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CONDITIONAL INDEPENDENCE AND PROBABILISTIC 

INFLUENCE DIAGRAMS 

By Richard E. Barlow1 and Carlos Alberto de Braganca Pereira1 

University of California, Berkeley, and Universidade de Sao Paulo, Brazil 

A graphical approach to conditional independence is dis- 

cussed. Some well known results concerning conditional 

independence are proved using simple influence diagram 

arguments. This material is, in part, from a book in 

progress tentatively titled Applied Bayesian Statistics^ by 

the present authors. 

1. Introduction? Influence diagrams with decision nodes were invented in 

1976 by Miller et al. [cf. Howard and Matheson (1984)]. Shachter (1986) further 

developed methods for analyzing influence diagrams. S. Wright (1934) used di- 

agrams to aid in understanding his "method of path coefficients." Although his 

diagrams pictorially resemble Gaussian influence diagrams [cf. Shachter and Ken- 

ley (1988)], they are not based on the Bayesian paradigm. They are not in any 
sense influence diagrams. I.J. Good (1961) invented "causal nets" that resemble in- 

fluence diagrams. He used them to illustrate his ideas of causality and conditional 

independence. In this respect they are similar to influence diagrams. However 

he did not develop a comparable methodology for analyzing the diagrams. His 

diagrams are not influence diagrams as we define them below. 

Influence diagrams are useful for modeling statistical problems. Construction 

of the diagram is helpful in understanding the problem and communicating th? 

interdependencies to others. In the process of constructing the influence diagram, a 

representation of the joint distribution of random quantities related to the problem 
of interest is developed. Usually one does not start with the joint distribution 

but uses the influence diagram model to determine a useful representation of the 

joint distribution. In the case of decision influence diagrams, the diagram can 

be used to help solve the decision problem(s) of interest. Examples of the use of 

influence diagrams can be found in Barlow and Zhang (1987) and Lauritzen and 

Spiegelhalter (1988). 

1This research was partially supported by the U. S. Army Research Office under Contract 
DAAG29-85-K-0208 with the University of California and by CNPq, Brasilia, Brazil under Con- 
tract No. 20771/85-MA. 

AMS 1980 subject classifications. 60-02, 62A15, 62B15. 

Key words and phrases. Conditional independence, conditional probability, graphs, influence 
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20 Richard E. Barlow and Carlos Alberto de Braganca Pereira 

1.1. Definitions and Basic Results. An influence diagram is, first of all, a 

directed graph. A graph is a set, V, of nodes or vertices together with a set, A, 
of arcs joining the nodes. It is said to be directed if the arcs are arrows (directed 

arcs). Let V = {^i,..., vn} and let A be a set of ordered pairs of elements of V, 

representing the directed arcs. That is, if [v*,Vj] G A for 1 < i,j < n, then there 

is a directed arc (arrow) from vertex V{ to vertex Vj (the arrow is directed from V{ 

to Vj). If [v{, Vj] ? A, V{ is said to be an adjacent predecessor of Vj and Vj is 

said to be an adjacent successor of V{. The direction of arcs is meant to denote 

influence (or possible dependence). 

Circles (or ovals) represent random quantities which may, at some time, be 

observed and consequently may change to data. Circle nodes are called proba- 
bilistic nodes. Attached to each circle node is a conditional probability (density) 
function. This function is a function of the state of the node and also of the states 

of the adjacent predecessor nodes. 

A double circle (or double oval) denotes a deterministic node which is a 

node with only one possible state, given the states of the adjacent predecessor 

nodes; i.e., it denotes a deterministic function of all adjacent predecessors. Thus, 
to include the background information, jff, in the graph, we would have to use a 

double circle around H. 

The following concepts formalize the ideas used in drawing the diagrams of this 

paper. 

Definition 1.1. A directed graph is cyclic, and is called a cyclic directed 

graph, if there exists a sequence of ordered pairs in A such that the initial and 

terminal vertices are identical; i.e., there exists an integer k < ? and a sequence 
of k arcs of the following type: 

?, v?2], [vi2,vi3],. . ., [Vi^, Vik], [Vi^V^]. 

Definition 1.2. An acyclic directed graph is a directed graph that is not 

cyclic. 

