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1. MAKING DECISIONS USING INFLUENCE DIAGRAMS

In real lifc we are continually required to make decisions. Often these
decisions are made in the face of a great deal of uncertainty. However,
time and resources (usually financial) are the forcing functions for
decision. That is. decisions must be made even though there may be a
great deal of uncertainty regarding the unknown quantities refated to our
decision problem.

In considering a decision problem, we must first of all consider those
things which are known as well as those things which are unknown but
relevant to our decision problem. It is very important to restrict our
analysis to those things which are relevant, since we cannot possibly
make use of all that we know in considering a decision problem. So, the
first step in formulating a decision problem is to limit the universe of
discourse for the problem.

A decision problem begins with a list of the possible alternative
decisions which may be taken. We must seriously consider all the
CXCl-u.sive decision alternatives which are allowed. That is. the set of
QCcmons should be exhaustive as well as exclusive. We then attempt to
l'S" the advantages and disadvantages of taking the various decisions.
Th‘§ requires consideration of the possible uncertain events related to the

ce1sion alternatives. From these considerations we determine the conse-
q“""('tfs corresponding to decisions and possible events. At this point, in
MOst instances, the decisions are ‘weighed” and that decision is taken
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which is deemed to have the most ‘weight’. It is this process of ‘weighing’
alternative decisions which concerns us.

An important distinction needs to be made between decision and
outcome. A good outcome is a future state of the world that we prefer
relative to other possibilities. A good decision is an action we take that is
logically consistent with the alternatives we perceive, the information we
have, and the preferences we feel at the time of decision. In an uncertain
world, good decisions could lead to bad outcomes and bad decisions can
conceivably lead to good outcomes. Making the distinction allows us to
separate action from consequence. The same distinction needs to be made
between prior and posterior. In retrospect, a prior distinction may appear
to be very bad. However, based on prior knowledge alone, it may be the
most logical assessment. The question “Suppose you have a *bad’ prior?”
is essentially meaningless unless ‘bad’ means that a careful judgement was
not used in prior assessment.

Our purpose is to introduce a ‘rational method® for making decisions.
By a ‘rational method", we mean a method which is internally consistent,
that s, it could never lead to a logical contradiction. The method we will
use for making decisions can be described in terms of influence diagrams.
Probabilistic influence diagrams need only probabilistic nodes, determin-
istic nodes and directed arcs. For decision making we also need decision
nodes and value nodes. The foliowing example demonstrates the need for
these additional nodes. i

1.1. Example (Two-headed coins). Suppose your friend tells you that
he has a coin which is either a ‘fair’ coin or a coin with two heads. He
will toss the coin and you will see which side comes face up. If you
correctly decide which kind of a coin it is, he will give you $1.Otherwise
you will give him $1. If you accept his offer, what decision rule should
you choose? That is, based on the outcome of the toss, what should

your decision be? In terms of probabilistic influence diagrams we only
have:

e —>

Fig. 1.
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where |
 (fair if the coin is fair I
" | 2-headed otherwise }

and
| T if the toss results in a tail
| H otherwise. IQ%
Clearly, if x=T, you know the coin does not have 2 heads. The
question is, what should you decide if x=H? To solve your problem, we
introduce a decision node which is represented by a box or rectangle. The
decision node represents the set of decisions which can be taken, namely
d,:decide ‘fair’
d,:decide 2-headed.

, “

“%

Attached to the decision node is a set of allowed decision rules, which
depend on the outcome of the toss, x. For example, one decision rule

might be
dy: ifx=T
6(”'{(13: if x=H

Another decision rule might be

d(x)=d, for all x.

ntc(;snm v(d.0)

Fig. 2. Two-headed coins.
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Figure 2 shows the influence diagram helpful for solving our problem. In
this diagram, the double bordered node represents a value or utility node.
The value node represents the set of consequences corresponding to
possible pairs of decisions and states, (d, 0). Attached to the value node is
the value function, v(d,0), a deterministic function of the states of
adjacent predecessor nodes. In this example

51 if d=d, and O=fair
o(d, 0)= ord=d, and 6=2 heads

—$1  otherwise.

The reason for initially drawing the arc [0, x] rather than the arc [x, 0]
is that, in general, it is easier to first assess p(f) and p(x|0) rather than to
directly assess p(x) and p(0]x).

