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A modeling procedure for task-based functional magnetic resonance imaging (fMRI) data 
analysis using a Bayesian matrix-variate dynamic linear model (MVDLM) is presented. With 
this type of model, less complex than the more traditional temporal-spatial models, it 
is possible to take into account the temporal and, at least locally, the spatial structures 
that are usually present in this type of data. Thus, every voxel in the brain image is 
jointly modeled with its nearest neighbors, as defined by a Euclidean metric. MVDLM’s 
have been widely used in applications where the interest lies in performing predictions 
and/or analysis of covariance structures among time series. However, in this context, the 
interest is rather to assess the dynamic effects related to voxel activation. In order to do 
so, two algorithms are developed and an already-existing one is adapted to simulate on-
line trajectories related to the state parameter. With those curves or simulated trajectories, 
a Monte Carlo evidence for voxel activation is computed. Through two practical examples 
of auditory- and motor-cortex activations and two different types of assessments using 
resting-state and simulated fMRI data, it is shown that the proposed method can be viewed 
by practitioners as a reliable tool for task-based fMRI data analysis. Despite the assessments 
and applications being illustrated just for a single-subject analysis, a description is given of 
how general group analysis can be implemented, exemplified with a group analysis for 21 
subjects.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Magnetic resonance imaging (MRI) is a non-invasive technique that is used to create elaborate anatomical images of 
the human body. Specifically, this technique can be used to obtain detailed brain images that can help to identify different 
types of tissue such as, for example, white matter and gray matter, and can also be used to diagnose aneurysms and tumors. 
Another important facet of this technique is that it can be used to visualize dynamic or functional activity in the brain. Func-
tional Magnetic Resonance Imaging (fMRI) can be described as a generalization of the MRI technique, where the focus is not 
just one high-resolution image of the brain, but rather a sequence of low-resolution images that allows for identification, 
at least in an indirect way, of neuronal activity through the blood-oxygen-level-dependent (BOLD) contrast (Poldrack et al., 
2011). The sequence of MRI images is obtained using an MRI scanner, essentially a huge magnet, which detects activity in 
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the brain’s different regions by tracing blood flows. Statistical models are very useful for analyzing the post-processed data 
that compose the sequence of images obtained in an fMRI experiment. The most popular statistical model used to identify 
a brain-region reaction to an external stimulus is the normal regression linear model, usually known as the General Linear 
Model (GLM) in the fMRI literature ((Friston et al., 1994), (Beckmann et al., 2003)), which assumes spatiotemporal inde-
pendence among the data, an unrealistic assumption that can lead to incorrect inference. For instance, Eklund et al. (2016)
evaluate the most common software packages (SPM, FSL and AFNI) for fMRI analysis, which have the GLM implemented as 
one of their analysis tools. Specifically, they evaluate that model for group analysis using real resting-state data and they 
find that, for a nominal family-wise error rate of 5%, parametric statistical methods are shown to be conservative for voxel-
wise inference and invalid for cluster-wise inference. However, the GLM is not the only alternative to model task-based fMRI 
data, there are other alternatives such as Bayesian models. Those Bayesian alternatives usually account for the spatiotempo-
ral structure present in this type of data. For example, Zhang et al. (2016) propose a spatiotemporal nonparametric Bayesian 
approach to model both individual and group stages in one-step modeling. For posterior inference, they implement both 
a Markov Chain Monte Carlo (MCMC) algorithm and a suitable variational Bayes algorithm. Eklund et al. (2017) propose 
a Bayesian heteroscedastic GLM with autoregressive linear noise and heteroscedastic noise innovations for single-subject 
fMRI analysis. They develop an efficient MCMC algorithm that allows for variable selection among the regressors. Bezener 
et al. (2018) propose a Bayesian spatiotemporal modeling for single-subject fMRI analysis. Their modeling includes a novel 
areal model to parcel voxels into clusters and also use an MCMC algorithm for posterior inference. Yu et al. (2018) propose 
a Bayesian variable-selection approach to model complex-valued fMRI data. They develop their models applying complex-
valued spike-and-slab priors on the parameters associated with brain activation and perform posterior inference via MCMC 
algorithms. Those methods are just some of the most recent works published in the field. See Zhang et al. (2015) and 
Bowman (2014) for a more complete review of statistical methods for fMRI data analysis. In this work, we propose local 
spatiotemporal Bayesian modeling for single-subject task-based fMRI data analysis and describe how more general group 
analysis can be implemented. However, here we do not resort to the traditional spatiotemporal models that are usually 
used to model fMRI data in the Bayesian context. Instead, we use a matrix-variate dynamic linear model (MVDLM) (see 
(West and Harrison, 1997, p. 581) for more details about these types of models). Specifically, we employ the type of models 
proposed by Quintana (1985) and Quintana (1987) in order to model the BOLD response related to block- and event-related 
experiments (see Kashou (2014) for a detailed explanation of these kinds of designs). Then, with this type of modeling, 
we can easily account for the temporal dependence present in this kind of data through the state or evolution equation. It 
also allows us to obtain closed-form posterior distributions for the parameters of interest and avoid the burden of MCMC 
algorithms or approximations to the posterior distribution. In most of the literature of fMRI data analysis, when a researcher 
wants to model the spatial dependencies, slices of the brain image are taken as the cluster of voxels for that purpose (see, 
for example, Friston and Penny (2003) and some of the references cited above). This approach can fail to be appropriate 
because there are nearest voxels (from slices located above and below) that the spatial modeling excludes, therefore dis-
carding important information. Bearing this in mind and even though we take a voxel-wise approach, we model every voxel 
jointly with its nearest neighbors. Thus, we take advantage of the resulting covariance structure on the simulation process 
of on-line trajectories related to the state parameter, which are used to perform the voxel-wise inference related to brain ac-
tivation. This is what we call local spatiotemporal modeling. To define the clusters or neighborhoods related to every voxel, 
we just employ a Euclidean distance. Thus, the modeler has to define a fixed distance r and all the voxels lying within that 
distance will be considered part of the cluster. This approach is not absent from possible criticism for excluding distant vox-
els. However, modeling the covariance structure among distant voxels is usually addressed on connectivity problems, and in 
this work, our aim is modeling task-based fMRI data. Before explaining how this modeling is used to detect brain activation, 
it is worth mentioning that most of the work related to MVDLM has been devoted to forecasting and analyzing covariance 
structure across several time series (Quintana and West (1987), Aguilar and West (2000), Fei et al. (2011)), however not 
much work has been developed regarding the inference of effect sizes related to regressors in an MVDLM. A good example 
of (univariate) dynamic linear models (DLM) applied in the context of fMRI data analysis is the work of Ho et al. (2005), 
where they propose a modeling procedure to tackle the problem of connectivity between brain regions. Despite defining a 
prior measure on the regressors’ coefficient related to the expected BOLD response, their approach is not fully Bayesian. For 
instance, the connectivity analysis parameters are estimated using the EM algorithm, and their standard errors are obtained 
via Bootstrap estimation, which makes the estimation process more challenging. Despite obtaining on-line estimated trajec-
tories of the state parameter related to the task activation, they do not offer or suggest how to evaluate the significance of 
the dynamic regression coefficient in the context of a brain reaction. (West and Harrison, 1997, p. 280) briefly mention how 
to perform inference about the dynamic regression coefficient or state parameter, but only for a particular time t within the 
interval of observed time. In the case of an fMRI modeling, we would like to perform inference on the state parameter for 
an entire interval of time at once. For that purpose, we propose three algorithms to draw on-line estimated trajectories of 
the state parameter and thus compute a measure of evidence via Monte Carlo integration. With that measure of evidence, 
we can perform inference about the state parameter or equivalently, in the context of task-based fMRI modeling, about brain 
activation. One algorithm is just an implementation of a forward-filtering-backward-sampling algorithm that was suggested 
by Frühwirth-Schnatter (1994) to draw state parameters for univariate dynamic linear models. In this matrix-variate setting, 
we use the same idea, but instead of using data augmentation to estimate individual parameters for the covariance ma-
trix related to the state or evolution equation, we use discount factors to deal with those quantities (Ameen and Harrison 
(1985)). The other two algorithms can be described as forward-sampling schemes, in the sense that here we do not resort to 
2



