I(Zi > t,δi = j), j = 1,2, where I(A)

is the indicator function of set A. Similarly, Salinas-Torres et al. [10], using the Dirichlet
process [2, 11], developed a nonparametric Bayesian estimator for subsurvival functions,
and for component’s survival function, by functional (1). Polpo and Sinha [8] presented
a correction of these estimates. Here it is shown that these estimates are in fact consistent
and it performs better as the sample size increases as expected. On the other hand, the
version presented in [10] is inconsistent: their nonparametric estimates became worse as
the sample size increases.
This paper is organized as follows. Section 2 describes the correction made in the

original estimator. The description and the use of the prior are discussed in Section 3.
Using simulated data, Section 4 illustrates a comparison between the Bayesian nonpara-
metric estimate and the celebrated Kaplan-Meyer estimate [4]. Final remarks are the
subjects of Section 5.

2. CORRECTION OF BAYESIAN NONPARAMETRIC
ESTIMATOR

Theorem 1 of Salinas-Torres et al. [10] is the main result of their paper, and Polpo
and Sinha [8] presented the correct version of this result. In fact the result in the old
version is responsible for the negative results of the Bayesian estimator compared with
the Kaplan-Meyer.
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The following steps introduce the main results to understand the estimator, highlight
the place where the problem happens, and present the proper correction.
Returning to the problem of more than two components (r > 1), let Δ the subset of

indexes {1, . . . ,r} and Δc its complement. ConsideringX = (0,∞),A = B(0,∞) (Borel
σ -algebra), SSS∗(·) = (S∗1(·), . . . , S

∗
r (·)), the prior for SSS

∗ is defined by

SSS∗(t)∼D(a1(t,∞), . . .,ar(t,∞)), (2)

for which a j ( j = 1, . . . ,r) are finite positive measures on (X ,A ) and D is a Dirichlet
distribution. Then, the induced prior for S∗Δ, defined by Pr(Z > t,δ ∈ Δ), is

S∗Δ(t)∼ Beta[crS
∗
Δ,0(t),cr(1−S

∗
Δ,0(t))], (3)

where cr = ∑rj=1 a j(0,∞) and the prior mean is S∗Δ,0(t)= ∑ j∈Δ a j(t,∞)/cr. The posterior
distribution of SSS∗(t) is

SSS∗(t) |Data∼D [a1(t,∞)+nS∗1n(t), . . . ,ar(t,∞)+nS∗rn(t)] .

The Bayesian nonparametric estimators are then

Ŝ∗Δ(t) = pnS
∗
Δ,0(t)+(1− pn)S∗Δ,n(t), (4)

where pn = cr/(cr+n), and

Ŝ(t) = Ŝ∗Δ(t)+ Ŝ
∗
Δc(t). (5)

In the sequel we present the main result of Salinas-Torres et al. [10] and pin-point the
place where need a correction.
Let Z(1) < · · · < Z(m), m(≤ n) distinct order statistics. As defined by Salinas-Torres

et al. [10],

iΔ(t) = exp

⎧⎨⎩ −1
cr+n ∑

j∈Δc
⊂

t∫
0

da(s,∞)

Ŝ(s)

⎫⎬⎭ ,

πΔ(t) = ∏
i:Z(i)≤t

∑rj=1a j(Z(i),∞)+ni−di
∑rj=1a j(Z(i),∞)+ni

,

ni = ∑nk=1 I(Zk ≥ Z(i)), and di = ∑nk=1 I(Zk = Z(i),δk ∈ Δ).

Theorem 2 (Theorem 1 of Salinas-Torres et al. [10]) Suppose that the function
f (s) = (a1(s,∞), . . . ,ar(s,∞)) is continuous on (0, t), for each t > 0, and SΔ and
SΔc have no common discontinuities then, for t ≤ Z(m),

ŜΔ(t) = ϕ(Ŝ∗Δ, Ŝ
∗
Δc; t) = Ŝ(t)iΔ(t)πΔ(t),

is the Bayes estimator of SΔ(t) under the quadratic loss function.
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To prove Theorem 2, the authors used the fact that

dŜ∗Δ(s) = dŜ(s)−
∑
j∈Δc

da(s,∞)

(cr+n)
to obtain the following steps:

exp

⎧⎨⎩⊂
t∫
0

dŜ∗Δ(s)
Ŝ(s)

⎫⎬⎭ = exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⊂

t∫
0

dŜ(s)−

(
∑
j∈Δc

da(s,∞)

)
/(cr+n)

Ŝ(s)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(6)

= exp

⎧⎨⎩⊂
t∫
0

dŜ(s)
Ŝ(s)

⎫⎬⎭exp
⎧⎪⎨⎪⎩ −1
cr+n

⊂

t∫
0

∑
j∈Δc

da(s,∞)

Ŝ(s)

⎫⎪⎬⎪⎭
= Ŝ(t)iΔ(t).

