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ABSTRACT 

The probability distribution associated with the multisample CMRR generalized 

sequential sampling process are obtained by using an analogy with a single urn 

model. Some statistical features are also discussed. 

The Capture/Marc/Release/Recapture (CMRR) sampling process is used 

whenever informative data must be obtained in order to estimate the unknown size, 

N, of a finite (and closed) population. The sampling design for such process is 

described here. 
Consider a population of finite size, N, such that during the study time it 

changes neither in size nor in form; that is, the population is closed during the 

study time. From this population, k (k is fixed and 22) random samples (without 

replacement) are sequentially selected in the following manner 

The first random sample of (fixed) size ml (21) is drawn, without replacement. 

After the sample units are marked and the number ml=U1 is recorded they are 

returned to the population before the second sample is drawn. Next, for each j 
(22). the jfirandom sample of (fixed) size mj (21) is drawn, without replacement. 

The sample units marked in earlier selected samples are immediately returned to the 

Copyright @ 1987 by Marcel Dekker, Inc. 
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180 LEITE AND ALBERT0 DE BRAGANCA PEREIRA 

population. The remaining Uj unmarked sample units are returned after being 

marked. The numbers mj and Uj are recorded. After the k samples have being 

obtained, the data 

Dk =(U1, ..., Uk) 

is observed. Note that the number of distinct population units selected in the whole 

sample process is 

Tk= u1+ ...+ Uk . 
The objective of the present note is to obtain the probability laws of Dk and Tk 

by using an equivalent urn model. By urn model we mean random allocations of 

balls to urns. 

The CMRR sampling scheme has a long reference list (see Seber, 1986) which 

starts with Craig (1953) and Goodman (1953), although, a related problem was 

described earlier by Good (1950, p.73). The majority of the papers [viz.Samuel 

(1968) and Sen (1982), among others] consider only the one-by-one case (i.e., 

mi= ...= rnk=l) and none of them presents the probability law of Dk, the raw data. 

We believe that these restrictions are in fact necessary when difference equations 

(the tool of many authors) are to be used to obtain these laws. The distribution of 

Tk, for the general case of mj different from 1 for some j, is described in Johnson 

& Kotz (1977, Section 5.3) where an analogy with the committee problem is used. 

Also, in this text, no reference to Dk is made. In fact, for inferences about N, it is 

enough to consider only Tk since it is a sufficient statistic for N in relation to Dk, as 

show in Section 3. Note also that Tk and N are both positive integer numbers while 

Dk is a non-negative integer vector of order k. We end this section noticing that the 

sequence (Ui)il is not an exchangeable sequence which implies that it is not a 

sequence of conditionally independent and identically distributed random variables. 

Hence, Tk is sufficient in the broad sense. That is, the conditional distribution of 

Dk given Tk is the same for every possible N. 

2. ANALOGY AND NOTATION 

Consider an imaginary one-to-one correspondence between population units 

and urns; that is, a different urn is assigned to each one of the N population units. 

Also consider m=mi+. ..+mk balls numbered in the following way: ml with the 

number one, m2 with the number two, and so on up to mk with the number k. 
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CMRR SAMPLING PROCESS 181 

To select, without replacement, ml population units to be marked corresponds 

to randomly allocating to the urns the ml one-numbered balls, in such a way that no 

urn receives more than one of these balls. To select, without replacement, the 

second sample of m2 population units corresponds to randomly allocating to the 

urns the m2 two-numbered balls, in such a way that no urn receives more than one 

of these balls. To count the number U2 of unmarked sample units (to be marked) is 

equivalent to counting the urns, among the m2 ones that received the two-numbered 

balls, with only one ball. Sequentially following this analogy, consider the jh  

sample (j>l). To select, without replacement, the jh sample of mj population units 

corresponds to randomly allocating to the urns the mj j-numbered balls, in such a 

way that no urn receives more than one of these balls. To count the number Uj of 

unmarked sample units (to be marked) is equivalent to counting, among the mj urns 

that receive the j-numbered balls, the ones with only one ball. (Note that at the end 

of this allocation process, it may happen that many urns are empty, solme have only 

one ball, and so on up to a very few having k balls.) 

