BLACKWELL SUFFICIENCY AND BERNOULLI EXPERIMENTS

Debabrata Basu

Indian Statistical Institute and Florida State University

Carlos Alberto de Bragança Pereira

Departamento de Estatística Universidade de São Paulo Cx. Postal 20570 01498 - São Paulo, SP, Brazil

Summary

The intuition behind Blackwell sufficiency concept is discussed using influence diagrams. A simple geometrical solution for the problem of comparing Bernoulli experiments is presented.

Key words: Informative experiments; sufficient experiment; transition function for sample spaces.

1. Introduction

Let x and y be two Bernoulli experiments (random variables) with unknown parameters π and $\pi/2$ ($0 < \pi < 1$) respectively. In order to gain information about π , the following question is relevant: "Which one, x or y, is more informative for π ?" Usually we obtain the answer "It depends on the value of π ". People who give this answer have in mind the inverse of the variance, that is, Fisher's information. However, we will show that x must be at least as informative as y, independent of the value of π .

By first performing the Bernoulli experiment x and then tossing a fair coin and letting r=1 (r=0) if a tail (head) occurs, we can compute $y^*=xr$. In this case y^* is a copy of y in the sense that y and y^* have the same distribution. By performing this simple randomization exercise we have obtained a copy of y using x. This means that x is Blackwell sufficient for y. [This is the definition in Section 2 We show in Section 3 that y is not Blackwell sufficient for x. That is, we cannot obtain a copy of x by using y. In fact, we will conclude that x is more informative for x than y. Note that using Fisher information, this result does not follow. Information here is about the unknown parameter, x, and is contained in the experiment.

2. Blackwell sufficiency

A statistical experiment related to a parameter $\pi \in \Pi$ (Π is a general parameter space) is an observable random quantity, x, associated with a sample space X and a family of probability functions (distributions) on X indexed by π , (p_{π} ; $\pi \in \Pi$). We avoid all measurability difficulties by restricting ourselves to discrete sample spaces. Given two sample spaces, X and Y, a transition function, F, from X to Y, is a family $F = \{f_x; x \in X\}$ of probability functions, $f_x(\cdot)$, defined on Y and indexed by x. For example, the family of hypergeometric probability functions,

$$f_x(Y) = \frac{\binom{x}{y} \binom{N-x}{n-y}}{\binom{N}{n}},$$

is a transition function from (0, 1, ..., N) to (0, 1, ..., n).

Let x and y be two experiments with models $[X, \{p_{\pi}; \pi \in \Pi\}]$ and $[Y, \{q_{\pi}; \pi \in \Pi\}]$, respectively.

Definition: (Blackwell) Experiment x is sufficient for (at least as informative as) experiment y, write $x \gg y$, if there exists a transition function

 $F = \{f_x(\,\cdot\,); x \in X\}$ from X to Y such that

$$q_{\pi}(y) = \sum_{x \in X} f_x(y) p_{\pi}(x)$$
 (2.1)

for all $y \in Y$ and $\pi \in \Pi$. (We may also write $y \ll x$ to say that y is at most as informative as x.)

A transition function F satisfying (2.1) is called a Blackwell transition function (it does not depend on the value of π). It is no difficult to check that he relation \gg defines a partial ordering on the family of experiments related to π .

If y = y(x) is a sufficient statistic in the classical sense of Fisher (i.e., the conditional distribution of x given y does not involve π), then it follows at once that y is sufficient for x in Blackwell's sense $(y \gg x)$. Of course, x is sufficient for y in either sense. If $x \gg y$ and $x \ll y$ we write $x \approx y$ to indicate that x and y are equally informative.

The intuitive content of the relation " \gg " is as follows: Let x be Blackwell sufficient for $y, x \gg y$, and let the transition function be $f_x(y)$. If we perform experiment x, record its outcome and carry out a post-randomization exercise that chooses a point in the sample space Y in accordance with the probability function f_x , then the result of the experiment, y^* , is in a sense indistinguishable from y in that both are endowed with the same model $[Y, \{q_\pi; \pi \in \Pi\}]$. Any decision rule related to π which is based on the experiment resulting in y can therefore be perfectly matched (in terms of their average performance characteristics) by a randomized rule using x.

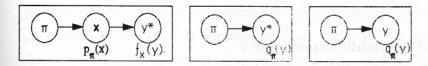


Figure 1
Blackwell sufficiency illustrated by influence diagrams.

Figure 1 (Shachter, 1988, personal communication with the second author) shows three influence diagrams relating π , x, and y^* and π and y. The first shows the dependence of x on the value of π and the (conditional) independence of y^* on the value of π when the value of x is known. Note that there is no arc connecting π to y^* . The second diagram shows the dependence of y^* on the value of π after the elimination of x from the graph; i.e., it shows the marginal distribution of y^* . The third diagram shows the dependence of y on the value of π . The second and the third graph being equivalent means that $x \gg y$. To say that there is a Blackwell transition function from X to Y is to say that there is no arc from π to y^* in the first diagram of Figure 1. (For a first introduction to influence diagrams see Barlow, 1989.)