The optimal decision will depend on our initial information concerning
0, namely p(0). However, since 0 is unknown at the time of decision. there
is no arc [0, d]. At the time of decision, we know x but not 0. Input arcs
to a decision node indicate the information available at the time of
decision. In general, there can be more than one decision node as the next
example illustrates.

1.2. Example (Scquential"Decision Making). Consider an urn contain-
ing white and black balls. Suppose we know that the proportion of
white balls, 0, is either 0=4 or §=3 but we do not know which. Our
problem is to choose between two actions. One action, say a,, would be
appropriate were =3, while a, would be appropriate were §=1. If we
are wrong, we lose $1. Otherwise, we lose nothing. We can, if we choose,
first draw a ball from the urn at cost $c so as to learn more about -
After observing the color of the ball drawn, say x, then we must choosé
either action a, or a, at cost $(1 +¢) if we are wrong and only cost $¢ if
we are right.

The first decision can be either: (1) take action a,:(2) take action a»; 0f
(3) draw a ball from the urn. If we draw a ball from the urn, then ouf
second decision after drawing must be either: (1) take action ay; or 2
take action a,. In this problem there are two decision points and 2
second decision is needed only if the first decision is to continue sampling:

The following example is a decision problem of some practical import-
ance.
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1.3. Example (Inspection Sampling). Periodically, lots of size N of
similar units arrive and are put into assemblies in a production line. The
decision problem is whether or not to inspect units before they are put
into assemblies. If we opt for inspection, what sample size, n, of the lot
size, N, should be inspected? In any event, haphazard sampling to check
on the proportion defective in particular lots is prudent.

Let © be the percent defective over many lots obtained from the same
vendor. Suppose we believe that the vendor’s production of units is in
statistical control. That is, each unit, in our judgement, has the same
chance, n, of being defective or good regardless of how many units we
examine. Let p(n) be our probability assessment for the parameter, n, based
on previous experience. It could, for example, be degenerate at, say 7.

Let k; be the cost to inspect onc unit before installation. Let k, be the
cost of a defective unit that gets into the production line. This cost will
include the cost to tcar down the assembly at the point where the defect is
discovered. If a unit is inspected and found defective. additional units from
another lot are inspected until a good unit is found. (We make this model
assumption since all defective units which are found will be replaced at
vendor’s expense.) Figure 3 illustrates our production line problem. We
assume the inspection process is perfect; i.e. if a unit is inspected and found
good then it will also be found good in the assembly test

Lot Size Assembly
=N Test

Inspect? Cost = $ k, /Unit

PRODUCTION LINE

Install Unit
in Assembly
$ K,/ Unit

Fig. 3. Deming’s inspection problem.

1.3.1 The Al or None Rule

It b s : : g :

Ioh('is been suggested (cf. Deming?) that the optimal decision rule is always

) 'e“her choose n=0 or n= N, depending on the costs involved and =, the
ance that a unit is defective. This is not always valid if 7 is unknown.
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In this example we consider the problem under the restriction that
the initial inspection sample size is either n=0 or n=N. The deci-
sions are: n=0 and n=N. Figure 4 is an influence diagram for this
problem, where x=number of defectives in the lot, and y=number of

additional inspections required to find good replacement units for bad
units.

The value (loss) function is:

kix+k, y ifn=0

[, (x, y)= ;
vl (x.5) {k1N+k1y ifn=N.

DECISION
n=0orn=N

‘V[d-(x‘v)]

™

Fig. 4. Influence diébram for Deming’s inspection problem.

2. DECISION INFLUENCE DIAGRAMS: DEFINITIONS
AND BASIC RESULTS

A decision influence diagram (or influence diagram for short) is a diagram
helpful in solving decision problems. These ideas were discussed in
Howard and Matheson® and also in Shachter.* Probabilistic influence
diagrams are discussed in detail in Barlow and Pereira.’

In Section 1 we introduced decision nodes and value nodes. Figure 5 i
a typical decision node with input and output arcs.

2.1. Definition. A decision node:

(1) represents the possible decisions which may be taken at a given
point in time.
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DECISION

Fig. 5. Decision node.

(2) Attached to each decision node is a set of allowed decision rules or
mappings from possible states of adjacent predecessor nodes to the
set of possible alternative decisions represented by tf}e node itsclf.