Definition 1.3. A root node is a node with no adjacent predecessors. A 

sink node is a node with no adjacent successors. Note that any acyclic directed 

graph must have at least one root and one sink node. 

Definition 1.4. A Probabilistic Influence Diagram is an acyclic directed 

graph in which 

i) nodes represent random quantities while directed arcs indicate possible de- 

pendence; and 

ii) attached to each node is a conditional probability function (for the node) 
which depends on the states of adjacent predecessor nodes. 
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Probabilistic In?uence Diagrams 21 

Given a directed acyclic graph together with node conditional probabilities (i.e., 
a probabilistic influence diagram), there exists a unique joint probability function 

corresponding to the random quantities represented by the nodes of the graph. 
This is because a directed graph is acyclic if and only if there exists a list ordering 
of the nodes such that any successor of a node ? in the graph follows node ? in 

the list as well. Consequently, following the list ordering and taking the product 

of all node conditional probabilities we obtain the joint probability of the random 

quantities corresponding to the nodes in the graph. Note that in a cyclic graph 
the product of the conditional probability functions attached to the nodes would 

not determine the joint probability function. 

The following basic result shows that the absence of an arc connecting two 

nodes in the influence diagram denotes the judgment that the unknown quantities 
associated with these nodes are conditionally independent given the states of all 

adjacent predecessor nodes. 

Remark 1.5. Let X{ and Xj represent two nodes in a probabilistic influence 

diagram. If there is no arc connecting X{ and Xj, then X{ and Xj are conditionally 

independent given the states of the adjacent predecessor nodes; i.e., 

p(X{, Xj | Wiy Wj, Wij) = p(X{ | Wij Wj, Wij)p(Xj | Wi, Wj, Wij) 

where Wi(wj) denotes the set of adjacent predecessor nodes to only x?(xj) while 

Wij denotes the set of adjacent predecessor nodes to both ? i and Xj. 

Remark 1.6. In a probabilistic influence diagram, if two nodes, Xi and Xj, are 

root nodes then they are independent. 

Example 1.7. (Forensic Science). A robbery has been committed and a 

suspect, a young man, is on trial. In the course of the robbery, a window pane was 

broken. The robber had apparently cut himself and a blood stain was left at the 

scene of the crime. Let ? represent the blood type of the suspect, y the blood type 
of the blood stain found at the scene of the crime, and ? the quantity of interest, 
"the state of culpability" (guilt or innocence) of the suspect. Formally, and before 

using the actual values of the observable quantities, we have: 

? = < 

1 if the suspect's 
blood type is A, 

0 otherwise. 
y= < 

1 if the blood 

stain type is A, 

0 otherwise. 0 

if the suspect 
is guilty, 
otherwise. 

The following diagram is a probability model constructed for this case. Note that 

the actual values of ? and y that are known at the time of the analysis are not yet 
used. In fact, the diagram describes the dependence relations among the quantities 
and the conditional probabilities to be used. 
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22 Richard E. Barlow and Carlos Alberto de Braganca Pereira 

p(yTx,6) 

Figure 1.1. Influence Diagram for a 

Problem in Forensic Science 

If ? represents the proportion of people in the population with blood type A and 

if, for a jury member that happens to be interested in probability, q represents his 

probability that the suspect is guilty before the juror has learned about the blood 

evidence, then a reasonable probability model is: 

P(') = 
?-? 

if 0=1 

if 0 = 0. p(x) = ? 

1-p 

ifx = 1 

if ? = 0. 

p(y |z,0) = 4 

? if0??y=l 

1-p if 0 = y = 0 

1 if0=land 

y- x 

0 otherwise. 

The objective of the jury member is to obtain the probability of guilt (0 = 1) after 

observing the evidence (x = y = 1) namely that the blood type of the suspect is 

the same as that of the stain. That is, the jury member needs to obtain ?(? | #, y) 
evaluated at {0 = ? = y = 1}. 

2. Probabilistic Influence Diagram Operations. The Bayesian approach 
to statistics is based on probability judgments and as such follows the laws of 

probability. You are said to be coherent if i) you use probability to measure 

your uncertainty about quantities of interest and ii) you do not violate the laws 

of probability when stating your measurements (probabilities). Probabilistic influ- 

ence diagrams (and influence diagrams in general) are helpful in assuring coherence. 