J. Cardona Jiménez and C.A. de B. Pereira Computational Statistics and Data Analysis 163 (2021) 107297
the filtering distributions and just use the posterior distributions computed at each observed time t . Briefly describing our 
modeling, at the individual stage, an MVDLM is fitted for every subject in the sample, and analysis such as brain activation 
and/or contrast between tasks can be performed using any of the algorithms proposed in this work. At the group stage, 
the individual posterior distributions for the state parameters are combined in a suitable way, obtaining new distributions 
that represent the updated information for the group effect. In this way, all of the analysis usually performed in an fMRI 
experiment (brain activation, task comparison, and group comparison) can be performed again by using any of the three 
algorithms proposed in this work. In order to show the performance of our method, we present two real-data examples 
related to auditory and motor task experiments respectively. We also assess our method in two ways. In the first, we follow 
the same approach as in Eklund et al. (2016) using resting-state fMRI data from healthy controls, obtained from the 1000 
Functional Connectomes Project (Biswal et al., 2010). Here we define a fictitious stimulus and seek the rate of false positives 
given the null hypothesis of no brain reaction. The second way we assess our method is using simulated data obtained from 
the R package neuRosim (Welvaert et al., 2011).
In the next section, we give a brief description of the matrix-variate dynamic linear model and its posterior distribution un-
der a matrix normal/inverse Wishart prior distribution. We also describe the modeling of the BOLD response using this type 
model for single and group analysis. Section 3 describes the three algorithms and computation of Monte Carlo evidence for 
voxel activation. In section 4, two examples for block- and event-related designs are presented to illustrate the performance 
of our proposal. In section 5, an assessment is performed to evaluate the capacity of our method both to correctly identify 
true-positive activations and to deal with false-positive activations. In the final section, we present some concluding remarks 
and potential open problems for future development.

2. MVDLM and fRMI modeling

The general theory of the MVDLM is presented in Quintana (1985), Quintana (1987) and West and Harrison (1997). 
Despite this model having been conceived for forecasting, in this work it is used for a different purpose: modeling fMRI 
data related to block- and event-related designs through a regression structure in order to identify brain reaction. In other 
words, we focus our interest on the estimation of, and inference on, the state parameter. Suppose we have a q × 1 vector 
Yt , which can be modeled in terms of observation and evolution or state equations as follows.

Observation: Y′
t = F′

t�t + ν ′
t

Evolution: �t = Gt�t−1 + �t,
(1)

where for each t we have a q × 1 vector νt of observational errors, a p × q matrix �t of state parameters, and a p × q
matrix �t of evolution errors. It is also supposed that ν ′

t , �t and �t−1 are independent (with ν ′
t and �t independent over 

time). The 1 × p and p × p matrices F′
t and Gt respectively are common to each of the q univariate DLMs. The covariates 

related to the design being used, either a block- or an event-related design, as well as other characteristics of the subjects, 
can be included in the columns of F′

t . It is supposed that νt ∼ Nq [0, Vt�], independently over time, where � defines the 
cross-sectional covariance structure for the multivariate model and Vt is a known observational scale factor. For the random 
matrix �t the distribution is given by �t ∼ Npq [0,Wt ,�], a matrix-variate normal distribution with mean matrix 0, left 
p × p variance matrix Wt and right variance matrix � (Dawid (1981)). It is also supposed that the initial prior for �0 and 
� is matrix normal/inverse Wishart, (�0, �|D0) ∼ NW −1

n0
[m0,C0,S0], for some known defining parameters m0, C0, S0 and 

n0 ((Quintana, 1987)[Chapter 3]). Dt = {Y0, Y1, . . . , Yt} are the data observed at time t . The main justification for the normal 
model for the response variable and normal/inverse Wishart for the unknown quantities is conjugacy, which allows us to 
obtain a closed-form expression for the posterior distribution. However, even in contexts where conjugacy is not attained, 
like in some of the references cited above, the Gaussian model for both responses and parameters is commonly assumed 
in the context of fMRI modeling and has been shown to work in practice. Nevertheless, it is worth mentioning there are 
non-Gaussian alternatives for both the model (1) and in the field of fMRI data analysis. The interested reader can find more 
about these models in West et al. (1985); Gamerman (1998) and Wegmann et al. (2017) respectively.

2.1. Voxel-wise individual analysis

One of the main objectives in an fMRI experiment is to identify a brain reaction in response to some controlled external 
stimuli, in other words, to look for changes in the BOLD signal related to some experimental manipulation. In order to do 
that, one can use a block design, an event-related design, or possibly even a new design from the composition of those two 
(Kashou (2014)). The modeling we propose here relies on something called the expected BOLD response, which is obtained 
as the convolution of the stimulus time series f , which is obtained from the design being used, and the hemodynamic 
response function h (HRF), which can be interpreted as the picture over time of the change of the BOLD signal. In the 
examples and analysis presented here we use the canonical HRF, which is defined as the difference between two gamma 
densities. However, it is worth mentioning that any other form from the available options for the HRF can be used. This 
subject is discussed in depth in Poldrack et al. (2011) and Penny et al. (2011). In general, the expected BOLD response can 
be obtained as follows:
3
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x(t) = (h ∗ f )(t) =
∫

h(τ ) f (t − τ )dτ . (2)

Thus, the aim is to identify the fMRI time series that matches the expected BOLD response. For that purpose, we model 
the observed BOLD response as a linear function of the expected BOLD response using the model (1).