For the example of Section 1, we write $x \sim \text{Ber}(\pi)$ and $y \sim \text{Ber}(\frac{\pi}{2})$ for the two experiments and $r \sim \text{Ber}(\frac{1}{2})$ for the randomized rule. Writing $y^* = xr$ then, y^* has the same distribution of y proving that $x \gg y$. The Blackwell transition function in this case is defined by $f_1(1) = \Pr(y^* = 1 | x = 1) = \frac{1}{2}$ and $f_0(0) = \Pr(y^* = 0 | x = 0) = 1$. Figure 2 illustrates this solution.

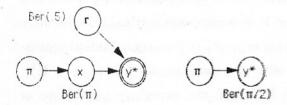


Figure 2
Influence diagram solution for the question of Section 1.
Double circle is for (conditionally) deterministic nodes.

3. A property of Bernoulli experiments

In this section, a simple geometrical result is presented. It permits one to check whether two Bernoulli experiments are comparable in Blackwell's sense. Were they comparable, a simple rule to identify the most informative experiment is derived. Let $x \sim \text{Ber}(p_{\pi})$ and $y \sim \text{Ber}(q_{\pi})$ be two Bernoulli experiments related to the same (arbitrary) parameter $\pi \in \Pi$.

Proposition. x and y are comparable in the sense of Blackwell sufficiency if and only if the set $\{(p_{\pi}, q_{\pi}); \pi \in \Pi\}$ lies on a linear segment that intersects two opposite sides of the unit square: $x \gg y$ ($x \ll y$) if the line intersects the vertical (horizontal) sides. Consequently, if the line is diagonal then, $x \approx y$.

Proof: A transition function from $\{0,1\}$ to $\{0,1\}$ is a stochastic matrix

$$f = \begin{pmatrix} 1 - a & a \\ 1 - b & b \end{pmatrix}, \qquad 0 < a < 1, \quad 0 < b < 1.$$
 (3.1)

Such an f can transform x into an experiment like y if and only if

$$q_{\pi} = (1 - p_{\pi})a + p_{\pi}b = a + (b - a)p_{\pi},$$

for all $\pi \in \Pi$. Thus, $x \gg y$ if and only if the set $\{(p_\pi, q_\pi); \pi \in \Pi\}$ lies on a line q = a + (b - a)p that joins the points (0, a) and (1, b) on the vertical sides of the unit square. Similarly, $x \ll y$ if and only if the set $\{(p_\pi, q_\pi); \pi \in \Pi\}$ lies on a line like p = a + (b - a)q that intersects the horizontal lines of the unit square at points (a, 0) and (b, 1). It is clear also that $x \approx y$ if and only if either $p_\pi = q_\pi$ or $p_\pi = 1 - q_\pi$, for all $\pi \in \Pi$. Experiments x and y are not comparable if either the points in the set $\{(p_\pi, q_\pi); \pi \in \Pi\}$ are not collinear or if they lie on a line that intersects two adjacent sides of the unit square.

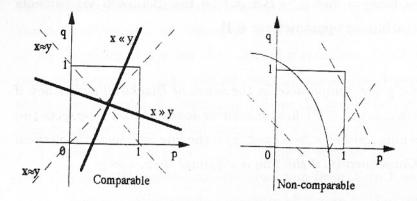


Figure 3

Comparing Bernoulli experiments in the Blackwell sense.

Returning to the example of Section 1, it is easily seen that the set

$$\{(p_\pi,q_\pi);\, \pi\in\Pi\} = \left\{(\pi,\,\frac{\pi}{2});\, 0<\pi<1\right\}$$

lies on the line $q = \frac{1}{2}p$. It is interesting to note that $p_{\pi} = \pi$ takes values in the whole unit interval and that $q_{\pi} = \frac{\pi}{2}$ is restricted to the interval $(0, \frac{1}{2})$. A simple extension is the case where for a positive real number c we have

$$x \sim \operatorname{Ber}(\pi)$$
 and $y \sim \operatorname{Ber}(c\pi)$.

In this case, if c < 0 (c > 0) then, $x \gg y$ $(x \ll y)$. Also, $x \approx y$ if and only if c = 1.