Clearly, from coherence, any operation to be performed in a probabilistic influence 

diagram must not violate the laws of probability. The three basic probabilistic 
influence diagram operations that we discuss next are based on the addition and 

product laws. These operations are: 1) Splitting Nodes, 2) Merging Nodes, and 3) 
Arc Reversal. 

2.1. Splitting Nodes. In general a node in a probabilistic influence diagram 
can denote a vector random quantity. It is always possible to split such a node 
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Probabilistic Influence Diagrams 23 

into other nodes corresponding to the elements of the vector random quantity. 
To illustrate ideas, suppose that a node corresponds to a vector of two random 

quantities, ? and y, with joint probability function p(x,y). From the product law 

we know that 

p(*> y) = p{*)p(y ??) = ?* I v)p(v)? 

Hence, Figure 2.1 presents the 3 possible probabilistic influence diagrams that can 

be used in this case showing the two ways of splitting node (x,y). 

Figure 2.1. 

Probabilistic Influence Diagrams for Two Random Quantities 

The following property is also a direct consequence of the laws of probability 
and it is of special interest for statistical applications. 

Property 2.1. Let # be a random quantity represented by a node of a proba- 
bilistic influence diagram and let f(x) be a (deterministic) function of #. Suppose 
we connect to the original diagram a deterministic node representing f(x) using a 

directed arc from ? to f(x). Then, the joint probability distributions for the two 

diagrams are equal. (See Figure 2.2 for illustration.) 

PROOF. Let w and y represent the sets of random quantities that precede and 

succeed a?, respectively, in a list ordering. Note that p(f(x) | w,x) = p{f{x) \ x) = 

1 and consequently from the product law p(xjf(x) \ w) = p(x \ w). That is, node 

? may be replaced by node (x, f{x)) without changing the joint probability of the 

graph nodes. Using the splitting node operation in node (#, /(#)) with ? preceding 

/(#), we obtain the original graph with the additional deterministic node f(x) and 

a directed arc from ? to /(#). Note also that no other arc is necessary since f{x) 
is determined by ? and p{y \ wy /(#), x) = p(y \ w, x). \\ 

Figure 2.2. Addition of a Deterministic Node 

This content downloaded  on Tue, 22 Jan 2013 07:01:07 AM
All use subject to JSTOR Terms and Conditions



24 Richard E. Barlow and Carlos Alberto de Braganca Pereira 

2.2. Merging Nodes. The second probabilistic influence diagram operation is 

the merging of nodes. Consider first a probabilistic influence diagram with two 

nodes, ? and y, with a directed arc from ? to y. The product law states that 

p(xyy) = p(x)p(y \ x). Hence, without changing the joint probability of ? and y, 
the original diagram can be replaced by a single node diagram representing the 

vector (x,y). The first two diagrams of Figure 2.1 in the reverse order illustrate 

this operation. In general, two nodes, ? and y, can be replaced by a single node, 

representing the vector (x, y), if there is a list ordering such that ? is an immediate 

predecessor or successor of y. 
It is not always possible to merge two adjacent nodes in a probabilistic influence 

diagram. Note that two adjacent nodes may not be neighbors in any list ordering. 
For example, consider the first diagram of Figure 2.3. Note that all pairs of nodes 

in this diagram constitute adjacent nodes. 

0 0-H0 

Figure 2.3. Diagram with Adjacent Nodes, w and y, 
Not Allowed to Be Merged 

However, w and y cannot be merged into a node representing (w,y). Clearly the 

only list ordering here is w < ? < y and w and y are not immediate neighbors 
in this ordering. The problem here is that to merge w and y we would need an 

arc from (w,y) to ? and another from ? to (w,y). The reason for this is the 

existence of arcs [w, x] and [x, y] in the original graph. If we were to have arcs in 

both directions between (w,y) and x, we would not obtain, in general, the joint 

probability function from the diagram since p(w,x,y) f p(x \ w,y)p(w,y \ x). 
Also it can be seen from the first diagram of Figure 2.3 that there exist two paths 
from w to y. This is the graphical way to see that w and y cannot be merged into 

a single node. To construct a graphical technique to check if two nodes can be 

merged, we need the following definition and theorem. 