2.1.1. Individual modeling
Let y∗(z)

[i, j,k],t,1 and x(z)(t) be the observed and expected BOLD response, respectively, at brain position {i, j, k}, time t , and 
subject z, for i = 1, . . . , d1, j = 1, . . . , d2, k = 1, . . . , d3, t = 1, . . . , T and z = 1 . . . , Ng . Something that can be noticed from 
this last definition is that x(z)(t) is supposed to be the same for all the locations in the brain image, which means it is 
assumed that the BOLD response is the same in all brain regions. This may be an unrealistic assumption, but it is one that 
works well in practice. Let the vector

Y(z)
[i, j,k],t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y∗(z)
[i, j,k],t,1

y(z)
[i+1, j,k],t,2

y(z)
[i−1, j,k],t,3

y(z)
[i, j+1,k],t,4

y(z)
[i, j−1,k],t,5

y(z)
[i, j,k+1],t,6

y(z)
[i, j,k−1],t,7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1×q

, (3)

represent the cluster or neighborhood of size q = 7 of the voxel at position {i, j, k} and time t . Thus, we model Y(z)
[i, j,k],t

using the model (1), with Gt = Ip and F′ (z)
t = (x(z)

1 (t), . . . , x(z)
p (t)), where x(z)

1 (t), . . . , x(z)
p (t) are related to different types of 

stimuli or tasks performed in the fMRI experiment. What we intend with this type of modeling is to capture the covariance 
structure within the cluster of voxels through the matrix �(z) . The criterion to define the cluster form is based on the 
Euclidean distance, where the distance between voxel V ∗ and neighboring voxel V∼ is given by d(V ∗, V∼) ≤ r. In Fig. 1
(right panel), we can see a graphical illustration of a neighborhood of voxels related to the observed BOLD response vector 
(3) and its corresponding matrix parameter on equation (4), where r = 1 and consequently q = 7. In an R package (R Core 
Team (2018)) where the method proposed in this work has been implemented, a range of different r values can be set 
by the users: r = 1, 2, 3, 4, which consequently leads to q = 7, 19, 27, 33. This package is available at https://github .com /
JohnatanLAB /BayesDLMfMRI _DataAndArticle.

�
(z)
[i, j,k],t =

⎛
⎜⎜⎝

θ
∗(z)
[i, j,k],t,1,1 θ

(z)
[i, j,k],t,1,2 θ

(z)
[i, j,k],t,1,3 θ

(z)
[i, j,k],t,1,4 θ

(z)
[i, j,k],t,1,5 θ

(z)
[i, j,k],t,1,6 θ

(z)
[i, j,k],t,1,7

...
...

...
...

...
...

...

θ
∗(z)
[i, j,k],t,p,1 θ

(z)
[i, j,k],t,p,2 θ

(z)
[i, j,k],t,p,3 θ

(z)
[i, j,k],t,p,4 θ

(z)
[i, j,k],t,p,5 θ

(z)
[i, j,k],t,p,6 θ

(z)
[i, j,k],t,p,7

⎞
⎟⎟⎠ . (4)

For the rest of the article, we change the notation for the location subscript from [i, j, k] to v .

Posterior inference

Under the assumptions and prior distributions defined above and following the results in Dawid (1981), it can be shown 
that the joint posterior distribution of the state parameter �(z)

v,t and the covariance matrix �(z)
v is given by

(�
(z)
v,t,�

(z)
v |D vt) ∼ NW −1

nt
[m(z)

v,t ,C(z)
v,t,S(z)

v,t], (5)

with

m(z)
v,t = m(z)

v,t−1 + A(z)
v,t e′ (z)

v,t ,

C(z)
v,t = C(z)

v,t−1 + W(z)
v,t − A(z)

v,t A′ (z)
v,t Q (z)

v,t ,

nt = nt + 1 and S(z)
v,t = n−1

t [nt−1S(z)
v,t−1 + e′ (z)

v,t e(z)
v,t/Q (z)

v,t ],
where

Q (z)
v,t = Vt + F′ (z)

t [C(z)
v,t−1 + W(z)

v,t]F(z)
t ,

A(z)
v,t = [C(z)

v,t−1 + W(z)
v,t]F (z)

t /Q (z)
v,t ,

and
4
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Fig. 1. Graphical illustration of a neighborhood of voxels, for r = 1.

e(z)
v,t = Y(z)

v,t − f(z)
v,t .

f(z)
v,t is the mean of the predictive distribution p(Y(z)

v,t |D(z)
v,t−1). Hence, the marginal posterior distribution for the state 

parameter is given by

(�
(z)
v,t |D(z)

v,t) ∼ Tnt [m(z)
v,t ,C(z)

v,t,S(z)
v,t], (6)

which is known as a matrix T distribution with p × q mean matrix m(z)
v,t , p × p left variance matrix C(z)

v,t , and q × q right 
variance matrix S(z)

v,t . To deal with the unknown matrix parameter W(z)
v,t , we adopt the discount model approach proposed 

by Ameen and Harrison (1985) in the same manner as in West et al. (1985). We express the system variance matrix as 
W(z)

v,t = BtC(z)
v,t−1Bt − C(z)

v,t−1, where Bt is a p × p diagonal matrix of positive discount factors 1/β
1/2
it , for i = 1, . . . , p and 

0 < βit ≤ 1. As we show in one of the examples below, those discount factors are a key component of this modeling in the 
sense that they can affect the sensitivity of detection of brain activation.
A reasonable approximation for the posterior distribution (6) when nt ≥ 30 is given by

(�
(z)
vt |D(z)

v,t)
approx∼ Npq[m(z)

v,t,C(z)
v,t ,S(z)

v,t]. (7)

We have two main considerations to justify working only with posterior distributions for nt ≥ 30. The first is that as we 
use vague prior distributions at t = 0, the sequential update process takes some period of time before reaching a posterior 
distribution dominated by the data. Thus, the first posterior distributions (i.e., for t < 30) could be considered irrelevant for 
the analysis. The second consideration is simply that dealing with normal distributions simplifies the mathematical work 
when dealing with linear combinations, which are quite common in this work when inference is performed on the matrix 
parameter �(z)

v,t to detect brain activation.
As mentioned above, a brain activation related to the stimulus or task l (for l = 1, . . . , p) is identified when the expected 
BOLD response (x(z)

l (t)) matches the observed BOLD response (Y(z)
v,t ). In other words, a brain activation in the cluster of 

voxels v related to the l-th task or stimulus is equivalent to the l-th row of �(z)
v,t being positive. In this sense, we define 

three different ways to evaluate brain activation, which are related to the following variables obtained from the components 
of �(z)

v,t

Marginal effect: θ
∗(z)
v,t,l = θ

∗(z)
v,t,l,1, (8)

Average cluster effect: θ̄
(z)
v,t,l = 1

q

[
θ

∗(z)
v,t,l,1 +

q∑
n=2

θ
(z)
v,t,l,n

]
, (9)

Joint effect: θ
(z)
v,t,l =

(
θ

∗(z)
v,t,l,1, θ

(z)
v,t,l,2, . . . , θ

(z)
v,t,l,q

)
. (10)

The marginal effect (8) is when just a marginal distribution from (7) is considered, in other words when the correlation 
captured by S(z)

v,t is ignored. It can be shown that under particular considerations a DLM is equivalent to a traditional static 
5



