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The Full Bayesian Significance Test (FBST) for precise hypotheses is pre
sented, with some applications relevant to reliability theory. The FBST 
is an alternative to significance tests or, equivalently, to p-values. In the 
FBST we compute the evidence of the precise hypothesis. This evidence 
is the probability of the complement of a credible set "tangent" to the 
sub-manifold (of the parameter space) that defines the null hypothesis. 
We use the FBST in an application requiring a quality control of used 
components, based on remaining life statistics. 

1. I n t r o d u c t i o n 

The Full Bayesian Significance Test (FBST) is presented in Pereira and 

Stern (1999b) as a coherent Bayesian significance test . The F B S T is intu

itive and has a geometric characterization. It can be easily implemented us-
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ing modern numerical optimization and integration techniques. The method 
is "Full" Bayesian and is based on the analysis of credible sets. By Full we 
mean that we need only the knowledge of the parameter space represented 
by its posterior distribution. The FBST needs no additional assumption, 
like a positive probability for the precise hypothesis, that generates the 
Lindley's paradox effect. The FBST regards likelihoods as the proper means 
for representing statistical information, a principle stated by Royall (1997) 
to simplify and unify statistical analysis. Another important aspect of the 
FBST is its consistency with the "benefit of the doubt" juridical principle. 
These remarks will be understood in the sequel. 

Significance tests are regarded as procedures for measuring the con
sistency of data with a null hypothesis, Cox (1977) and Kempthorne and 
Folks (1971). p-values are a tail area under the null hypothesis, calculated 
in the sample space, not in the parameter space where the hypothesis is 
formulated. 

Bayesian significance tests defined in the literature, like Bayes Factor or 
the posterior probability of the null hypothesis, consider the p-value as a 
measure of evidence of the null hypothesis and present alternative Bayesian 
measures of evidence, Aitkin (1991), Berger and Delampady (1987), Berger 
et al. (1997), Irony and Pereira (1986, 1995), Pereira and Wechsler (1993), 
Sellke et al. (1999). As pointed out in Cox (1977), the first difficulty to define 
the p-value is the way the sample space is ordered under the null hypothesis. 
Pereira and Wechsler (1993) suggests a p-value that always regards the 
alternative hypothesis. One can find a great deal of objections agaist each of 
these measures of evidence. The most important argument against Bayesian 
tests for precise hypothesis is presented by Lindley (1957). The literature is 
full of objections to the classical p-value. The book by Royall (1997) and its 
review by Vieland et al. (1998) presents interesting and relevant arguments 
motivating statisticians to start thinking about new methods of measuring 
evidence. In a more philosophical terms, Carnap (1962), de Finetti (1989), 
Good (1983) and Popper (1989) discuss, in a great detail, the concept of 
evidence. 

2. Motivation 

In order to illustrate the FBST we discus a well known problem. Given 
a sample from a normal distribution with unknown parameters, we want 
to test if the standard deviation is equal to a constant. The hypothesis 
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a = c is a straight line. We have a precise hypothesis since it is defined by 
a manifold (surface) of dimension (one) strictly smaller than the dimension 
of the parameter space (two). 

It can be shown that the conjugate family for the Normal Distribution 
is a family of bivariate distributions, where the conditional distribution of 
the mean, p,, for a fixed precision, p = l/<72, is normal, and the marginal 
distribution of the precision, p, is gamma, DeGroot (1970), Lindley (1978). 
We use the standard improper priors, uniform on ] — oo, +oo[ for /z, and 1/p 
on ]0, +oo[ for p, in order to get a fair comparison with p-values, DeGroot 
(1970). Hence we have the parameter space, hypothesis and posterior joint 
distribution: 

@ = {(fi,p)eRxR+} , e0 = {(/x,p)ee|/9 = c} 

f(H,p\x) ocy/p exp(-np(p, - m)2 /2)exp(-bp)pa~1 

* i n n 

x = [xi... xn] , a= — — , m = - Y] xi > b = ^ V] (xi - m ) 2 

z n i = i l i=\ 

Figure 1 shows the plot of some level curves of the posterior density 
function, including the level curve tangent to the hypothesis manifold. At 
the tangency point, 8*, the posterior density attains its maximum, /*, on 
the hypothesis. The interior of the tangent level curve, T*, includes all 
points with posterior density greater than /*, i.e. it is the highest proba
bility density set tangent to the hypothesis. 

The posterior probability of T*, K*, gives an indication of inconsis
tency between the posterior and the hypothesis: Small values of K* indicate 
that the hypothesis traverses high density regions, favoring the hypothesis. 
Therefore we define Ev{H) = 1 — K* as the measure of evidence (for the 
precise hypothesis). 