Following the above analogy, in the remaining part of the present paper, the 

vector Dk=(U,, ..., Uk) represents indifferently either the data obtained by the 

CMRR scheme described in Section 1 or the data obtained by the urn scheme 

described above. Before presenting the probabilities of interest, we introduce the 

notation used. 
As usual the indicator function of a set A is represented by IA(x). Also, let 

N*= {0,1, ...) be the set of non-negative integers. 

In general, for j21, the random vector Dj=(U1, ..., Uj) has its observed vector 

represented by dj=(ul, ..., uj). Analogously, for Tj=U1+ ...+ Uj, we have tj= 

ul+ ...+ uj. Since the population size, N, is unknown, it is convenient to use the 

notation P{D,=djlN=n) and P (Tj=tjlN=n) for the probabilities of Dj and Tj, 

respectively. The reason for this is the fact that the range of Tj (of N) depends 

strongly on the unobserved value of N (observed value of Tj). 

Given the urn model described in the last section, the following probability 

statements become straightfaward: 
(i) Given mlE N*, P(U1=ullN=n)=l, for any n2ml=ul=tl, otherwise is equal to 
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182 LEITE AND ALBERT0 DE BRAGANCA PEREIRA 

zero; and (ii) For j>l and mi€ N*, P(Uj=ui IN=n,U1=ul,U2=u2, ...,Ui-l=~i-l) 

for any e m a x  (mi, ..., mj) and max(m1 ,..., mj)Stjlmin ( mi+ ...+ mj,n ) , otherwise 

is equal to zero. 
The only difficulty one may have in understand the above statements is with 

the restrictions of n and tj given in (ii). Note however that to assign mj @I) balls 

to mjdistinct urns one must have n2mj for all j l l .  On the other hand, since tjis 

the number of distinct chosen urns up to the j* stage, it must not be smaller than the 

number of distinct urns chosen in any stage. Also tj can neither be greater than the 

total number of urns, n, nor than the maximum possible number of distinct urns up 

to the j* stage, mi+ ...+ mj. Finally, it is not difficult to conclude that the sequence 

(Tk)kZl is a very interesting Matkov Chain (given (N=n)). In fact, it is a 

submartingale since, for j> 1, 

E (Tj IN=n,Tj-i=t) = (1 - f h j + t  . 

(Sen ,1982; (2.3), introduced a related property for the one-by-one case.) 

The following important result is a direct consequence of these probability 

statements. Recall that m=mi+ ...+ mk, ul=tl=ml, dk=(ui ,..., uk), tj=ul+ ...+ uj, 
and ujc (O,l, ..., mj), for j=2 ,..., k. 

3.1 Theorem: For all k22 and n~ N* such that n2max(ml, ..., mk), 

where B=(xE N*; max(m1, ..., mk)lxlrnin(m,n) ). 

The proof of this result is very simple. To obtain the joint distribution of U1, 

Uz, ..., and Uk (the distribution of Dk), we need only to consider the product of the 

conditional probabilities introduced by (i) and (ii) above. 

The following lemma is a generalization of a result described by Feller (1968), 

where the case of mi= ...= mk=l is considered. In fact it indirectly introduces the 
distribution of Tk. Let Pe(mi, ..., mk;n) represent the probability that, at the end of 

the allocation process, exactly e (E N* ) urns are empty. 
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CMRR SAMPLING PROCESS 183 

3.2 Lemma; For all k2l and nE N* such that n2max(mi, ..., mk], 

Proof: For i=l, ..., n, let Ai be the event "the ih urn is empty at the end of the 
allocation process." Hence, for l a l l  ...SkiGI, P (Akin ... nAki IN=n} 

On the other hand, P( A l u  ... uA, IN=n] = C (- l)i-lCi P (Akin ... nAki IN=n}, 
i=l 

where Ci indicates the sum over the set ((kl, ..., ki) ; l l k l l  ... <kiln] which is 

composed by (1) points. We can then conclude that Po{ml, ..., m k;n) 

where I(nlm) is the indicator of nlm. Replacing n-e for n in the above expression, 
k 

we notice that Pg(ml, ..., mk; n - e ) n  (n-e)(mj)! is the number of points favorable 
j=1 mj 

to the event "exactly e fixed urns are empty at the end of the allocation process." 

