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Summary

Simple examples illustrate how misleading a p-value constructed with no regard
to the alternative hypothesis can be. A p-value which regards the alternative hy-
pothesis, called here P-value, is precisely defined. It is shown that the use of the
P-value avoids the kind of inconsistencies illustrated by the examples. Although
P-values could be considered useless by Bayesians, the use of prior distributions (to
obtain weighted likelihoods) is a way by which classical statisticians could regard
alternative composite hypotheses when performing significance tests.
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1. Introduction

Significance testing is a widespread statistical procedure in scientific stud-
ies. It consists of the computation of a p-value and then of the judgement of the
plausibility of a null hypothesis H. Unfortunately, some usual constructions

of p-values completely disregard the alternative hypothesis, A. This paper
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aims to show, by simple examples, how wrong the conclusions based on such
misleading p-values can be. A p-value which regards A, called here P-value,
will be precisely defined in Section 4. The P-value is a well-defined (even if
not a useful) quantity under the Bayesian view. It is also well-defined under
Fisherian and Neyman-Pearson-Wald schools when both H and A are simple
hypotheses.

Discussion on the concept of p-values have an extremely large reference
list — see Good (1983). Most recently, Casella & Berger (1987), Berger & Sellke
(1987), Berger & Delampady (1987), and Berger & Mortera (1991) contributed
to this list. The subject, however, remains controversial as pointed out by Pratt
(1987) and Good (1987). Obviously, after observing data x and having defined
a subset C of the parameter space, the numbers Pr{C|x} and Pr {x|C} have
completely different meanings. Therefore, comparison of values of posterior
probabilities to p-values (as done by Casella & Berger, (1987)) seems to be a
very confusing matter. Another confusing aspect of significance tests appears
when relations between sample sizes and p-values are made. The recipe of
Lindley & Scott (1986) is contrary to the recipe of Peto et al. (1976), as
pointed out by Royall (1986). This is briefly discussed in Section 6.

The object of this paper is to illustrate practical aspects of the philosoph-
ical point of view of I.J. Good on p-values (pp. 22-55 of Good (1983)). The
authors believe that Good’s work completely illuminates the matter. However,
p-values are still being carefully presented for users of Statistics (see Miettinen
(1985), Ch. 9 and Peto et al. (1976)).

References supporting the use of significance tests are Cox (1977), Cox &
Hinkley (1974), and Kempthorne & Folks (1971). That one should disregard
A when constructing significance tests are not suggested in these texts. In
fact, as Spjgtvoll remarks in his discussion on Cox (1977), explicit regard to
A should be emphasized whenever p-values are being defined.

In many cases the p-value (or even the P-value) turns out to be a tail

area. This fact is so common that p-values are often called tail areas. That this
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nomenclature is infortunate is shown in Section 4 where we obtain a P-value
which is the sum of three areas, one of which is central while the remaining
are tail. A P-value that is the sum of three areas was already presented by

Good (1983) and called “triple tail” since none of those areas were central.

2. Definition of p-value

The intuitive notion of p-value is captured by the following definition.
Consider an experiment producing data x, an observation of X, to test a

simple! hypothesis H versus A.

Definition 2.1. The p-value is the probability, under H, of the event composed

by all sample points that favor A (against H) at least as much as x does.

However, many textbooks and papers present definitions which make no
explicit reference to A (Cox (1977)) or definitions which completely ignore
A (Freedman, Pisani & Purves (1978) or Pratt & Gibbons (1981)). Typical
examples of such definitions are presented next, respectively. Definition 2.2 is
in the direction of Mosteller & Rourke (1973) and Definition 2.3 is given in
Berger & Sellke (1987).

Definition 2.2. The p-value is the probability, under H, of the event composed

by all sample points at least as extreme as x 1s.

Let now T = T(X) be a statistic for which large values cast doubt on H
and at point x it takes the value t = T'(x).

Definition 2.3. The p-value at point t is the probability

p(t) =Pr{T > t/H} .

L Also for cases where there exist similar regions under H. The general case is treated in
Section 5.



162 REBRAPE, VOL 7, 1993

Definition 2.2 presupposes an ordering of the sample points which gives
meaning to “extreme”. If the ordering regards A, Definitions 2.1 and 2.2
are essentially the same. However, if the ordering disregards A, Definitions
2.2 and 2.3 are essentially the same and the p-value can completely ruin the
statistical analysis as shown by simple examples such as the ones presented in
the following section. It must be remarked that although Berger & Wolpert
(1984) present Definition 2.3 , in their comments they prescribe that, at least
informally, A must be regarded. A formal working definition of the kind of

Definition 2.1 is introduced in Section 4.