Definition 2.2. A directed path from node Xi to node xj is a chain of 

ordered pairs 

([&*> Sfcj? [xkx, z*2],.. -, [&**_!, a?ibt], [xkti XA) 

corresponding to directed arcs which lead from ? i to Xj. 

Theorem 2.3. (Merging Nodes Theorem) In a probabilistic influence diagram, 
nodes ? and y can be merged if either 

1) the only directed path between ? and y is a directed arc connecting ? and y; 
or 
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2) there is no directed path connecting ? and y. 

Proof. To be definite, suppose that ? precedes y in an associated list order- 

ing corresponding to a probabilistic influence diagram. Let wx(wy) be the set of 

adjacent predecessors of x(y) but not of y(x) and let wxy be the set of node which 

are adjacent predecessors of both ? and y. Since there is no directed path from ? 

to y except, possibly, for a directed arc from ? to y, we may add arcs from each 

node in wx to y and from each node in wy to ? without creating any cycles. This 

is possible because directed arcs indicate possible dependence not necessarily strict 

dependence. We have of course lost some graph information as a result of these 

arc additions. 

In the associated list ordering of nodes for our modified diagram, the family 
of nodes {wx,wy,wxy} precede both ? and y. Since there is no other directed 

path from ? to y other than possibly a directed arc from ? to y, there exists an 

associated list ordering of nodes for which ? is an immediate predecessor of y in 

this list ordering. The product 

p{x | wx, wy, wxy)p{y | x, wx, wy, wxy) 

must appear in the representation for the joint probability function for all proba- 
bilistic nodes based on the list ordering. Since 

P(y, # I ?x, Wy, Wxy) = p(x | Wx, ?y> ?xy)p(y | #, Wx, Wy, Wxy) 

by the product law, we can merge ? and y. 

Finally, suppose that there is a directed path from ? to y other than a directed 

arc from ? to y. In this case it is not difficult to see that merging ? and y would 

create a cycle which is not allowed. |) 

The above result is related to arc reversal, an important operation discussed 

next. 

2.3. Reversing Arcs. The probabilistic influence diagram operation correspond- 

ing to Bayes' formula is that of arc reversal. Consider the diagram on the left in 

Figure 2.4. Using the merging nodes operation we obtain the single node diagram 
in the center where the probability function of the node (x,y) is obtained from 

the first diagram as p(x,y) = p(x)p(y \ x). Using the splitting nodes operation 
we can obtain the diagram on the right of Figure 2.4. Note that to obtain the 

corresponding probability functions we use 

1) the theorem of total probability for p(y) = Ttxp{y \ x)p(x), where S^ is the 

sum (or integral) over all possible values of x, and 

2) the multiplication law for p(x \ y) = jp(x, y)/p{y) since p(y)p(x | y) = p(x, y). 
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26 Richard E. Barlow and Carlos Alberto de Braganca Pereira 

By substituting the appropriate expression in p(x | y) we obtain Bayes' formula. 

That is, 

p(x | y) = {p{x)p{y \ x)}/{Xxp(x)p(y \ ?)}. 

Hence, by using the theorem of total probability and Bayes' formula when 

performing an arc reversal operation, we can go directly from the left diagram to 

the right one in Figure 2.4 without having to consider the one in the center. 

Figure 2.4. Reversing Arc Operation in a Two Node 

Probabilistic Influence Diagram 

Although the diagrams are different they have the same joint probability func- 

tion for node random quantities. This fact is formalized in the following definition. 

Definition 2.4. Two probabilistic influence diagrams are said to be equiv- 

alent in probability if they have the same joint probability function for node 

random quantities. 

Consider the diagram of Figure 2.5 where wx, wy, and wXiy are sets of adjacent 

predecessors of ? and (or) y as indicated by the figure. If arc [x,y] is the only 
directed path from node ? to node y, we may add arcs [w^y] and [t0y,x] to 

the diagram without introducing any cycles. (See left diagram of Figure 2.6.) 
Remember that a directed arc only indicates possible dependence. 