J. Cardona Jiménez and C.A. de B. Pereira Computational Statistics and Data Analysis 163 (2021) 107297
regression linear model (or GLM in the fMRI context), so an analysis using marginal effects for t = T can yield results quite 
similar (or even the same when W(z)

v,t = 0) to those obtained when performing a voxel-wise approach using a GLM. The 
average (9) and joint (10) effects are more interesting in the sense that they take advantage of the information contained 
within the entire cluster of voxels. From the properties of the matrix normal distribution, the distributions of (8), (9) and 
(10) are given by

θ
∗(z)
v,t,l|D∗(z)

v,t ∼ N(m∗(z)
v,t,l,1, C (z)

v,t,l,l S
(z)
v,t,1,1), (11)

θ̄
(z)
v,t,l|D(z)

v,t ∼ N(m̄(z)
v,t,l, S̄(z)

v,t,l), (12)

θ
(z)
v,t,l|D(z)

v,t ∼ Nq(m
(z)
v,t,l, C (z)

v,t,l,l S (z)
v,t), (13)

where C (z)
v,t,l,l and S(z)

v,t,n,n are the elements on the main diagonal of the matrices C (z)
v,t and S (z)

v,t respectively, m̄v,t,l =
1
q

q∑
n=1

mv,t,l,n , S̄ v,t,l = 1
q2

[
q∑

n=1
Cv,t,l,l S v,t,n,n + ∑

n �=n′
Cv,t,l,l S v,t,n,n′

]
, and D∗(z)

v,t is the data related to the first component of the 

vector (3). With the distributions (11), (12) and (13), at least to our knowledge, it is only possible to perform inference 
(about (8), (9) and (10)) for a particular fixed time t , which in the context of fMRI means inference related to only one 
brain image. However, in task-based fMRI data analysis, it is more relevant to perform an inference procedure at once for 
the entire group of brain images just to understand brain dynamics related to the controlled stimulation presented on the 
fMRI experiment. In the next section, we present three algorithms that allow us to draw dynamic trajectories of the state 
parameter related to any of (8), (9) and (10) and use those trajectories to compute a measure of evidence for voxel activa-
tion on the entire observed interval of brain images. But before we get there, we first offer a brief explanation of how to 
get versions of (8), (9) and (10) for the group-stage analysis.

2.2. Voxel-wise group analysis

Now we describe the task-based fMRI group analysis where the focus is to detect an average group activation (single-
group analysis) and/or compare voxel activation between two groups (e.g., patients vs. controls). Here we take any of the 
posterior distributions (11), (12), or (13), depending on the case, as an input for this stage. For instance, let us suppose 
that a sample of Ng subjects is part of an fMRI experiment where p stimuli are presented. Then, taking advantage of the 
properties of normal distribution, we obtain the following distributions for the group stage:

Marginal group effect: θ̄
∗(g)
v,t,l ∼ N(m̄∗(g)

v,t,l , S̄(g)
v,t,l), (14)

Average cluster group effect: ¯̄θ(g)
v,t,l ∼ N( ¯̄m(g)

v,t,l,
¯̄S(g)

t,l ), (15)

Joint group effect: θ̄
(g)

v,t,l ∼ Nq(m̄
(g)
v,t,l, S̄

(g)
t ), (16)

where

m̄∗(g)
v,t,l = 1

Ng

Ng∑
z=1

m∗(z)
v,t,l,1, S̄(g)

v,t,l = 1
N2

g

ng∑
z=1

C (z)
v,t,l,l ∗ S(z)

v,t,1,1,

¯̄m(g)
v,t,l = 1

Ng

ng∑
z=1

m̄(z)
v,t,l,

¯̄S(g)
v,t,l = 1

N2
g

Ng∑
z=1

S̄(z)
v,t,l,

m̄(g)
v,t,l = 1

Ng

Ng∑
z=1

m(z)
v,t,l, and S̄

(g)
v,t = 1

N2
g

ng∑
z=1

C (z)
v,t,l,l S (z)

v,t .

Let us suppose now that there are two groups we want to compare. For the patient group (group A), we have N A

individuals and for the control group (group B), we have NB individuals. If, for instance, we decide to compare the joint 
effect between the two groups, the most obvious way to do so is by computing the distribution for the variable θ̄ (AB)

v,t,l =
θ̄

(A)

v,t,l − θ̄
(B)

v,t,l , which in this case is given by Nq(m̄
(A)

v,t,l − m̄(B)

v,t,l, S̄
(A)

t + S̄
(B)

t ). The analysis is analogous for the marginal and 
average effects. As mentioned previously, in this setting, it is only possible to perform any type of inference for a particular 
fixed time t . In the next section, we present three algorithms that help us to overcome this limitation.

3. Algorithms

In this section we present three different algorithms to draw on-line trajectories of the state parameter. The first two 
algorithms only depend on the posterior distribution obtained at each time t , whereas the third one is based on the filtered 
6
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or smoothing distribution p(�
(z)
v,t− j, �

(z)|D(z)
vt ), for 1 < j ≤ t . To obtain this distribution, it is necessary to take the current 

information to be filtered back to previous time points. In other words, this distribution uses all current information avail-
able at time point t to smooth the information of the state parameter at the previous time points t − j. For more details 
about the concepts related to filtered or smoothing distributions in the context of DLM, see West and Harrison (1997) and 
Frühwirth-Schnatter (1994). For the examples and assessment presented in sections 4 and 5, we implement model (1) and 
these algorithms in the R package mentioned above, with the help of the parallel and RcppArmadillo (Eddelbuettel and 
Sanderson (2014)) packages to speed up computation time. We also make use of the oro.nifti (Whitcher et al., 2011) and 
neurobase (Muschelli, 2018) packages to import the fMRI data from and export them to .nii.gz format, and to plot the ev-
idence activation maps, respectively. The FLS software package (Jenkinson et al. (2012)) is used when preprocessing of the 
fMRI data is needed.