Note that to obtain the last line they used that Ŝ(t) = exp
{
⊂

t∫
0

dŜ(s)
Ŝ(s)

}
. However, this is

only true when Ŝ(t) is absolute continuous [see 1]. However, the Bayesian nonparametric
estimator of Ŝ(t) under quadratic loss function is not absolute continuous. Also, the
integration in the left side of (6) is taken only over the intervals where Ŝ∗Δ is continuous
(see Theorem 1). These steps produced a wrong result. The Theorem 2 was corrected by
Polpo and Sinha [8] via redefining iΔ(t) as

ĩΔ(t) = exp

⎧⎨⎩ 1
cr+n ∑

j∈Δ
⊂

t∫
0

da(s,∞)

Ŝ(s)

⎫⎬⎭ , (7)

and rewritten as:

Theorem 3 Suppose that the function f (s) = (a1(s,∞), . . . ,ar(s,∞)) is continuous on
(0, t), for each t > 0, and SΔ and SΔc have no common discontinuities then, for t ≤ Z(m),

S̃Δ(t) = ϕ(Ŝ∗Δ, Ŝ
∗
Δc; t) = ĩΔ(t)πΔ(t),

is the Bayes estimator of SΔ(t) under the quadratic loss function.

Proof. Substituting dŜ∗Δ(t) in the proof of Theorem 2 by dŜ
∗
Δ(t) =

(
∑ j∈Δ da(t,∞)

)
/(cr+

n) the first term in (2.4) of Salinas-Torres et al. [10] becomes ĩΔ(t) defined in (7).
dŜ∗Δ(t) =

(
∑ j∈Δda(t,∞)

)
/(cr+n) is a consequence of

Ŝ∗Δ(t) = pnS∗Δ,0(t)+(1− pn)S∗Δ,n(t)

=

∑
j∈Δ
a(t,∞)

cr+n
+

n
∑
i=1
I(Zi > t,δ ∈ Δ)

cr+n
,
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FIGURE 1. Nonparametric estimator of component’s survival for sample size 10 units: (a) Component
1; (b) Component 2. Dot line – true survival; solid line – corrected estimator; and dashed line – original
estimator.

and the function
n
∑
i=1
I(Zi > t,δ ∈ Δ) is constant, except at jump points, so its derivative is

zero in continuous intervals. To end the proof simply follow the steps of Salinas-Torres
et al. [10]. �

To investigate the differences between the estimators of Salinas-Torres et al. [10] and
of Polpo and Sinha [8], we use the following simulation study: consider a series system
with two components, X1 and X2. The observed data is Ti = min(X1i,X2i) and δi = 1
if X1 was the first component to fail, or 2 otherwise. The model used to simulate the
data considers X1 as gamma distributed, mean 4 and variance 8, and X2 also as gamma
distributed, mean 4 and variance 4. We simulate observations of this series system using
three samples: n = 10, n = 100 and n = 1000. The results are presented in Figure 1, 2
and 3. As expected, the Polpo and Sinha [8] estimator is consistent, approaches to the
“true” distribution with the increase of the sample size. On the other hand, the estimator
of Salinas-Torres et al. [10] have a bad performance, do not approach the distribution
that simulates the data.

3. PRIOR ESPECIFICATION

An important aspect of the Bayesian estimator is the possibility to use prior information
that is elicited by the prior distribution. In the nonparametric estimation, however, the
choice of the finite measure that defines the Dirichlet Process is a difficult task whenever
one wants to have the prior well described. Note that these finite measures, a j, are
defined for the vector of sub-survival functions, then a j(t;∞) can be viewed as prior
measures for the sub-survival functions S∗j(t).
Property 1 of Peterson [7] states the inverse relation of (1) by S∗1(t) =∫ ∞

t S2(s)[−dS1(s)]. Using this property, one can elicit a prior for the survival func-
tions and then evaluate for the sub-survival. For example, considering r= 2, and as prior
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FIGURE 2. Nonparametric estimator of component’s survival for sample size 100 units: (a) Component
1; (b) Component 2. Dot line – true survival; solid line – corrected estimator; and dashed line – original
estimator.
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FIGURE 3. Nonparametric estimator of component’s survival for sample size 1000 units: (a) Compo-
nent 1; (b) Component 2. Dot line – true survival; solid line – corrected estimator; and dashed line –
original estimator.

for S1(t) and S2(t) independent exponential distributions with mean m. Then, applying
Property 1 of Peterson [7] we get

a j(t,∞) =
exp{−2t/m}

2
, j = 1,2.

