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Towards a General Theory of Optimal Testing
Luis R. G. Pericchi∗ and Carlos A. B. Pereira†

∗Department of Mathematics and Center for Biostatistics and Bioinformatics, University of Puerto
Rico, Rio Piedras, San Juan, PR

†Instituto de Matemática e Estatística, Univ. Sao Paulo, Brasil

Abstract. In Pericchi and Pereira [1] it is argued against the traditional way on which testing is
based on fixed significance level, either using p-values (with fixed levels of evidence, like the 5%
rule) or α values. We instead, follow an approach put forward by [2], on which an optimal test is
chosen by minimizing type I and type II errors.

Morris DeGroot in his authoritative book [2], Probability and Statistics 2nd Edition, stated that it
is more reasonable to minimize a weighted sum of Type I and Type II error than to specify a value
of type I error and then minimize Type II error. He showed it beyond reasonable doubt, but only in
the very restrictive scenario of simple VS simple hypothesis, and it is not clear how to generalize
it. We propose here a very natural generalization for composite hypothesis, by using general weight
functions in the parameter space. This was also the position taken by [3, 4, 5]. We show, in a parallel
manner to DeGroot’s proof and Pereira’s discussion, that the optimal test statistics are Bayes Factors,
when the weighting functions are priors with mass on the whole parameter space. On the other hand
when the weight functions are point masses in specific parameter values of practical significance,
then a procedure is designed for which the sum of Type I error and Type II error in the specified
points of practical significance is minimized. This can be seen as bridge between Bayesian Statistics
and a new version of Hypothesis testing, more in line with statistical consistency and scientific
insight.

Keywords: Hypothesis testing; optimal test; type I and II errors
PACS: 02.50.-r

MINIMIZING THE SUM OF WEIGHTED ERRORS

Morris DeGroot [2], argued that instead of fixing Type I error and minimize Type II, a
better hypothesis testing paradigm is to choose the test as to minimize a weighted sum
of the errors, namely

Minδ [a ·αθ0(δ )+b ·βθ1(δ )], (1)

where δ denotes the test: δ (x) = 1R(x), where R is the Rejection Region of H0, IS(y)
is the indicator function, equal to 1 if and only if y ∈ S. Notice the apparently slight
difference of (1) with the traditional approach of Significance Testing:

Restricting to those tests δ on which Type I error: α(δ )≤ α0, Minδ βθ1(δ ). (2)

However, the difference is far reaching as we will see in the sequel. In the following the
superiority of DeGroot’s approach is distinctly apparent.
DeGroot in his book, only presented the approach for Simple VS Simple hypothesis. In
the next section we generalize for a general setting.
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A General Formal Approach

Suppose we are testing the following two general hypotheses:

H0 : θ ∈Θ0 VS H1 : θ ∈Θ1 (3)

We define, in the Neyman-Pearson tradition, Type I and Type II error, of the test δ at the
parameter point θ as,

αθ (δ ) = Pr(Rejecting H0|θ ∈Θ0), (4)

βθ (δ ) = Pr(Accepting H0|θ ∈Θ1). (5)

Definition: The weighted Type I and Type II errors are defined respectively as:

α(δ ) =
∫

Θ0

αθ (δ )π0(θ)dθ , (6)

and
β (δ ) =

∫
Θ1

βθ (δ )π1(θ)dθ , (7)

where π j(θ)≥ 0 are such that
∫

Θ j
π j(θ) = 1, j = 0,1.

How to understand the weight (prior) measures?

We pause here to discuss interpretations, since there are various possible interpreta-
tions of the weight measures π j(θ), j = 0,1.

1. Prior Measures: The most obvious is the assumed prior density of the parameter
values conditional on each hypothesis, which is the natural interpretation under
a Bayesian framework. Notice that not necessarily this interpretation leads to a
subjective approach. If a general method for generating conventional priors like the
Intrinsic prior method, then this can be considered a non-subjective approach. But
there is room for other interpretations.

2. Point Markers of Statistical Importance: These are point masses signalling specific
points for which the errors ought to be controlled by design. For example if for a
particular value of θ1 ∈ Θ1, where there is "practical significance", for example a
novel medical treatment improvement of 20%, say, then the weight function may
be set as a point mass on 20% of improvement. (This typically would work for
monotone likelihood ratio families).

The Criterion

Define the weighted likelihoods, for the Data= y under each hypothesis as

ϖ0(y) =
∫

Θ0

f (y|θ)π0(θ)dθ , (8)

32

Downloaded 25 Oct 2012 to 189.100.3.89. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



and
ϖ1(y) =

∫
Θ1

f (y|θ)π1(θ)dθ . (9)

Lemma 1: It is desired to find a test function δ that minimizes, for specified a >
0, and ,b> 0:

SERRORS(δ ) = a ·α(δ )+b ·β (δ ). (10)

The test δ ∗ is defined as: accept H0, if

a ·ϖ0(y)> b ·ϖ1(y), (11)

and H1 is accepted if
a ·ϖ0(y)< b ·ϖ1(y), (12)

and accept any if a ·ϖ0(y) = b ·ϖ1(y). Then for any other test function δ :

SERRORS(δ ∗) = a ·α(δ ∗)+b ·β (δ ∗)≤ SERRORS(δ ). (13)