For example, there could be only one allowed decision rule corresponding

to a given decision node. In this case the decision node can be replaced by
a deterministic node.

2.2. Definition. A decision rule, 9, corresponding to a decision node is
amapping from possible states of adjacent predecessor nodes (determinis-

tic and probabilistic as well as previous decisions) to a set of possible
alternative decisions.

Decision nodes will, in general, have both directed input and directed
Output arcs. What makes decision nodes very different from probabilistic
and deterministic nodes is that these arcs may never be reversed.
Adjacent predecessor nodes to a decision node indicate information
available to the decision maker at the time of that particular decision.
The value of an adjacent predecessor node to a decision node is known at
the time of decision — it represents certain knowledge — not possible
knowledge_ In this sense this arc is different from arcs between probability
Nodes which can indicate only possible dependence. Since decision nodes
Imply a time ordering, the corresponding directed arcs can never be
Teversed.

Directed arcs emanating from a decision node denote possible depend-

;f_nce of adjacent successor nodes on the decision taken. These arcs can
ikewise never be reversed.

:2'3' Example. (Selling a car). Suppose you plan to sell your car
OMorrow, but the finish on your car is bad. Your decision problem is
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whether or not to have your car painted today in order to increase the
value of your car tomorrow. Note that tomorrow’s selling price depends
on today’s decision, d. Let x be yesterday’s blue book value for your car
and c the cost of a paint job. Let 0 be the price you will be able to obtain
for your car tomorrow. Let v(d., ) be the value to you of today’s decision
d and tomorrow’s selling price, 0. The influence diagram associated with
your decision problem is as follows:

BLUE BOOK
UALUE
x

DECISION
d

SELLING PRICE
TOMORROW
9

Fig. 6.

Obviously you cannot reverse arc [x.d], since today's decision cannot
alter yesterday’s blue book value. Likewise, you cannot reverse arc [d, 0],
since we cannot know today, for sure, what tomorrow will bring.

The value node is similar to a deterministic node. What makes it
different is that it has no successor nodes.

2.4. Definition. A value node is a sink node that: *

(1) represents possible consequences corresponding to the states of
adjacent predecessor nodes: (A consequence ‘can, for example, be a
monetary loss or gain.)

(2) has an attached utility or loss function which is a determin-

istic function of consequences represented by the value node
itself.

A value node shares with a decision node the property that input arcs
can not be reversed. However if a value node, v, has a probabilistic
adjacent predecessor node, say 0, and v is the only adjacent successor of ¢
(as in Fig. 6), then node 6 can be eliminated.

We now give a formal definition of a Decision Influence Diagram.
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2.5. Definition. A Decision Influence Diagram is an acyclic directed
graph in which:

(i) nodes represent random quantities, deterministic functions and
decisions;

(i) directed arcs into probabilistic and deterministic nodes indicate
possible dependence while directed arcs into decision nodes indi-
cate information available at the time of decision;

(i) attached to each probabilistic (deterministic) node is a conditional
probability (deterministic) function while attached to each deci-
sion node is a set of allowed decision rules:

(iv) decision nodes are totally ordered and there is a directed arc
(perhaps implicit) to each decision node from all predecessor
decision nodes;

(v) there is exactly one deterministic sink node called QIC value node.

2.5.1. Using Decision Influence Diagrams to Model Problems

In Example 1.1 (Two-Headed Coins) you were offered the opportunity to

make a dollar with also the risk of losing a dollar. Your allowable
decisions were:

d,: decide the coin is fair
d,: decide the coin is two-headed.

Hence you might start by drawing the decision node, d, with the two
allowable choices d,and d,. You might then draw the value node, v, since
the value node denotes the objective of your decision analysis. Your
objective is to calculate v(d), the unconditional value function, as a
deterministic function of the decision taken, d. However, it may be easier
to first determine the conditional value function as a deterministic
fl.mclion of relevant unknown quantities as well as perhaps prior deci-
SIons relevant to your problem.

2.6. Definition. A value function is called unconditional if it only
fiependg on the decision taken and not on relevant unknown quantities. It
S called conditional when it also depends on relevant unknown quantities.