3.1. Forward estimated trajectories sampler or FETS algorithm

Suppose we are interested in detecting brain activation using the distribution (12). For that purpose, we define the 
on-line estimated trajectory of θ (z)

v,t,l as the vector

γ
(z)
v,l = {E(θ

(z)
v,t1,l|D(z)

v,t1
), E(θ

(z)
v,t2,l|D(z)

v,t2
), . . . , E(θ

(z)
v,T ,l|D(z)

v,T )},
for t1 ≥ 30. In the case of a significant match between the expected and observed BOLD responses, one would expect every 
component of the vector γ (z)

v,l to be positive. In this sense, we must compute a measure of evidence for brain activation at 
voxel v , such as p(γ

(z)
v,l > 0). For instance, if p(γ

(z)
v,l > 0) > α, where α is a threshold defined by the user (e.g., α = 0.95), 

then one would conclude that there is significant evidence of a match between the expected and the observed BOLD 
responses. In other words, there is a brain activation related to the l-th stimulus or task in the cluster related to the voxel 
v . The functional variable γ (z)

v,l can be defined in the same way when using either (11) or (13). Thus, taking advantage of 
the sequential update process related to the posterior distribution (7), we build an algorithm to draw γ (z)

v,l variables. We call 
it Forward Estimated Trajectory Sampler (FETS).
For p(θ

(z)
v,t,l|D(z)

vt ) being any of (11), (12) or (13) and s(z)
v,t a posterior estimate related to �v,t :

Algorithm FETS.
1: procedure
2: for k = 1 . . . N ,
3: Draw θ(z,k)

v,t,l from p(θ
(z)
v,t,l|D(z)

v,t ) for t = 1, . . . , T and l = 1, . . . , p
4: Draw ν(z,k)

v,t from Nq[0, s(z)
v,t ] for t = 1, . . . , T

5: Compute Ỹ (z,k)
v,t =

p∑
l=1

θ
(z,k)

v,t,l x(z)
l (t) + ν

(z,k)
v,t for t = 1, . . . , T

6: Compute p(θ
(z,k)

v,t,l |D̃(z)
v,t ) for t = 1, . . . , T , where D̃(z)

v,t = {Ỹ (z,k)
v,1 , . . . , ̃Y (z,k)

v,t }
7: Let γ (z,k)

v,l = {E(θ
(z,k)

v,1,l |D̃(z)
v,1), . . . , E(θ

(z,k)

v,T ,l|D̃(z)
v,T )} for l = 1, . . . , p

8: end procedure

Then a measure of evidence for the activation of voxel v is computed as

p(γ
(z)
v,l > 0) = E(1

(γ
(z)
v,l >0)

) ≈

N∑
k=1

1
(γ

(z,k)

v,l >0)

N
, (17)

where 1(A) is the indicator function related to the event A.

The estimate s(z)
v,t depends on the choice of p(θ

(z)
v,t,l|D(z)

v,t). Thus, for any of (11), (12) or (13), s(z)
v,t can be replaced by S(z)

v,t,1,1, 

1
q2

[
q∑

n=1
S(z)

v,t,n,n + ∑
n �=n′

S(z)
v,t,n,n′

]
or S(z)

v,t , respectively. It is also possible to compute a measure of evidence for a contrast 

between two different tasks or stimuli. For instance, suppose one is interested in the comparison γ (z)
v,l > γ

(z)
v,l′ . In other 

words, one wants to investigate whether the brain activation related to the task l is stronger than that related to task l′ . 
To answer that question, one can compute p(γ

(z)
v,l − γ

(z)
v,l′ > 0) taking the algorithm’s output in step 6 and using Monte 

Carlo integration analogously to (17). In addition to being used to compute measures of evidence for brain activation, the
FETS algorithm also generates other useful outputs such as {Ỹ (z,k)

v,1 , . . . , Ỹ (z,k)
v,t } and {S(z,k)

v,1 , . . . , S(z,k)
v,t }, which could eventually 

be used to build model-assessment methods and/or to approach the connectivity problem between different brain regions. 
These issues are discussed in more detail in the Future Work section. The use of the FETS algorithm for the group case is 
straightforward and requires only the use of any of the distributions (14), (15), or (16) playing the role of p(θ

(z) |D(z)
v,t) and 
v,t,l

7



J. Cardona Jiménez and C.A. de B. Pereira Computational Statistics and Data Analysis 163 (2021) 107297
an appropriate estimate for observational noise variance �(z)
v,t , which in this case can be computed as S̄

(g)

v,t = 1
N2

g

ng∑
z=1

S (z)
v,t . 

However, the covariates related to F′ (z)
v,t must be the same for all the subjects. This is a common feature in many fMRI 

experiments as we will see in one of the examples presented below. However, some designs, such as event-related designs, 
occasionally require random sequences of stimuli, which lead to having different F′ (z)

v,t matrices for each subject in the 
sample. To overcome this limitation, we propose a simpler second algorithm, which does not depend on F′ (z)

v,t and can also 
be used to perform inference about the state parameter.

3.2. FSTS algorithm

The evolution equation in (1) relates to the state parameter at time t with its own value at time t −1. We take advantage 
of that Markovian property, some prior-posterior estimates, and the concept of discount factors to develop a forward sampler 
algorithm, which we call Forward State Trajectories Sampler (FSTS).

Algorithm Forward state trajectories sampler.
1: procedure
2: for k = 1 . . . N
3: Compute W(z)

v,t = BtC(z)
v,t−1Bt − C(z)

v,t−1 for t = 1, . . . , T
4: Draw �(z,k)

v,t from Npq[0, W(z)
v,t , S (z)

v,t ] for t = 1, . . . , T
5: Draw �(z,k)

v,t−1 from Npq[m(z)
v,t−1, C(z)

v,t−1, S(z)
v,t−1] for t = 1, . . . , T

6: Compute �(z,k)
v,t = �

(z,k)
v,t−1 + �

(z,k)
v,t for t = 1, . . . , T

7: Let �̂(z,k)
v = {�(z,k)

v,1 , . . . , �(z,k)
v,T }

8: end procedure

From the vector �̂(z,k)
v = {�(z,k)

v,1 , . . . , �(z,k)
v,T }, we can define three different types of sub-vectors related to the variables 

in (8), (9) and (10). For instance, if one is interested in the joint effect (10), then θ̂
(z)
v,l = {θ (z)

v,1,l, . . . , θ
(z)
v,T ,l}, for l = 1, . . . , p. 

Then for the task l one can compute an activation probability for the voxel v as

p(θ̂
(z)
v,l > 0) = E(1

(θ̂
(z)
v,l>0)

) ≈

N∑
k=1

1
(θ̂

(z,k)

v,l >0)

N
. (18)

The probability of activation in (18) can be computed analogously for (8) and (9) just by taking the appropriate compo-
nents from �(z)

v .

3.3. Forward-filtering-backward-sampling algorithm

Following the same idea as in Frühwirth-Schnatter (1994), we now present a matrix-variate version of the forward-
filtering-backward-sampling algorithm. It is worth mentioning that in Frühwirth-Schnatter (1994), a data-augmentation 
approach is used to address problems related to the estimation of the covariance matrix W(z)

v,t . Here, instead, we apply 
a discount-factor approach as it is described above. Then using Bayes’s theorem and given some assumptions of conditional 
independence related to the MVDLM, it can be shown that

p(�
(z)
v,t− j|�(z)

v,t− j+1,�
(z), D(z)

v,t) ∝ p(�
(z)
v,t− j|�(z), D(z)

v,t− j) ∗ p(�
(z)
v,t− j+1|�(z)

v,t− j,�
(z), D(z)

v,t− j),

which leads to

(�
(z)
v,t− j|�(z)

v,t− j+1,�
(z), D(z)

v,t) ∼ Npq(m∗(z)
v, j ,C∗(z)

v, j ,�(z)),

where

m∗(z)
v, j = m(z)

v,t− j + C(z)
v,t− j(BtC(z)

v,t− jBt)
−1(�

(z)
v,t− j+1 − m(z)

v,t− j)

and

C∗(z)
v, j = C(z)

v,t− j − C(z)
v,t− j(BtC(z)

v,t− jBt)
−1C(z)

v,t− j .