4. A classical example

The fruitfulness of the notion of Blackwell sufficiency is best exemplified by the following simple situation: Consider a population of individuals that are categorized in a two-way tabular form in terms of two attributes E and F (we write E' and F' for their complements) as follows:

Table 1
Population frequencies where π is the unknown quantity of interest.

g v. J.61	E	E'	sum
F F'	π e- π	$f-\pi$ $1-c-f+\pi$	f 1-f
sum	e	1-е	1

The only unknown parameter of interest is $\Pr(EF) = \pi$. The marginal relative frequencies (marginal probabilities) $\Pr(E) = e$ and $\Pr(F) = f$ are known. To seek information about π we can draw an individual randomly from the whole population and observe whether this sample unit belongs to EF or not, thus simulating a Bernoulli experiment, $x \sim \text{Ber}(\pi)$. Alternatively, we may sample from attribute E (assume that a sampling frame for the sub-population E is available) and observe if EF occurs or not, thus simulating an experiment $x_E \sim \text{Ber}\left(\frac{\pi}{e}\right)$. Similarly, the following alternative experiments can be performed:

$$x_F \sim \operatorname{Ber}\left(\frac{\pi}{f}\right), \ x_{E'} \sim \operatorname{Ber}\left(\frac{f-\pi}{1-e}\right) \ \text{and} \ x_{F'} \sim \operatorname{Ber}\left(\frac{e-\pi}{1-f}\right).$$

Which of the five experiments (if any), x, x_E , x_F , $x_{E'}$ and $x_{F'}$, is the most informative for π ? Assume without loss of generality that

$$0 < e < f < 1 - f < 1 - e < 1$$
.

The answer to this question is (Blackwell & Girshick, 1954) " x_E is more informative than all the other four experiments". The proposition of Section 3 illuminates this interesting situation.

Note that we have the following sets with their corresponding lines intersecting the vertical opposite sides of the unit square:

(1)
$$\left\{ \left(\frac{\pi}{e}, \pi \right); 0 < \pi < e \right\}$$
 lies on $q = ep$ showing that $x_E \gg x$,

- (2) $\left\{ \left(\frac{\pi}{e}, \frac{\pi}{f} \right); 0 < \pi < e \right\}$ lies on $q = \frac{e}{f}p$ showing that $x_E \gg x_F$,
- (3) $\left\{ \left(\frac{\pi}{e}, \frac{f-\pi}{1-e} \right); \ 0 < \pi < e \right\}$ lies on $q = \frac{f}{1-e} \frac{e}{1-e}p$ showing that $x_E \gg x_{E'}$,
- (4) $\left\{ \left(\frac{\pi}{e}, \frac{e-\pi}{1-f} \right); \ 0 < \pi < e \right\}$ lies on $q = \frac{e}{1-f} \frac{e}{1-f}p$ showing that $x_E \gg x_{F'}$,
- (5) $\left\{ \left(\frac{\pi}{f}, \pi \right); 0 < \pi < f \right\}$ lies on q = fp showing that $x_F \gg x$,
- (6) $\left\{ \left(\frac{\pi}{f}, \frac{f-\pi}{1-e} \right); \ 0 < \pi < f \right\}$ lies on $q = \frac{f}{1-e} \frac{f}{1-e}$ showing that $x_F \gg x_{E'}$, and
- (7) $\left\{ \left(\frac{e-\pi}{1-f}, \frac{f-\pi}{1-e} \right); \ 0 < \pi < 1-f \right\}$ lies on $q = \frac{f-e}{1-e} \frac{1-f}{1-e}p$ showing that $x_{F'} \gg x_{E'}$.

This proves that, among the five experiments, x_E is the most informative. In the same manner it is proved that $x_F \gg x$, $x_F \gg x_{E'}$, and $x_{F'} \gg x_{E'}$. It is interesting, however, to see that for each of the remaining 3 pairs, $[x_F, x_{F'}]$, $[x, x_{E'}]$ and $[x, x_{F'}]$, their elements are not comparable in Blackwell's sense. The following sets with their corresponding lines, that intersect adjacent sides of the unit square, show this phenomenon:

- (8) $\left\{ \left(\frac{\pi}{f}, \frac{e-\pi}{1-f} \right); 0 < \pi < f \right\}$ lies on $q = \frac{e}{1-f} \frac{f}{1-f}p$ showing that x_F and $x_{F'}$ are not comparable,
- (9) $\left\{ (\pi, \frac{f-\pi}{1-e}); \ 0 < \pi < 1 \right\}$ lies on $q = \frac{1}{1-e} \frac{1}{1-e}p$ showing that x and $x_{E'}$ are not comparable, and
- (10) $\left\{ (\pi, \frac{e-\pi}{1-f}); \ 0 < \pi < 1 \right\}$ lies on $q = \frac{e}{1-f} \frac{1}{1-f}p$ showing that x and $x_{F'}$ are not comparable.

(Received May 1989. Revised April 1990).

References

Barlow, R.E. (1989). Influence Diagrams In: Johnson, N. & Kotz, S. eds. Encyclopedia of Statistical Sciences (supplemental volume), 72-74, New York: Wiley. Blackwell, D. and Girshick, M.A. (1954). Theory of games and statistical experiments. New York: Wiley.

De Groot, M. (1970). Optimal statistical decisions. New York: McGraw-Hill.