In Figure 1 we test c = 1 with n — 16 observations of mean m = 10 and 
standard deviation s = 1.02, 1.1, and 1.5. We present the FBST evidence, 
Ev, and the standard x2-test, chi2. 

It is clear that this example is only an illustration: there is no need of 
new methods to test the standard deviation of a normal distribution. How
ever, efficient numerical optimization and integration computer programs, 
make it straightforward to extend the FBST to more complex structures. In 
sections 6 and 7 we present an important application involving the Weibull 
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n=16 m=10 c=1 s=1.02 
evid=0.89 chi2=0.68 

n=16 m=10 c=1 s=1.10 
evid=0.66 chi2=0.40 

n=16 m=10 c=1 s=1.50 
evid=0.01 chi2=0.00 
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Fig. 1. Tangent and other Highest Probability Density Sets 

distribution, requiring a quality control test for used components, based on 
remaining life data. This problem appears in engineering as well as biologi
cal and pharmacological applications. The FBST is exact and performs well 
even for small samples and low frequencies. In the next section we give a 
more formal definition of the FBST. 

3. The Evidence Calculus 

Consider the random variable D that, when observed, produces the data d. 
The statistical space is represented by the triplet (E, A, 0 ) where S is the 
sample space, the set of possible values of d, A is the family of measurable 
subsets of E and 9 is the parameter space. We define now a prior model 
(Q,B,Tr,i), which is a probability space defined over 0 . Note that in this 
model Pr{A \ 9} has to be 0 measurable. As usual, after observing data 
d, we obtain the posterior probability model (0 , B,~Kd), where TTH is the 
conditional probability measure on B given the observed sample point, d. 
In this paper we restrict ourselves to the case where the functions ~Kd has a 
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probability density function / . 
To define our procedure we should concentrate only on the posterior 

probability space (0 , B,TTd). First, we define Tv as the subset of the pa
rameter space where the posterior density is greater than <p. 

Tv = {6&Q\f{6)>y} 

The credibility of Tv is its posterior probability, 

li = 1Td(Tip)= [ f(9\d)d9= f fv(9\d)M 
JTV Je 

where fv(x) = f(x) if f(x) > <p and zero otherwise. 
Now, we define /* as the maximum of the posterior density over the 

null hypothesis, attained at the argument 9*, 

9*€argmaxf(9), f* = f(9*) 
P G B Q 

and define T* = Tf as the set "tangent" to the null hypothesis, H, whose 
credibility is K*. 

The measure of evidence we propose in this article is the complement of 
the probability of the set T*. That is, the evidence of the null hypothesis is 

Ev(H) = 1-K* or l -7r d (T*) 

If the probability of the set T* is "large", it means that the null set is in 
a region of low probability and the evidence in the data is against the null 
hypothesis. On the other hand, if the probability of T* is "small", then the 
null hypothesis is in a region of high probability and the evidence in the 
data is in its favor. In the next section we give an operational construction 
of the FBST. 

4. Numerical Optimization and Integration 

We restrict the parameter space, ©, to be always a subset of Rn, and the 
hypothesis is defined as a further restricted subset 0 o C 9 C Rn. Usually, 
©o is defined by vector valued inequality and equality constraints: 

©0 = {Q e 0 | g{6) < 0 A h{9) = 0}. 

Since we are working with precise hypotheses, we have at least one 
equality constraint, hence dim(Qo) < dim(Q). Let f(9) be the posterior 
probability density function, as defined in the last section. 
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The computation of the evidence measure defined in the last section 
is performed in two steps, a numerical optimization step, and a numeri
cal integration step. The numerical optimization step consists of finding 
an argument 9* that maximizes the posterior density f(9) under the null 
hypothesis. The numerical integration step consists of integrating the pos
terior density over the region where it is greater than /(#*). That is, 

• Numerical Optimization step: 

6* e arg max f (9), V = /* = f{9*) 

• Numerical Integration step: 

K* = [ fip{9\d)d9 
Je 

where fv{x) = f(x) if f(x) > <p and zero otherwise. 

Efficient computational algorithms are available, for local and global 
optimization as well as for numerical integration, Bazaraa et al. (1993), 
Horst et al. (1995), Luenberger (1984), Nocedal and Wright (1999), Pin
ter (1996), Krommer and Ueberhuber (1998), and Sloan and Joe (1994). 
Computer codes for several such algorithms can be found at software li
braries as ACM, GSL and NAG, or at internet sites as www.ornl.gov and 
www-rocq. inria.fr. 

We notice that the method used to obtain T* and to calculate K* can be 
used under general conditions. Our purpose, however, is to discuss precise 
hypothesis testing, i.e. dim(Qo) < dim{Q), under absolute continuity of the 
posterior probability model, the case for which most solutions presented in 
the literature are controversial. 