A proof of this result is given in Appendix A.
The forward-filtering-backward-sampling algorithm for the matrix-variate case is given by
8
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Algorithm Forward-filtering-backward-sampling.
1: procedure
2: for k = 1 . . . N
3: Draw �(z,k) from W −1

nt
(St )

4: For j = 0 draw �(z,k)
v,t from Npq(m(z)

v, j, C
(z)
v, j, �(z,k))

5: For 1 ≤ j < t draw �(z,k)
v,t− j from (�(z)

v,t− j |�(z,k)
v,t− j+1, �(z,k), D(z)

v,t )

6: Let �̂(z,k)
v = {�(z,k)

v,1 , . . . , �(z,k)
v,t }

7: end procedure

Using Monte Carlo integration as in (18), one can test brain activation by simply taking the appropriate components from 
�

(z)
v .

4. Examples

In this section we present two examples of modeling real fMRI data using model (1) and applying the three algorithms 
presented above in order to detect brain reaction. In the first example, Pernet et al. (2015) perform an experiment in which 
an auditory stimulus, following a block design, is presented in order to find the locations of “temporal voice areas”. In that 
work, Pernet et al. (2015) model the voice and non-voice sounds separately, whereas here, for the sake of simplicity, we 
merge both vocal and non-vocal sounds in a single block design as it is shown in Fig. 2. With the aim of showing the 
performance of the three algorithms proposed in this work, we present the analysis for two single voxels (an active and 
a non-active voxel) and activation maps for the entire brain. In the second example, Bazán et al. (2015) perform a finger-
tapping task experiment, following an event-related design, which should lead to an activation of the motor cortex. In both 
examples, we run an analysis for one single subject and use the same fixed value for the discount factor βit = 0.95 and 
vague priors (zero mean and large variance) for the state parameter �(z)

v,0, as well as for �(z)
v with S (z)

vo = Iq and n0 = 1. 
Nevertheless, it is possible to define informative prior distributions by taking advantage of the sequential updating process 
in the MVDLM. For instance, let us suppose you have an fMRI database for one individual from a pilot sample and fit the 
model (1) for that data. Then you get the posterior distribution (6) for tp = 1, . . . , T p and set the hyperparameters of the 
new experiment as �(z)

v,0 = �
(z)
v,T p

, S (z)
v,0 = S (z)

v,T p
and n0 = np , where np is the number of MRI images in the pilot sample. 

This way of including prior information in the analysis is actually useful in cases with small samples (or just a few MRI 
images) where the prior information can play a relevant role in the analysis. However, this is not a common case in fMRI 
data analysis, where there are usually hundreds of images available, as in the examples presented below.

Auditory cortex activation

In Figs. 3 and B.9, we can see the results after applying the FETS, FSTS and FFBS algorithms to both active and non-active 
voxels, which are shown in Fig. 2. Considering that this is an experiment where only sound stimulation is applied, all three 
algorithms yield the results that are expected for voxels located in the temporal cortex and for voxels outside that region. 
For the active voxel, the on-line trajectories related to the state parameter lie above zero, which can be interpreted as a 
match between the expected and observed BOLD responses. For non-active voxels, the simulated on-line trajectories lie 
around zero, which yields lower evidence of activation (e.g., << 0.95) according to the Monte Carlo evidence defined by 
(17) and/or (18). We also analyze extreme cases for non-active voxels as presented in Fig. 4, where the density presented 
in panel (b) represents the posterior distribution for the state parameter at time t = T . The inference obtained using only 
that distribution will yield results quite similar to those obtained when using the GLM (see (West and Harrison, 1997, page 
80) and (Quintana, 1987, page 20)). Thus, the evidence of activation when it is computed using (17) correctly identifies 
that that voxel is non-active (<< 0.90), whereas when the last distribution at time t = T is used, the evidence leads to the 
wrong conclusion, classifying that voxel as active (>> 0.95). In Fig. 5, we present the activation maps for a single subject, 
obtained when applying the FETS, FSTS and FFBS algorithms, respectively. For this example, we consider a voxel as active 
when its computed evidence obtained under any of the three algorithms is greater than 0.95. We also present a parametric 
map obtained when using the General Linear Model (with correction for multiple comparisons using Gaussian random-field 
theory and a cluster significance threshold equal to 0.01), which can be considered the most common approach employed 
by users of statistical techniques for task-based fMRI data analysis. From Figs. 3, 4, and 5, we can see the performance of 
our method in this example, with each of the three algorithms detecting the parietal activation due to sound stimulation. 
From our knowledge and after evaluating these images with some colleagues from the field of radiology, we conclude that 
the FETS algorithm yields better results in terms of a wider parietal activation and fewer (“false”) activations from outside 
the temporal cortex. FFBS also yields good activation maps, but with more activations from outside the temporal cortex. 
FSTS also performs well, but has been shown to be conservative, with almost no possibly false activations detected and 
with a smaller parietal activation. For this example, only the average cluster effect (ACE) distribution (9) is employed as the 
sampling distribution for the state parameter. However, the results are similar when using either the marginal (8) or the 
joint (10) effect distribution.
9



Fig. 2. The top Figure shows the block-design or stimulus function for voice and non-voice sounds and its expected BOLD response. The images on the 
lower left and right show the contrast (or possible match) between the expected and observed BOLD responses for both an active and non-active voxel, 
respectively, on a single subject.

Fig. 3. Simulated on-line trajectories obtained when FETS algorithm is applied to both active (a) and non-active (b) voxels presented in Fig. 2.

Fig. 6 shows the activation maps for a group of 21 subjects when using the FETS and FFBS algorithms. In this group 
scenario, the stimulated regions are much better identified, as is expected in a group analysis. The activation map obtained 
under the FSTS algorithm is similar to that obtained when using the FETS algorithm. Despite both the FETS and FFBS 
algorithms successfully identify the activated regions, there is an interesting aspect to mention from this particular example. 
It can be noticed that the FETS algorithm presents no activated voxels outside the stimulated region, i.e., an activation map 
with a zero rate of false-positive activations. However, this comes at a price because the stimulated region detected when 
J. Cardona Jiménez and C.A. de B. Pereira Computational Statistics and Data Analysis 163 (2021) 107297
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Fig. 4. Simulated on-line trajectories obtained when the FETS algorithm is applied to a non-active voxel (a) and posterior distribution for the state parameter 
at time t = T (b). Results are similar for FSTS and FFBS.

Fig. 5. Voxel-wise analysis for one single subject. The top left figure shows a parametric map obtained via General Linear Model (GLM). The top right and 
lower left and right figures show activation maps related to each of the FETS, FSTS and FFBS algorithms respectively. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)
11
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Fig. 6. Activation maps of 95% for a group of 21 subjects using the FETS and FFBS algorithms under the joint group effect distribution (16).