3. Examples

This section presents three examples of misleading conclusions obtained
by the use of Definition 2.3, the one that completely disregards A. All the
examples concern simple H versus simple A. To stress the point of this paper
simple examples were chosen. However, more standard examples could be
constructed at the price of sacrificing simplicity. Section 5 discusses how to

deal with composite hypotheses when constructing P-values.

Example A. Consider an urn containing exactly three marbles: one black,
one white, and one green. Three marbles were randomly selected from this

urn. Consider the following two hypotheses:

H : the selection was done with replacement.
Vs
A : the selection was done without replacement.

Suppose the data consist of the vector X = (X7, X3), where X; = number of
black marbles in the sample and X5 = number of white marbles in the sample.
Note that the null probability function of X (multiplied by 27) is displayed in
Table 3.1.
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Suppose that the point (1,1) is observed. A person who disregards A will
construct a p-value using Definition 2.3 (or Definition 2.2 under an ordering
which disregards A). For any statistic T which disregards A, such a p-value
at t = T(1,1) will be p(t) = 1. For instance, if the x? statistic

T=(X;— 1)+ (Xy—1)?

is used, then the p-value will be p(0) = 1 since T'(1,1) = 0. By disregarding
A no point is more supportive of H than x = (1,1), the vector of expected
frequencies under H. Also note that, under H, all other sample points have
smaller probability (are more “extreme”) than x = (1,1) has. Hence, any
ordering equivalent to the probability ordering under H (e.g., the x? statistic
above) will produce the unity as the p-value. H would be rejected only upon
observation of a point other than x = (1, 1).

Yet the probability of x = (1,1) under A is one! The conclusion here is
that one rejects H (accepts A) only when observing points which are impossible
under Al

Table 3.1

Null probability function (times 27) of X in Ezample A

3 1
9 3 3
1 3 6 3
0 1 3 3 1
T2 01 2 3
1

Example B. Let X be a normal variable with mean zero and unknown vari-
ance o2 producing data x. A minimal sufficient statistic here is T = T'(X) =
X? with t = x?. Using Definition 2.3 (or Definition 2.2) to test H : o = 2, one

will compute the p-value as the tail area

p(t):Pr{TZt\a:2}:2<I><—§> ,
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where ® is the standard normal distribution function.
Now let the alternative hypothesis be A : ¢ = 1. Clearly, the tail area

under A is smaller than the one under H. Indeed,

pa(t) = Pr(T > t | A} = 20(~V) < 20 (—%) ——

Hence, small values of p(t) correspond to even smaller values of pa(t) and
favor H, not A. For instance, by following the decision procedure prescribed
by Burdette & Gehan (1970), if t = x> = 16, one may wrongly state that there

is moderate evidence against H since
p(16) = .0454 < .05 .
However, since pa (16) 2 0, the evidence against A is much stronger.

Example C. Let f be the density of a random variable X from which an
observation x is obtained. Consider the significance test of “H : f is normal
with zero mean and variance 4” versus “A : f is the standard Cauchy density”.
Suppose again that t = x> = 16. Then, as in Example B, the p-value is
p(16) = .0454. Note that even with Example B having a different hypothesis
A, the p-value has exactly the same value. Of course, this is because the
alternative hypotheses were disregarded.

It must be pointed out that contrary to Example B, here the tail area
under A is pa(16) = .156, which is greater than the p-value. However, as we
shall see in Section 5, the value t = 16 again highly supports H, not A.

In both Examples B and C the sample size is n = 1. This is not a restric-
tion of our point and it was used just for simplicity. The same inconsistencies
occur in more realistic situations where n is large. Yet, simple hypotheses
do not restrict the criticism against p-values. One may consider composite

hypotheses as well (Section 5).
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4. P-value, a p-value that regards the alternative hypothesis

The examples presented in Section 3 show clearly that Definition 2.3
should be avoided. It is clear that Definition 2.1 is the one to be considered.
In this section we present a formalized and workable version of Definition 2.1
which is based on likelihood ratios, following the suggestions of Good (1983). In
the next section, by using weighted likelihood ratios, we extend the definition
for the case of composite hypotheses.

In the spirit of Definition 2.1, one needs to characterize the set of all
sample points that “favour” A against H at least as much as x, the observed
data, does. This is done in the following definition by considering the likelihood
ratio ordering. Let fig and fa be the probability density functions under H
and A, respectively. The likelihood ratio statistic is denoted by R = R(X) =
fa(X)/ fu(X) which takes the value r = R(x) at point x.