The formal measure of the prior space is cr = ∑rj=1a j(0,∞). From (4) and (5), cr can
be viewed as the importance of the prior in the estimator, called here as prior weight. For
instance, if cr = 1 the prior has the same importance as one sample unit. For example,
if a company “knows” the distribution of each component (by some individual test or
project specification) and they are testing the components working together in the series
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system, probably they will give more importance to the prior than someone without any
information. In fact they would accept drastic changes from prior to posterior only if the
data brings contusing or huge amount information compared with the prior one.
In the example above, we can redefine the prior by

a j(t,∞) =
kexp{−2t/m}

2
, j = 1,2.

In this case cr = a1(0,∞)+a2(0,∞) = k; we can specify the prior weight as desirable.
This exponential prior measure is a good option for prior elicitation, where the “re-
searcher” only need to specify properly the prior mean and the weight.

4. COMPARATIVE STUDY

Salinas et al. [9] did a comparative study of the Bayesian nonparametric estimator using
the estimator given by Salinas-Torres et al. [10]. In this section we redo the comparative
studies of Salinas et al. [9] with appropriate changes in the prior measures and the
Polpo and Sinha [8] estimator. To evaluate the Bayesian nonparametric estimator we
use the same numerical method described in Salinas et al. [9]. Also, we use the same
statistics L2–norm and MSVP, a cross-validation measure, to compare the estimator with
the alternative Kaplan-Meier estimator.
Following Salinas et al. [9], we draw random samples of size n of a system with two

components. Our interest consist in the estimation of component X1. The component
X2 is considered as a random censoring variable. We specify the distribution of X1 as
exponential distribution with mean 3, and X2 as gamma distributions with mean μ and
variance μ . We considered three samples size n = {50,100,200}, and three values for
μ = 1,2,4 which correspond 75, 55 and 30 percent of censoring, respectively. Then we
have 9 different scenarios in our simulation study. For each scenario we simulated 1,000
different samples.
Salinas et al. [9] suggested the prior measure as a j(t,∞) = Mj − t, 0 < t < Mj,

j= 1,2. They consideredM1=M2, and different values in ofMj in each scenario. Then,
the considered prior weight is cr = M1+M2. We found that the smallest prior weight
suggested in their work was 23% when compared with sample size (this happen in the
case of n = 200 with 30% of censoring). We understand that for a “non-informative”
prior, Salinas et al. [9] used a large weight in consideration of their prior. We changed the
prior to have a smaller weight suggesting the use of a j(t,∞) = (Mj− t)/Mj, 0< t <Mj,
j = 1,2, which implies that cr = 2 for any value of Mj. We consider for all scenarios
M1 =M2 = 60, and the biggest prior weight is around 4%.
L2–norm measure is defined as

||S1−A||2 =
{∫ Z∗(m)

0
(S1(t)−A(t))dt

}
,

where S1(t) is the “true” survival (exponential distribution), and A(t) is one of the three
possible estimators: S̃1(t) for the Polpo and Sinha [8] Bayesian nonparametric estimator;
KM(t) for the Kaplan-Meier estimator; and Ŝ1(t) for the original Bayesian estimator of
Salinas-Torres et al. [10]. Tables 1, 2 and 3 presents the descriptive statistics (minimum,
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maximum, 25th percentile, 75th percentile, and standard deviation) of the 1,000 different
samples. The results shows that the Kaplan-Meier (KM) and the Bayesian nonparamet-
ric estimator (S̃1) have similar performance, and the original Bayesian nonparametric
estimator (Ŝ1) does not fit the data.