Fig. 7. Activation maps of 95% obtained using the FETS-ACE algorithm for different values of the discount factor β .

using the FETS is smaller than the region indicated as active when using the FFBS algorithm. This could mean that the 
mechanism that allows the FETS algorithm to discard false-positive activations sharply would also lead to discarding actual 
activations with a weak signal. This and other aspects to explore about the group stage are left for future work.

Motor cortex activation

In Fig. 7, we can see an activation map corresponding to the event-related finger-tapping experiment from Bazán et 
al. (2015), obtained using the FETS algorithm. When the FSTS and FFBS algorithms are applied, they yield similar results, 
successfully identifying the motor cortex activation expected from this experiment. What we aim to highlight with this 
example is the key role played by the discount parameter β . In the modeling we are proposing here, we leave the value of 
β as a free input value defined by the user. However, we can see that the activation map is sensitive to the value set for β . 
From our empirical experience, we recommend values 0.8 < β < 1. However, one possible way to overcome this limitation 
is to run several maps for different β values and use a statistical criterion (e.g., Bayes factor) to select the “appropriate” 
map. In the final section, we discuss this issue in more detail.

5. Assessment of the method

In order to assess the activation maps obtained when the model (1) is fitted and any of the algorithms proposed in this 
work is used to detect voxel activation, we employ two different approaches. For the first type of assessment, we resort to 
simulated data using the R package neuRosim (Welvaert et al. (2011)). The second assessment approach is inspired by the 
work of Eklund et al. (2016), where real data from resting-state experiments are used in order to evaluate the rate of false 
12



Table 1
Percentage of false-positive activations for the fictitious block paradigms B1 and B2.

B1

FETS FSTS FFBS

Source fMRI data Marginal LTT Joint Marginal LTT Joint Marginal LTT Joint

Beijing (198 subjects) 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.41 0.00
Cambridge (198 subjects) 0.01 0.01 0.00 0.00 0.00 0.00 0.39 0.54 0.00
Oulu (103 subjects) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00

B2

FETS FSTS FFBS

Source fMRI data Marginal LTT Joint Marginal LTT Joint Marginal LTT Joint

Beijing (198 subjects) 0.00 0.00 0.00 0.00 0.00 0.00 0.70 1.20 0.01
Cambridge (198 subjects) 0.14 0.21 0.00 0.00 0.00 0.00 1.00 1.40 0.02
Oulu (103 subjects) 0.00 0.00 0.00 0.00 0.00 0.00 1.20 2.10 0.04

positive activations in the entire brain. These two assessments aim to evaluate the performance of the method proposed in 
this article (in terms of false and true activations) rather than compare it with other alternative methods or results from 
other studies.

5.1. Using simulated data

The aim of using simulated data is to evaluate the capacity of our method to detect true voxel activations, which in 
this case are artificially created using the R package neuRosim. Specifically, we create two spherical-shape activations in 
the visual cortex related to a block-design experiment using the function simVOLfmri (see Fig. B.11 in Appendix B). 
In Welvaert et al. (2011), the interested reader can find a detailed explanation on how to simulate fMRI data using the
neuRosim package. In this assessment, we set two different radius sizes (4 and 7) and the same effect size (250) over 
the two activated regions for three different signal-to-noise ratios going from weaker to stronger signals (SNR=3.7, 18, 30). 
In Fig. 8, the ROC graphs are shown for the scenarios studied in this evaluation when using the algorithm FSTS. It can 
be seen that the FSTS algorithm performs well in all the scenarios in terms of false-positive activations, but for the case 
of low SNR it would require lower threshold values than the common 0.95 value in order to identify significant patterns
of true activations. For the case of FFBS (see Fig. B.10 in Appendix B), outstanding performance can be observed even for 
lower SNR values. The performance of the FETS algorithm over all the scenarios is quite similar to that observed with the 
FFBS algorithm. It is worth mentioning that from fMRI real-data problems it is not possible to achieve results such as those 
presented in Figs. 8 and B.10, because, as stated by Eklund et al. (2016), it is obviously very hard to simulate the complex 
spatiotemporal noise that arises from a living human subject in an MR scanner. However, this type of simulation study can 
give us some insight about the capability of the method related to correct identification of true voxel activations.

5.2. Using real data

One of the big challenges for statistical techniques for fMRI data analysis is controlling the rate of false-positive acti-
vations that usually appear on activation maps. For instance, in the case of the GLM, even using some sort of corrections 
for multiple comparisons, the rate of false positives can be as high as 70% (Eklund et al. (2012) and Eklund et al. (2016)). 
Thus, in order to assess the capacity of the method proposed in this work for controlling false activations, we follow the 
same approach as Eklund et al. (2016). Although this approach, like any other method intended to evaluate the performance 
of tools for task-based fMRI data analysis, is not without criticism (Slotnick, 2017), it can be considered a reliable method 
for this purpose (Nichols et al., 2017). The approach consists of the use of real fMRI data, related to resting-state experi-
ments obtained from the 1000 Functional Connectomes Project (Biswal et al., 2010), which are correlated with covariates 
from fictitious stimuli. Hence, all the significant activations detected are interpreted as false-positive activations. This is a 
reasonable assumption in the sense that if one models the observed BOLD signal (Y (z)

v,t ) from a resting-state experiment as 
E(Y (z)

v,t ) = F′
v,t�v,t , where F′

v,t is an (fictitious) expected BOLD signal not related to Y (z)
v,t , what one would expect to find 

is E(�v,t |D v,t)) ≤ 0, which can be interpreted as no existing match between the expected and observed BOLD signals. 
Therefore, we create four fictitious variables related to two block paradigms (B1 (10 s on off), B2 (30 s on off)) and to two 
event-related paradigms (E1 (2 s activation, 6s rest), E2(1 to 4 s activation, 3 to 6 s rest, randomized)). We correlate those 
variables with the fMRI resting data from three different labs (Beijing(198 subjects), Cambridge (198 subjects), Oulu (103 
subjects)), and count the number of (false) significant activations. For the method proposed in this article, this assessment 
is only performed at the individual level to assess its own performance rather than compare it to other models or methods.

In Table 1, we show the assessment results for the variables B1 and B2. E1 and E2 yield similar outcomes. Those results 
are congruent with what is observed in the assessment with the simulated-data and real-data examples shown above. The 
three algorithms present a low rate of false-positive activations, but with less-conservative behavior in the case of FETS and 
FFBS allowing for the detection of weaker BOLD signals. From these assessments using real and simulated data, the examples 
J. Cardona Jiménez and C.A. de B. Pereira Computational Statistics and Data Analysis 163 (2021) 107297
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Fig. 8. Receiver operating characteristics (ROC) graphs obtained under different SNR when using the FSTS algorithm. The intensity bar at the right of the 
graphs represents the different values for the threshold.
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presented above, and other analyses that it is not possible to present here, we would recommend FETS as the best option 
among the three algorithms, not only because of its good performance in terms of weak BOLD signals and false-positive 
activations, but also because its time of execution is 50% faster in comparison with the FFBS and FSTS algorithms.