Definition 4.1. Suppose H and A are simple hypotheses and R is the likeli-

hood ratio statistic. The P-value at point r (or at point x) is
P(ry=Pr{R>r|H}.

The following result shows the consistency of P-values. On the other

hand, p-values lack this kind of consistency.

Lemma 4.1. For any positive r,
Pa(r)=Pr{R>r|A}> P(r).

Proof. For convenience we present the proof for the discrete case. Suppose
first that » < 1. We then have

Pa(r) = Pr{R>r|A}=1-Pr{R<r|A}
= > fuly+ >, faly)— . faly)

y:R(y)<r y:R(y)>r y:R(y)<r

= P(r)+ > [faly) — faly)].

y:R(y)<r
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But R(y) < r implies fa(y) < rfu(y) and r < 1 implies fa(y) < fu(y).
Therefore,
> [fuly) — fa(y)] is a sum of non-negative terms.
y:R(y)<r
On the other hand, if » > 1, Lemma 4.1 follows by noting that r~! < 1 and
using the result above with the roles of H and A interchanged.
Now we apply the P-value to the examples of Section 3. The conclusions

will now be consistent and contrary to those obtained when p-values were used.

Example A: (continuation) The statistic R takes the value 27/6 at point
(1,1) and 0 at any other point (z1, ). If point (1,1) has been observed, the

P-value is
P(27/6) =Pr{R >27/6 | H} =6/27 < 1=p(1,1) .

Note that for any other sample point, the P-value is the unity, supporting H
and rejecting, indeed, A.

Example B: (continuation) Recall that H : 0 = 2 and A : ¢ = 1, and note
that {x: R(x) > R(4)} = {x: T(x) < 16} = {x: —4 < x < 4}. Hence the

P-value at point x =4 (or x = —4) is
P(2¢7%) =1—2®(-2) = .9546 ,

the central area, not the tail area p-value. In fact, here P =1 — p.

Example C: (continuation) Recall that “H : Normal (0,2)” and “A : Cauchy
(0,1)”. These two densities are illustrated in Figure 1. Figure 2 introduces the
possible values of R(x). From both figures one understands why t = x? = 16
is less “extreme” than t = .04, although the latter has a much higher density
than the former.

If the observed sample point is x = 4 (or t = 16), then the set 7 =
{x : R(x) > R(4)} is the union of the following three intervals: (—oo,—4],
[—1,388, 1.388], and [4, o).
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Figure 1
Standard Cauchy density and Normal density with mean and standard devia-

tion equal to zero and 2 respectively.

Figure 2
Likelihood ratio, R(x), between standard Cauchy and N(0,2).
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The P-value (area under the Normal (0,2) at set 7) at x = 4 is then
P = 5553 > .0454 = p(16).

Now, if x = .2, a point that is less “extreme” in the light of Definition
2.3, the P-value is P = .0904 < .5553. This shows that, under Definition 4.1,
x = 4 is less extreme than x = .2. Also note that the former P-value is the
tail area plus a center slice of the central area, while the latter is the central

area plus a small sub-tail of the tail area.

This section shows that the idea of significance level being necessarily a
tail area is wrong. P-values can be tail areas, central areas, triple tail areas
(as in Good, 1983), triple areas obtained as a sum of central and tail areas, or

even a finite sum of areas not all necessarily tail or central.

5. Composite hypotheses

An extension of Definition 4.1 for the case of composite hypotheses is
presented in this section. When in presence of composite hypotheses, the
statistician usually faces the problem of nuisance parameter elimination. If A
is an indicator function defined as A = 1 if H is true and A\ = 0 if A is true, then
A clearly becomes the parameter of interest in the significance testing problem.
In fact, in the composite hypotheses case, one must use a method of nuisance
parameter elimination in order to define P(r) = Pr{R > r | A = 1} and
Pa(r) =Pr{R >r | A = 0}. The aim here is to interpret these two quantities
as a summary of infinitely many numbers. Those numbers are all the possible
P-values (and Pa-values) obtained by consideration of simple sub-hypotheses
of H against simple sub-hypotheses of A.

The partial likelihood approach is a celebrated way of treating composite

hypotheses. For example, the Fisher exact test is an important example of the

use of such an approach. However, as shown in Irony & Pereira (1986), it
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is possible to improve Fisher’s solution by considering a Bayesian tool for a
correct P-value evaluation. This Bayesian tool is now used to extend Definition
4.1 to the composite hypotheses case.