The following result introduces the conditions under which arc reversal opera- 
tions can be performed. 

Theorem 2.5. (Reversing Arcs Theorem) Suppose that arc [x,y] connects 

nodes ? and y in a probabilistic influence diagram. [x,y] can be reversed to [y,x], 
without changing the joint probability function of the diagram if 

1) there is no other directed path from ? to y, 

2) all the adjacent predecessors of x(y), in the original diagram, become also 

adjacent predecessors of y(x), in the modified diagram, and 

3) the conditional probability functions attached to nodes ? and y are also mod- 

ified in accord with the laws of probability. 

Proof. Let wx(wy) be the set of adjacent predecessors of x(y) but not of 

y(x) and wx>y be the set of adjacent predecessors of both ? and y. Since arcs 

represent possible dependence, we can add arcs to the diagram in order to make 

the set (wXJwx,wXiy) an adjacent predecessor of both ? and y. Since there is no 
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other directed path connecting ? and y, there is a list ordering such that ? is 

an immediate predecessor of y in the list. Note also that the elements of the set 

(wxiwxiwxty) are all predecessors of both ? and y in the list ordering. To obtain 

the joint probability function corresponding to the first diagram we consider the 

product, following the list ordering, of all node conditional probability functions. 

As a factor of this product we have 

p(x | wxywXty)p(y | x, wy,wXyV) = p(x \ wx,wy,wXiV)p(y | x,wx,wy,wXiy) = 

p(x, y I ti;*, wy, wXyy) = p(y | wx, Wy, wXyV)p(x | y, wx, wy, wXly). 

The first equality is due to the fact that ? and wy are conditionally independent 

given (wx,wXiy) and y and wx are conditionally independent given (wy,wXyy). [See 

Figure 2.5.] The other two equalities follow from the product law. 

Replacing p(x \ wx,wXyy)p(y \ x,wy,wXiy) in the product of the conditional 

probability functions for the original diagram by p(y \ wx, wy, wXyV)p(x \ y, wx, wy, 

wXiy) we obtain the product of the conditional probability functions for the second 

diagram. This proves that the joint probability functions of the two diagrams are 

equal. Finally, we notice that if there were another directed path from ? to y, we 

would create a cycle by reversing arc [x,y], which is not allowed. || 

In general, reversing an arc corresponds to applying Bayes' formula and the 

theorem of total probability. However, it may also involve the addition of arcs and 

such arcs, in some cases represent only pseudo dependencies. In this sense, some 

relevant information may have been lost after arc reversal. 

Figure 2.5. 

Figure 2.6. Equivalent Probabilistic Influence Diagrams. Probability Nodes in 

the Right Diagram are Obtained From the Left Diagram by Using Bayes' 
Formula and the Theorem of Total Probability 
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3. Conditional Independence. The objective of this section is to study the 

concept of conditional independence and introduce its basic properties. We believe 

that the simplest and most intuitive way that this study can be performed is by 

using all the visual force of the probabilistic diagram. 
We now introduce the two most common definitions of conditional indepen- 

dence. 

Definition 3.1. (Intuitive) Given random quantities x, y, and z, we say that 

y is conditionally independent of ? given ? if the conditional distribution of y given 

(x,z) is equal to the conditional distribution of y given z. 

The interpretation of this concept is that, if ? is given, no additional informa- 

tion about y can be extracted from x. The influence diagram representing this 

statement is presented in Figure 3.1. 

Figure 3.1. Intuitive Definition of 

Conditional Independence 

Definition 3.2. (Symmetric) Given random quantities x,y, and z, we say 
that ? and y are conditionally independent given ? if the conditional distribution 

of (x,y) given ? is the product of the conditional distributions of ? given ? and 

that of y given z. 

The interpretation is that, if ? is given, ? and y share no additional information. 

The influence diagram representing this statement is displayed in Figure 3.2. 

Figure 3.2. Symmetric Definition 

of Conditional Independence 

Using the arc reversal operation, we can easily prove that the probabilistic 
influence diagrams in Figures 3.1 and 3.2 are equivalent. Thus, Definitions 3.1 and 

3.2 are equivalent, which means that in a specific problem we can use either one. 