6. Concluding remarks

In this work we develop an effective and reliable method for statistical analysis of task-based fMRI data, taking into 
account its temporal and (at least locally) spatial features, without the need for the more traditional and complex spatial-
temporal models. We employ an MVDLM, which has shown to be a very flexible type of modeling because of the availability 
of closed-form posterior distributions, discount factors to deal with the variability of the state parameter and the possibility 
of combining the posterior distributions across multiple subjects to perform group analysis. Another important aspect of 
the MVDLM is its relationship with the traditional and broadly known GLM ((West and Harrison, 1997, page 80), (Quintana, 
1987, page 20)), which can help non-statistician practitioners to become more familiar with this type of modeling. We also 
make an important contribution, not just in the context of fMRI modeling, but a general way to perform an assessment 
of dynamic effects on dynamic linear models. To our knowledge, this is something that has been neglected, as mentioned 
above, possibly because of the type of applications and motivations behind MVDLM. In this work, instead of making predic-
tions or analyzing covariance structures among time series, our aim is to assess effect size related to neural activity. Thus 
in order to achieve that using this type of modeling, we propose two new algorithms (FETS, FSTS) and adapt an existing 
one (FFBS) to draw on-line trajectories related to the state parameter. Throughout the examples and assessments presented 
above, one can see that the performance of our method is remarkable, in the sense that it is able to both properly identify 
brain activation under different experimentation conditions and control the rate of false activations. Currently, we are work-
ing on the implementation of an R package for this method, which will be freely available for interested users from the fMRI 
community. The first version of this package will offer CPU-parallelized versions of its analysis to speed up the computation 
time in voxel-wise analysis. And it will add GPU-parallelized implementations for faster analysis in future versions.

It is worth mentioning that with this work we leave some open problems. One of them is the choice of β . In dealing 
with fMRI data from different types of experiments, we have found that setting values 0.8 < β < 1 can work well. But 
instead of setting or tuning a particular value for β , a model selection approach for different β values could be easily 
implemented in order to select the “best” β value according to some statistical criterion such as Bayes factors. Another 
open problem is related to the distance parameter r, for which we believe a sensitivity analysis could be performed in 
order to have a better sense of the behavior of this parameter. In all of the examples and analysis performed in this work, 
we set r = 1. Additionally, in the case of the FETS algorithm, there are some outputs, such as the sequence of covariance 
matrices {S(z,k)

v,1 , . . . , S(z,k)
v,t }, that could be used to build some sort of dynamic graphs to tackle the problem of connectivity 

among brain regions for resting-state fMRI data (see Shen et al. (2010) for a better understanding of this type of analysis). 
Regarding the second stage in task-based fMRI studies, all the analyses presented in this work will be extended to group 
analyses following the ideas presented in section 2.2. Finally, we want to highlight that in this work only a tiny part of 
the rich possibilities offered by the general theory of the DLM’s is explored. Our ideas could be extended to more complex 
model specifications or even to the case of exponential-family dynamic models and nonlinear dynamic models.
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Appendix A

In this section, it is shown in more detail how to obtain the conditional distribution p(�
(z)
v,t− j |�(z)

v,t− j+1, �
(z), D(z)

v,t), which 
is necessary to run the matrix-variate version of the forward-filtering-backward-sampling algorithm. Using Bayes’s theorem, 
that conditional distribution is defined as

p(�
(z)
v,t− j|�(z)

v,t− j+1,�
(z), D(z)

v,t) = p(�
(z)
v,t− j|�(z)

v,t− j+1,�
(z), D(z)

v,t− j)p(Y|�(z)
v,t− j,�

(z)
v,t− j+1,�

(z), D(z)
v,t− j)

p(Y|�(z)
v,t− j+1,�

(z), D(z)
v,t− j)

,

where D(z)
v,t = {D v,t− j, Y}. And given the conditional independence structure assumed in DLMs, Y is independent of the 

previous �(z)
v,t− j , so the terms p(Y|·) cancel. Then, applying Bayes’s theorem to the remaining term

p(�
(z) |�(z)

,�(z), D(z)
v,t) ∝ p(�

(z) |�(z), D(z)
)p(�

(z) |�(z)
,�(z), D(z)

),
v,t− j v,t− j+1 v,t− j v,t− j v,t− j+1 v,t− j v,t− j
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and assuming that �(z) is given, it follows that (�(z)
v,t− j |�(z), D(z)

v,t− j) ∼ Npq[m(z)
v,t− j, C

(z)
v,t− j, �

(z)] and (�(z)
v,t− j+1|�(z)

v,t− j, �
(z),

D(z)
v,t− j) ∼ Npq

[
�

(z)
v,t− j,W(z)

v,t− j+1,�
(z)

]
. Now, from the evolution equation (taking G(z)

v,t− j+1 = I) and assumptions in the 
model (1),(

�
(z)
v,t− j

�
(z)
v,t− j+1

)
=

(
I 0
I I

)(
�

(z)
v,t− j

�
(z)
v,t− j+1

)
, (A.1)

(
�

(z)
v,t− j

�
(z)
v,t− j+1

)
∼ N

((
m(z)

v,t− j
0

)
,

(
C(z)

v,t− j 0

0 W(z)
v,t− j+1

)
,�(z)

)
. (A.2)

From the linear transformation (A.1) and distribution (A.2) it follows that(
�

(z)
v,t− j

�
(z)
v,t− j+1

)
∼ N

((
m(z)

v,t− j

m(z)
v,t− j

)
,

(
C(z)

v,t− j C(z)
v,t− j

C(z)
v,t− j C(z)

v,t− j + W(z)
v,t− j+1

)
,�(z)

)
. (A.3)

Now, from the properties of matrix-variate normal distributions (Dawid, 1981; Quintana, 1987) and applying discount 
factors, it follows that

(�
(z)
v,t− j|�(z)

v,t− j+1,�
(z), D(z)

v,t) ∼ Npq(m∗(z)
v, j ,C∗(z)

v, j ,�(z)),

where m∗(z)
v, j = m(z)

v,t− j + C(z)
v,t− j(BtC(z)

v,t− jBt)
−1(�

(z)
v,t− j+1 − m(z)

v,t− j) and C∗(z)
v, j = Cv,t− j − Cv,t− j(BtC(z)

v,t− jBt)
−1Cv,t− j .

Appendix B

Fig. B.9. Simulated on-line trajectories obtained when FSTS, and FFBS algorithms are applied to both active ((a), (c)) and non-active ((b), (d)) voxels presented 
in Fig. 2.
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Fig. B.10. Receiver operating characteristics (ROC) graphs obtained under different SNR when using the FFBS algorithm. The intensity bar at the right of the 
graphs represents the different values for the threshold.
17



J. Cardona Jiménez and C.A. de B. Pereira Computational Statistics and Data Analysis 163 (2021) 107297
Fig. B.11. Spherical active regions simulated for the analysis of true activations.
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