Recall that the total number of possible allocations of m balls in n-e urns is 
k 

( ) ( ) !  . Since, among the n urns, there are (:) ways to choose e urns, 
j= 1 

we finally have P,(ml, ..., mk;n) 

which concludes the proof. . 
The following result is a direct consequence of the above lemma and is the 

main result of this paper. 

3.3 Theorem: For all k2l and ne N* such that n2max (ml,...,mk) , 

To prove this result we only need to note that if t is the number of distinct 

nonempty urns, then (n-t) is the number of empty urns. Hence, a direct application 
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184 LEITE AND ALBERT0 DE BRAGANCA PEREIRA 

of Lemma 3.2 produces the desired result. Another consequence, relevant for 

statistical purposes, is stated next. 

3.4 Corollarv; For inferences about N, the random variable Tk is a sufficient 

statistic with respect to Dk . The conditional probability of {Dk=dk) given {Tk=t) 

has the following expression: 

(Recall that the last factor is the indicator of (Tk=t ) .) 

That Tk is a sufficient statistic follows from Theorem 3.1 and the well-known 

Factorization Criterion. Equivalently, sufficiency is also a consequence of the fact 

that the above conditional probability is the same for all possible values of N. This 

probability is directly obtained from the expressions introduced in Theorem 3.1 and 

Theorem 3.3. 

4. COMMENTS AND CONCLUSION 

The famr 
k 

K(n; t ) = { (n-t )!n ( ) ) -In! , 
j=1 9 

hat appears in the probability expressions of Dk and Tk, is c&d the likelihood 
kernel since it is the smallest factor of tkse  expressions that depend on the value 

of n, with the remaining ones independent of n. To obtain maximum likelihood 

estimates and to perform Bayesian analysis, this kernel is the only sample entity that 

must be considered. In k i t e  (1986) these statistical methods are discussed in 

detail. 

Finally, notice that another kind of data could be produced by the urn model 

described above. For instance, consider the vector @&Xi, ..., Xd, where Xi ( O I i  
Sk) is the number of urns with exactly i balls at the end of the allocation process. In 

terms of population units, Xi is the number of individuals captured exactly i times. 

Recall that Tk=X1+ ...+ Xk and e N - T k .  With respect to these data, is Tk still a 

sufficient statistic? The answer is again yes. Clearly, after the value t of Tk 

has been recorded, all kinds of nonempty urns must be among these t,  
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CMRR SAMPLING PROCESS 185 

independently of any possible particular value N may assume. Hence, Tk must be 

sufficient. To formabe this conclusion we state the following result, the proof of 

which we shall omit ince  it would follow the same steps of the ones presented 

here. 

4.1 Theorem: For all W and n~ N* such that nhnax(ml, ..., mk), 

where: (a) the elements of (xl, ..., xk) take values on {O,l, ..., k] and satisfy the 

equations xl+2x2+ ...+ kxk=m and xl+ ...+ xk=t ; and (b) h(xl, ..., xk) is the number 

of ways in which m balls can randomly be allocated in t urns so that xl ~ m s  receive 

one ball, x2 urns receive 2 balls, and so on up to xk with k balls. 

Here also, by a direct application of the factorization criterion, we conclude that 

Tk is sufficient. To prove the above result one may need to follow Feller (1968) 

where the one-by-one case is considered. 

We have shown that up to a particular stage, say k, the only relevant 

information about the unknown parameter of interest, N, is contained in T or 

equivalently in the likelihood kernel. If, in the place of a fixed stopping step, k, 

one considers a random stopping rule, the above kernel still would be the minimum 

sufficient statistic. For example, analogously to the negative binomial rule, 

suppose that t is fixed a priori and k is the number of steps required to obtain t. In 

terms of randomness, k and t would change roles; that is, k would be the 

observation of a random variable and t would be the fixed constant. Hence, any 

desirable good inference about N must rely on a painstaking analysis of the 

likelihood kernel, K(n; t). If a random stopping rule is used, instead of CMRR, the 

sampling scheme is called Capture/Recapture sampling process. 
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