Since it s easier to think of the value function as a conditional
lerministic function of your decision and the property of the coin, say 6,
U also need to draw a node for 6. Since 0 is unknown to you, node 8 is
Probabilistic node. Since the value node, v, depends on both the

de

Yo
a
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decision taken, d, as well as the property of the coin, 6, draw arcs [d. v]
and [0, v]. Attach a deterministic function, v(d, 0). to node v. Figure 7
shows the influence diagram at this stage of the analysis.

You are allowed to see the result of one coin toss and this informa-
tion is available at the time you make your decision. Hence draw a
node, x, for the outcome of the toss. Since the outcome of the toss
(before you see it) is an unknown random quantity for you, draw a
probabilistic node for x. Since the probability function for x depends on
0, draw arc [0, x] and assess p(x|0) and p(0). Draw arc [x,d] since you
will know x at the time you make your decision, d. The diagram now
looks like Fig. 2.

DECISION
d

& Fig. 7

2.6.1. Decision Influence Diagram Operations

There are essentially two influence diagram graph operations which are
used to solve decision problems expressed as influence diagrams. They
are:

(1) the elimination of probabilistic nodes; and.
(2) the elimination of decision nodes.

In the process of eliminating probability nodes you will obtain the
unconditional value function, v(d), as a function of decisions allowed.
Having obtained vo(d) you can determine the optimal decision with
respect to the unconditional value function and in this sense elimin-
ate the decision node. The justification for both graph operations i

based on the idea that you should be self-consistent in making deci-
sions.
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2.6.2. Solution of the Two-Headed Coin Problem

Having described how to construct the influence diagram (Fig. 2) for the
two-headed coin Example 1.1, we now discuss its solution. Our objective
is to calculate v[d(x)] where d(x) depends on x and is either

d,: decide the coin is fair; or
d,: decide the coin is two-headed.

You must eliminate ¢ since, as it stands, the optimal decision would
depend on 6 which is unknown. If the arc [0,v] were the only arc
emanating from § you would be able to do this immediately by summa-
tion or by integration. Since there is also another arc, namely [0, x],

emanating out of 6, this is not possible. P
]

2.6.3 Elimination of Node 6.

Since nodes x and 0 are probabilistic nodes, you can reverse arc [0, x]
using the arc reversal operation. If you do this, p(x|0) attached to node

x is changed to p(x) using the theorem of total probability while p(6) is
i Changcd to p(6]x) using Bayes’ formula. After this arc reversal, arc [0, 1]
1is: the only arc emanating from node ¢ and node 6 can now be
- eliminated by summing u(d, 0) with respect to p(0ix). This results in the

influence diagram of Fig. 8. The deterministic function attached to node
v is now

vld|x] = u{d, 0 =fair) p(0)=fair|x) + v(d, 0 = 2-headed) p(0 = 2-headed|x).

DECISION
d

Fig. 8.
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2.6.4. Elimination of the Decision Node

To solve your problem you need only eliminate the decision node. This is
accomplished by maximizing v[d(x)] over decision alternatives since you
want to maximize your winnings.

2.6.4.1. Exercise. Let p()=fair)=p and determine your optimal deci-
sion rule as a function of x and p.

The following example is a decision problem of some practical import-
ance.

2.6.4.2. Example. (Example 1.3 Inspection Sampling). We can now
discuss the solution of Deming’s inspection problem when the only
decisions allowed are that the sample size n=0 or n=N, the lot size.
Figure 4 is repeated below in Fig. 9.

DECISION
n=0orn=N

v[d, ()]

Fig. 9.

To determine whether n=0 or n= N is best, we eliminate nodes x and y
by calculating the expected value of the value function, first conditioning
on n. The expected value given = is

kayNn+kE[y|n] if n=0
E{oldix, i} = {207+ elatel
kyN+k E[yln] if n=N

Hence n=0 is best if

7[<k1/k2
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and n=N is best if
n>=k,y/k,.

The solution is also valid if we replace 7 by E(n). If & or E(n)=k,/k,,
then we may as well let n= N since we may obtain additional information
without additional expected cost.

Suppose now that we allow 0<n< N. If we are certain that n<k,/k,,
ie. p(m)=0 for m>k,/k,, then n=0 is always best. On the other hand, if
we are certain that 7>k, /k, then n=N is always best. In the intermediate
case, when p(n) straddles m=k,/k,, the optimal sample inspection size
may be neither O nor N.
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