Proof: Denote by R, the rejection region of the test δ , that is those data points on which
H0 is rejected. Then, under the mild assumptions of Fubbini’s Theorem that allows
interchanging the order of the integrals, for any test function δ ,

aα(δ )+bβ (δ ) = a

∫
Θ0

[
∫
R
f (y|θ)dy]π0(θ)dθ +b

∫
Θ1

[
∫
RC

f (y|θ)dy]π1(θ)dθ =

a

∫
Θ0

∫
R
f (y|θ)π0(θ)dydθ +b

∫
Θ1

∫
RC

f (y|θ)π1(θ)dydθ =

a

∫
Θ0

∫
R
f (y|θ)π0(θ)dydθ +b[1−

∫
Θ1

∫
R
f (y|θ)π1(θ)dydθ ] =

b+
∫
R
[a
∫

Θ0

f (y|θ)π0(θ)dθ −b

∫
Θ1

f (y|θ)π1(θ)dθ ]dy =

b+
∫
R
[aϖ0(y)−bϖ1(y)]dy.

The results follows from application of the definition of δ ∗ in expressions 9 and 10,
since every point on which a ·ϖ0(y)− b ·ϖ1(y) < 0 is in R, but no point on which
a ·ϖ0(y)− b ·ϖ1(y) > 0, is included. Therefore δ ∗, minimizes the last term in the sum
and the first does not depend on the test. So the result has been established.
Regarding the assessment of the constants a and b, notice that it suffices to specify its
ratio a/b = r. This can be made as: i) By finding the implicit a and b of a carefully
designed experiment, ii) Conventional table of ratio of evidences, like in Jeffreys Scale-
Table of evidences, or iii) by a ratio of prior probabilities of H0 times the loss incurred
by false rejection of H0 over the prior probability of H1 times the loss incurred by false
acceptance of H0, in symbols:

r=
a

b
=

P(H0) ·L1

P(H1) ·L0
.
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To see this, notice that the risk function can be written as R(θ ,δ ) = L1αθ (δ ) if θ ∈Θ0,
and R(θ ,δ ) = L0βθ (δ ) if θ ∈ Θ1. Assuming that a priori the probability of the Null
Hypothesis is P(H0), then the average (Bayesian) risk, taking expectations with respect
to (P(H0),π0) and ((1− p(H0)),π1), we get the averaged risk

r(δ ) = P(H0) ·L1 ·α(δ )+(1−P(H0)) ·L0 ·β (δ ), (14)

and it is seen that the correspondence with expression (8) is: a �→ P(H0) · L1 and
b �→ (1−P(H0)) ·L0.
The Rejection Region R in (10) takes two different shapes according to the interpreta-
tions 1 and 2.

• For interpretation 1, R is defined as

m0(y)
m1(y)

< b/a, (15)

that is the Null Hypothesis is rejected if the Bayes Factor of H0 over H1 is small
enough.

• For interpretation 2, R becomes,

f (y|θ0)

f (y|θ1)
< b/a (16)

the relative likelihood ratios on the null over the alternative.

For examples and further discussions, see [1].

DEGROOT’S APPROACH AND THE LIKELIHOOD PRINCIPLE.

One of the usual criticisms against significance testing is that it does not obey the Like-
lihood Principle, a Principle not only shared by Bayesians, but that was actually enunci-
ated or defended by eminent non-Bayesians. Loosely speaking the Likelihood Principle
establishes that if two likelihoods are proportional to each other, the information about
the parameter vector θ is the same.
The good news, surprising to many we would guess, is that the violation of the Likeli-
hood is avoided by DeGroot’s method, that is if the weighted sum of type I and type II
errors is minimized.
Corollary 1. Testing by Minimizing a weighted sum of errors, automatically obeys the
Likelihood Principle.
Proof: From Lemma 1, the optimal test is Reject H0 if

ϖ0(y)
ϖ1(y)

=

∫
Θ0

f (y|θ)π0(θ)dθ∫
Θ1

f (y|θ)π1(θ)dθ
< b/a,

and in the ratio of the left hand side, the constant in the likelihood cancel out.
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CONCLUSIONS

DeGroot’s approach, and our implementation here in a general setting highlight the
following:

1. A way out of the main disagreement(that of divergent measures of statistical sig-
nificance of tests) among statisticians is to implement DeGroot’s framework: This
is no less than a powerful template on which the ideas of risk decision theory, types
of error, tail probabilities, relative loss, and likelihood ratios are put together and
make them coherent.

2. In order to generalize the framework, we have shown that by considering the
averaged Type I and Type II error, the theory and the main result, (the optimality of
the ratio of the evidences, i.e. of the Bayes Factor) is completely general.

3. The implementation of this framework, still depends on: i) the ratio of b/a, the
relative weights of the two types of errors, and on the priors densities on Θ0 and
Θ1. But now there are several methods on how to assess those (like Intrinsic Priors
[6] and [5]).

4. This general theory, that yields at once: compliance with the Likelihood Principle,
solution of the disagreement, reconciliation between statistical significance and
practical significance, is in contrast with the traditional theory of fixed significance
level, on which the optimal solutions are the exception rather than the norm, and
the use of Likelihood Ratio Test which lacks a clear justification.

For further results and examples the reader is referred to [1].
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