Over the two sets of parametric points that characterize H and A, con-
sider respectively two probability measures Il and II5. These two measures
define two weighting systems that can be interpreted as conditional priors on
parametric points in H and A, respectively. Now, for every possible obser-
vation x, define the weighted likelihood values fyg(x) and fa(x) which are
the weighted averages of the likelihood function under H and A, respectively;
e, fa(x) = [ f(x]0)dlIa(f) and fu(x) = [ f(x]€) dlIg(f). Also, define the
weighted likelihood ratio statistic R = R(X) = fa(X)/fu(X) which takes the

value r = R(x) at point x.

Definition 5.1. Suppose H and A are composite hypotheses and R is the

weighted likelihood ratio statistic. The P-value at point r (or at point X) is
P(x) = Pr{R > 1[H} = [ L(2)fu(x)dz
where I.(x) is the indicator function of the set {x : R(x) > r}.

It is interesting to note that, by considering the ordering defined by R,
it would be possible to compute the probability of {R > r} (a p-value) for
all elements of H. The above P-value is the weighted average (using Ilg) of
these probabilities. Analogously, we could characterize the Pa-values using
A and II5. Consequently, the property included in Lemma 4.1 still holds if
we consider fg and fa as the sample models under H and A, respectively.
Now, the situation of Example B (and C) is considered under a more realistic

situation of composite hypotheses.

Example D: In Example B, let A be composite. It is not difficult to see that
if “A: 0 <27, then the P-value is a central area. Analogously, if “A : o > 27,

then the P-value is a tail area. The interesting question is what form the P-
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0

Figure 3
Hypotheses H and A in Example D

value has when “A : o # 2”. For simplicity consider that Iy is degenerated at
point 2 and IT, is characterized by a one-degree-of-freedom y? (prior) density
for 1/0%. Simple integration shows that fa is the standard Cauchy density
and therefore the computation of the P-value is reduced to the computation

of the P-value of Example C, where a triple area can be obtained.

To end this section, our version of the Fisher significance test for compar-
ing proportions is presented. Note that, although with different dimensions,
both hypotheses are composite. Basu (1979) and Pereira & Lindley (1987)
present examples questioning the partial likelihood method used in the Fisher
significance test. The same examples could be used to support the P-value of
Definition 5.1.

Example E: Let X = (X7, X5) where X; and X, are independent binomial
with probability of success p; and sample size n;, ¢ = 1,2. After observing
data x = (x1, ) suppose one wants to evaluate the P-value for “H : p; = py”

versus “A : p; # po”. These two hypotheses are illustrated in Figure 3.

If I1g is uniform over the line H and Il is uniform over the set A, then,
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considering x = x1 + x93 and N = ny 4+ ng, we have

x N—zx
REOIEA

(N) (N+1)’

ni

and
1

(ni+1)(ny +1)°

fa =

171

For the case of ny = ny =5, Table 5.1 displays all possible values of R(z1, x2)

divided by 77. To obtain fy it is enough to divide the inverted values in the
table by 2772. Suppose that x = (4,1) is observed. Then r = 77/25 and
P = .0577. Using now Fisher significance procedure we have p = .2063. Note
that p is four times the value of P and that Irony & Pereira (1986) show by

simulation that the frequency of more extreme (ordering of Table 5.1) points

than x, under H, is indeed much smaller than p. On the other hand, this

frequency is very close to P.

Table 5.1

Values of R(x) (divided by 77) in Example E

1 0 1 9 3 4 5
X2

0 1/252 1/256 1/56 1/21  1/6 1
1 1/126 1/140 1/105 1/60 1/25  1/6
2 1/56 1/105 1/120 1/100 1/60 1/21
3 1/21  1/60 1/100 1/120 1/105 1/56
4 1/6  1/25 1/60 1/105 1/140 1/126
5 1 1/6  1/21 1/56 1/126 1/252

Note that Definition 5.1 does make use of a prior probability over the

parametric space. Then, by considering the full Bayesian probability space,

P and PA are in fact well-defined conditional probabilities. Therefore the

computation of these quantities is a non-problem for a Bayesian. However, its
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use in significance testing may be questioned by Bayesians since it is believed
to violate the Likelihood Principle (Berger & Wolpert, 1984, p.105).

6. P-values: a Bayesian look

In this section we discuss the inappropriateness of the use of P-values,
as a “measure of improbability” of H, for Bayesians.

Rejecting H whenever the Posterior Odds, B, (the ratio of posterior
probabilities of A and H) is large, is equivalent to rejecting H whenever the
P-value is small. In other words, for every ¢ > 0, there exists an a > 0 such
that the event {B > c} is equivalent to the event {P < a}. The constant «

depends on the prior probability of H, on the constant ¢, and on the sampling

e e
a_l_FR<1—W>_P<1—7T> ’

where Fj is the conditional distribution function of the statistic R given H,

model. In fact,

and 7 is the prior probability of H. To obtain this result, note that

cTm

B>ce Rx) > 2 o Pr{RX)> R(x)H} < Pr{R(X) > -

1—m -7

| H} .