TABLE 1. Descriptive statistics of L2–norm, n= 50.
Mean Median Min Max P25 P75 SD

75% of censoring
||S1− S̃1||2 0.215 0.174 0.035 0.976 0.113 0.262 0.144
||S1−KM||2 0.207 0.172 0.042 0.950 0.126 0.251 0.121
||S1− Ŝ1||2 0.741 0.742 0.495 0.907 0.699 0.783 0.063

55% of censoring
||S1− S̃1||2 0.215 0.176 0.043 1.050 0.122 0.266 0.131
||S1−KM||2 0.196 0.169 0.051 0.955 0.130 0.230 0.103
||S1− Ŝ1||2 0.634 0.633 0.443 0.801 0.590 0.677 0.062

30% of censoring
||S1− S̃1||2 0.195 0.168 0.050 0.738 0.121 0.242 0.102
||S1−KM||2 0.174 0.158 0.053 0.621 0.121 0.209 0.077
||S1− Ŝ1||2 0.518 0.520 0.251 0.734 0.466 0.571 0.077

TABLE 2. Descriptive statistics of L2–norm, n= 100.

Mean Median Min Max P25 P75 SD
75% of censoring
||S1− S̃1||2 0.196 0.157 0.043 1.098 0.108 0.251 0.127
||S1−KM||2 0.188 0.164 0.041 1.071 0.121 0.223 0.106
||S1− Ŝ1||2 0.796 0.796 0.642 0.940 0.767 0.827 0.046

55% of censoring
||S1− S̃1||2 0.176 0.150 0.042 0.834 0.102 0.220 0.100
||S1−KM||2 0.162 0.145 0.039 0.796 0.109 0.192 0.080
||S1− Ŝ1||2 0.670 0.669 0.524 0.825 0.640 0.700 0.044

30% of censoring
||S1− S̃1||2 0.152 0.132 0.047 0.522 0.097 0.192 0.073
||S1−KM||2 0.136 0.125 0.038 0.496 0.096 0.165 0.056
||S1− Ŝ1||2 0.543 0.543 0.380 0.695 0.505 0.581 0.054

Table 4 presents the mean of MSPV statistic, defined as

MSVP=
1
n

n

∑
i=1

(
A(Zi)−A(−i)(Zi)

)2
,

where A is one of the two estimators (S̃ and KM), and A(−i) is the estimates of survival
function from a sample without the i-th observation. Again, the results show that the
Bayesian nonparametric estimator and the KM are very similar. The performance of
KM was a slightly better than the Bayesian nonparametric estimator. Probably this is a
consequence of a bad choice of prior measures (as discussed before). Note that, despite
the prior being a uniform distribution, in this case it is not non-informative prior.
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TABLE 3. Descriptive statistics of L2–norm, n= 200.

Mean Median Min Max P25 P75 SD
75% of censoring
||S1− S̃1||2 0.172 0.137 0.039 0.807 0.095 0.224 0.110
||S1−KM||2 0.164 0.143 0.049 0.786 0.104 0.197 0.090
||S1− Ŝ1||2 0.827 0.830 0.703 0.929 0.806 0.850 0.032

55% of censoring
||S1− S̃1||2 0.146 0.124 0.036 0.603 0.087 0.184 0.083
||S1−KM||2 0.134 0.118 0.040 0.535 0.091 0.161 0.066
||S1− Ŝ1||2 0.693 0.693 0.575 0.784 0.673 0.715 0.032

30% of censoring
||S1− S̃1||2 0.112 0.099 0.037 0.368 0.072 0.140 0.053
||S1−KM||2 0.102 0.094 0.035 0.344 0.073 0.122 0.041
||S1− Ŝ1||2 0.556 0.556 0.441 0.664 0.530 0.582 0.039

TABLE 4. Mean of MSPV for (S̃1) and [KM] estimates.
Percent of censoring n= 50 n= 100 n= 200

75 (0.0052) [0.0036] (0.0019) [0.0013] (0.0007) [0.0004]
55 (0.0030) [0.0020] (0.0010) [0.0007] (0.0003) [0.0002]
30 (0.0011) [0.0007] (0.0003) [0.0002] (0.0001) [0.0001]

5. FINAL REMARKS

Along the above sections we have revisited the Bayesian nonparametric estimation of
survival functions for series system or competing-risks models showing the proper use
of it. Also this paper discusses the choice of a prior measure, the parameter measure, of
the the Dirichlet Process for the Bayesian non-parametric estimator of Polpo and Sinha
[8], presents simulation studies similar to those of Salinas et al. [9] and compares the
Bayesian non-parametric estimators with the Kaplan-Meier estimator. The results pre-
sented show that both estimators performed very similar for point estimation. However
it remains the need of addressing the question of computing credible (confidence) inter-
vals: this is left for a future work.
With the use of the correct estimates presented in Polpo and Sinha [8] we have

shown the consistence of the estimators. Now we have a good continuous estimator
of a continuous function, as desirable. Note that although Kaplan-Meyer has a similar
performance, respecting to consistency, it is in fact a step function.
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