To represent the conditional independence described by both Figures 3.1 and 3.2 

This content downloaded  on Tue, 22 Jan 2013 07:01:07 AM
All use subject to JSTOR Terms and Conditions



Probabilistic Influence Diagrams 29 

we can write either xJLLy | ? or yJLLx | z. This is a very general notation since x, 

y, and ? are general random quantities (scalars, vectors, events, etc.). If in place 
of 11 we use J^jL, then ? and y are said to be strictly dependent given z. We obtain 

independence (dependence) and write xlly (xJ^_y) if ? is an event which occurs 

with probability one. It is important to notice that the symbol 11 corresponds to 

the absence of an arc in a probabilistic influence diagram. However, the existence 

of an arc only indicates possible dependence. Although J^is the negation of 11, 
the "absence of an arc" is included in the "presence of an arc." 

The following proposition introduces the essence of the DROP/ADD principles 
for conditional independence which are briefly discussed in the sequel. 

Proposition 3.3. If xlLy \ ? then, for every f = /(x), we have: 

(i) flLy | z; and 

(ii) xlLy | (*,/). 

The proof of this property is the sequence of diagrams of Figure 3.3. First 

note that (by Property 2.1) to obtain the second diagram from the first we can 

connect to ? a deterministic node / using arc [x,/] without changing the joint 

probability function. Consequently, by reversing arc [x,/] we obtain the third 

diagram. To obtain the last diagram from the third we use the merging nodes 

operation. Relations i) and ii) of Proposition 3.3 are represented by the second 

and the third diagrams of Figure 3.3. 

Figure 3.3. Proof of Proposition 3.3 

As direct consequences of Proposition 3.3 we have: 

Cl? If g = g(z) then xlly | ? if and only if xli(y, #) | z. 

C2? Let / = f(x,z) and g = g(y,z). If xlly | ? then, f?g \ ? and xlly | 

The concept of conditional independence gives rise to many questions. Among 
them are the ones involving the DROP/ADD principles that we describe next. 

Suppose that x, y, z, w, /, and g are random objects such that xlLy | z, f = /(x) 
and g = g(z). What can be said about the relation 11 if / is substituted for x, g for 

2, (y, w) for y or (2, w) for ?? In other words, can x, y, and ? be reduced or enlarged 
without destroying the 11 relation? In general, the answer is no. However, for 
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special kinds of reductions or enlargements the conditional independence relation 

is preserved. 
First we present two simple examples to show that arbitrary enlargements of x, 

y, or ? may destroy the 11 relation. The forensic science example shows that 011 y 

but 0J\J_(x,y) or, in the present notation, considering ? a sure event and w = x, 

011 y | ? but 0J\j_(y,w) | z. Consider now that w\ and w<i are two independent 

standard normal random variables; i.e., w\ ~ w<i ~ i\T(0,1), and w\?Lw2- If 

x = wi ? W2 and y = w\ + W2, then xlly but certainly x_UJLy | ^2? Note that if ? 

is a constant and w = wi, we conclude that xlly | ? but xJ^y | (z,w). 

Secondly, we present an example to show that an arbitrary reduction of 2, 

the conditioning quantity, can destroy the 11 relation. Let wi, ^2, and w be 

three mutually independent standard normal random quantities; i.e., wi 11(^2, w)y 

(wi,W2)?Lwy W2lL(wi,w), ii?i,llti>2, wi?Lw, t?2-Llt?, and w\ ~ W2 ~ w ~ 

iV(0,1). Define ? = w\ - W2 + w and y = w\ + W2 + w, and note that xlly | w 

but x^.y. As before, if ? is a constant we can conclude that xlly | (z,w) but 

x-H-y I z. 

The destruction of the 11 relation by reducing or enlarging its arguments is 

known as Simpson's paradox (for more details, see Lindley and Novick, 1981). 
The paradox, however, is much stronger since highly positively correlated random 

variables could be highly negatively correlated after some Drop/Add operations. 
For instance, let ? and w be two independent normal random variables with zero 

means. Define ? = ? + w and y = ? ? w and note that the correlation between 

? and y is given by correlation(x,y) = (Z 
? 

r)(l + r)""1 where r is equal to the 

variance of w divided by the variance of z. Also, if ? is given it is clear that the 

conditional correlation is ? 1. In order to make cor(x, y) close to 1 we can consider 

r arbitrarily small. This shows that we can have cases where ? and y are strongly 

positive (negative) dependent but, when ? is given, ? and y turn to be strongly 

negative (positive) conditionally dependent. 
The following is another important property of conditional independence. It is 

presented in Dawid (1979). 