Therefore, B > cis equivalent to P(R) < Pr{R(X) > % | H} = 1 -Fr(7=).

In this sense, comparison of the actual P-value to o can be viewed as a
mere computational option in the implementation of a Bayes test. Note that
the P-values and consequently o may change under a different sampling model,
even when the Posterior Odds remains unchanged. Therefore, the use of the P-
value as a “measure of improbability (Jeffreys, 1961) of H on the actual data” is
clearly a violation of the Likelihood Principle. Furthermore, using P-values in

hypothesis testing without any regard to the corresponding Bayes test (which

TC
1-7

the Likelihood Principle and is consequently unacceptable to Bayesians. One

produces the value of the corrected significance level P(-X%)) again violates

should also keep in mind that p-values (not P-values) are unacceptable even
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as computational tools, for the above kind of equivalence with Bayes tests no

longer holds. Recall the examples of Section 3.

To add more confusion to the subject, Royall (1986) pointed out that it is
listed in important literature (Peto et al. (1976) and Lindley & Scott (1984))
two opposite prescriptions for the important role of sample sizes in significance

testing.

A given P-value in a large trial is usually stronger evidence
that the treatments differ than the same value in a small trial
of the same treatments would be. (Peto et al. (1976), p.593)

All significance tests are dubious because the interpretation to
be placed on the phrase “significant at 5%” depends on the
sample size: it is more indicative of the falsity of the null
hypothesis with a small sample than with a large one. (Lindley
& Scott (1984), p.1)

To explicate their statement Peto et al. (1976) used a prior probability

d Pr (H|significant)
Pr (Alsignificant) ’

{T > t} has occurred. Hence, in their argument, they did not use the whole

for H and compute where significant means that the event
information given by the event {T = t}. Had they used the correct Posterior
Odds, %, their conclusion would trivially be the opposite (the one of
Lindley & Scott (1984)), as demonstrated by DeGroot (1986, p.380-1). In the
context of hypothesis testing, Hodges & Lehmann (1954) also questioned the
effect of the sample size in the conclusion of a test. Asin DeGroot (1986), they
reccomend that the choice of a significance level must depend on the sample

size.

7. Conclusion

The consideration of A when defining significance levels is not new (al-

though p-values have always been largely used) and we can refer here to
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de Finetti (1972, p.163), Good (1983, p.140), Jeffreys (1961, p.383), Lind-
ley (1978), and Neyman (1981). This paper just shows how dangerous it is not
to consider A in the definition of significance levels. We also present a work-
ing definition that does regard A, even in the case of composite hypotheses.
Using prior distributions (or equivalently, weighting systems), the definition
of P-value for the case of composite hypotheses is an extension of the one
introduced for the case where both hypotheses are simple. Such a P-value is
therefore well-defined for Bayesians who can compute it with no discomfort (of
course, whenever the sample distribution under H is known). Classical statis-
ticians may also consider the P-value (and even wuse it in the way Burdette
and Gehan (1970) use p-values in significance testing) if they accept the idea
of replacing, in the likelihood ratio, maximum of likelihoods with correspond-
ing weighted average likelihoods, i.e., if they accept the use of averages for

suprema.

Yet, the use of P-values other than for computational purposes is un-
acceptable for Bayesians, since a procedure based exclusively on them would
violate the Likelihood Principle. Consequently, it would be incoherent for
Bayesians. An inferential procedure that does not violate the Likelihood Prin-
ciple ought to be based only on the observed sample point, not on others
(more “extreme”) points that could be observed but were not (Basu, 1975).
As pointed out in Section 6, however, the computation of a Bayes Factor can
be replaced — probably disadvantageously — by the computation of the corre-
sponding P-value, which is to be appreciated only in the light of the Bayes
Factor scale determined by the loss function. Still, this fact does not qual-
ify P-values as Bayesian quantities. Note that Bayes tests are based only on
Bayes Factors and these do not change with proportional likelihoods. Since P-
values do change, we may well have two Bayes Factors (related to two different

models) with equal values corresponding to different P-values.

We close this article with the following quotation from Professor Dennis
V. Lindley (1978, p.5):
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One can only judge something in relation to the alternatives
— a principle that is often not appreciated either in statistics
or in politics. It was a great achievement of Neyman and
Pearson to recognize this.
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