Proposition 3.4. The following statements are equivalent: 

(i) xlLy I ? and xlLw \ (y,z); 

(ii) x?L(w9y) I z; and 

(iii) xJLLu; I ? and xlly | (w,z). 
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Figure 3.4. Proof of Proposition 3.4 

Figure 3.4 is the proof of Proposition 3.4. Again, only the basic probabilistic 
influence diagrams operations are used. The second graph is obtained from the 

first by merging nodes w and y. The third graph is obtained from the second by 

splitting node (ti?, y) and the first is obtained from the third by reversing arc [w, y]. 

The above simple properties are very useful in some statistical applications and 

they are related to the concept of sufficient statistic. In the context of comparisons 
of experiments a very general concept of sufficiency was introduced by Blackwell 

(1953). We next discuss Blackwell's concept of sufficiency using probabilistic in- 

fluence diagrams. 

3.1. Blackwell Sufficiency. Suppose that we can perform either one of two 

experiments to learn about a random quantity 0. In the first experiment, we 

observe x, knowing p(x | 0). In the second experiment, we observe y, knowing 

p{y | 0). If, furthermore, there exists a random quantity x' such that 0J_Lx' | y 
and p(xf | 0) = p(x | 0), then we say that y is Blackwell sufficient for ? relative 

to0. 

In terms of probabilistic influence diagrams, we construct two diagrams, the 

first with nodes 0 and ? connected by arc [0, x] and the second with three nodes 

0, y, and x' connected by arcs [0, y] and [y, x']. If in the second diagram, after 

eliminating node y, we obtain a diagram having only two nodes, 0 and x', equivalent 
to the first diagram, then we have Blackwell's concept of sufficiency. See Figure 
3.5. In this sense x1 is a "garbling" of y. If we cannot observe both ? and y, it is 

better to observe y and use p(y | 0) to make inferences about 0. 

D?KD ?-KD?T ??*T 

Figure 3.5. Blackwell Sufficiency When the 

Right and Left Diagrams are Equivalent 
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Definition 3.5. (Blackwell Sufficiency). A random quantity, y, is sufficient 

for a random quantity, x, relative to a random quantity, 0, if there exists another 

random quantity, x', such that 

(i) 011x' | y and 

(ii) ?{?'\?) = ?(?\?). 

To conclude, we present the following example which shows the usefulness of 

Blackwell sufficiency in comparing experiments. 

Example 3.6. Let ? and y be two Bernoulli quantities such that, given a 

parameter 0, Pr{x = 1 | 0} = 0/2 and Pr{y = 1 | 0} = 0. Suppose that we want 

to learn more about the parameter 0, but we can only observe one of the random 

quantities ? or y, but not both. The question of which one to observe involves the 

cost of observation and other considerations. For the moment let us suppose they 
have the same cost. If we can prove that y is Blackwell sufficient for ? relative to 

0, we must prefer y since it is at least as good as ? for learning about 0. We now 

prove that y is in fact Blackwell sufficient for x. 

Suppose that we toss a fair coin and record r = 1 if we obtain a tail and r = 0 if 

we obtain a head. Define now the random quantity xf = yr. Figure 3.6 shows, on 

the left, a diagram relating 0, y, r, and x'. After eliminating node r we obtain the 

diagram in the center of Figure 3.6. The right diagram of Figure 3.6 is obtained 

after the elimination of node y. This last diagram is equivalent to the probabilistic 

diagram relating ? and 0. Hence, y is Blackwell sufficient for ? relative to 0. 

??F?T 
?(?) ber(e) Pr{x=lly=l}=l/2 

Pr{x'=lly=0)=0 

??K?> 
? 

?(?) ber(e/3 

Figure 3.6. Proof of Blackwell Sufficiency 
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