5. Weibull Distribution 

The two parameter Weibull probability density, reliability (or survival prob
ability) and hazard functions, for a failure time t > 0, given the shape, and 
characteristic life (or scale) parameters, (3 > 0, and 7 > 0, are: 

w(t\{3,j) = H3t^-ll^)exp{-{thf) 

r{t\p,1) = exp{-{t/1)l
3) 

z ( i | / 3 , 7 ) = M ) / r ( ) = / 3 ^ - 1 / 7
/ 3 

http://www.ornl.gov
http://inria.fr
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The mean and variance of a Weibull variate are given by: 

/i = 7 r ( i + i//3) 

CT
2 = 7

2(r(i + 2//3) + r2(i + i//3)) 

By altering the parameter, 8, W(t | 8, 7) takes a variety of shapes, Dod-
son(1994). Some values of shape parameter are important special cases: for 
8 = 1, W is the exponential distribution; for 8 = 2, W is the Rayleigh 
distribution; for 8 = 2.5, W approximates the lognormal distribution; for 
8 = 3.6, W approximates the normal distribution; and for 8 = 5.0, W ap
proximates the peaked normal distribution. The flexibility of the Weibull 
distribution makes it very useful for empirical modeling, specially in quality 
control and reliability. The regions 8 < 1, 8 = 1, and 8 > 1 correspond 
to decreasing, constant and increasing hazard rates. These three regions 
are also known as infant mortality, memoryless, and wearout failures. 7 is 
approximately the 63rd percentile of the life time, regardless of the shape 
parameter. 

The Weibull also has important theoretical properties. If n i.i.d. ran
dom variables have Weibull distribution, Xi ~ w{t\B,7), then the first 
failure is a Weibull variate with characteristic life 7 / n 1 ^ , i.e. -X"[i,n] ~ 
w(t I 8,7/n1/'3). This kind of property allows a characterization of the Weibull 
as a limiting life distribution in the context of extreme value theory, Barlow 
and Prochan (1975). 

The affine transformation t = if + a leads to the three parameter trun
cated Weibull distribution. A location (or threshold) parameter, a > 0 
represents beginning observation of a (truncated) Weibull variate at t = 0, 
after it has already survived the period [—a, 0[. The three parameter trun
cated Weibull is given by: 

w(t I a, 8,7) = (8 (t + af-1/^) exp(-((t + a ) / 7 ) ' 3 ) / r ( a | 8,7) 

r(t I a, 8,7) = exp{-((t + a)hf)/r[a \ 8,7) 

6. Display Panels 

We were faced with the problem of testing the wearout of a lot of used 
display panels. A panel displays 12 to 18 characters. Each character is dis
played as a 5 x 8 matrix of pixels, and each pixel is made of 2 (RG) or 3 
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(RGB) individual color elements, (like a light emitting diode or gas plasma 
device). A panel fails when the first individual color element fails. The con
struction characteristics of a display panel makes the Weibull distribution 
specially well suited to model its life time. The color elements are "burned 
in" at the production process, so we assume they are not at the infant mor
tality region, i.e. we assume the Weibull's shape parameter to be greater 
than one, with wearout or increasing hazard rates. 

The panels in question were purchased as used components, taken from 
surplus machines. The dealer informed the machines had been operated 
for a given time, and also informed the mean life of the panels at those 
machines. Only working panels were acquired. The acquired panels were 
installed as components on machines of a different type. The use intensity 
of the panels at each type of machine corresponds to a different time scale, 
so mean lifes are not directly comparable. The shape parameter however is 
an intrinsic characteristic of the panel. The used time over mean life ratio, 
p = a/n, is adimensional, and can therefore be used as an intrinsic measure 
of wearout. We have recorded the time to failure, or times of withdrawal 
with no failure, of the panels at the new machines, and want to use this data 
to corroborate (or not) the wearout information provided by the surplus 
equipment dealer. 

7. The Model 

The problem described at the preceding sections can be tested using the 
FBST, with parameter space, hypothesis and posterior joint density: 

9 = {(a, (3,7) G ]0, oo] x [1, oo] x [0, oo[ } 

e 0 = { ( a , / 3 , 7 ) e e | Q = pM(/3,7)} 
n m 

f(a, (3,7 I D) ex J J w(U \ a, /?,7) f[ r(tj | a, (3,7) 

where the data D are all the recorded failure times, ti > 0, and the times 
of withdrawal with no failure, tj > 0. 

At the optimization step it is better, for numerical stability, to maximize 
the log-likelihood, fl( ). Given a sample with n recorded failures and m 
withdrawals, 

wk = log(/J) + ( / ? - ! ) log(U + a)- /Jlog(7) - ((U + a)hf + ( a /7 ) " 
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rlj = -((tj + a)faf + {afaf 
n m 

fl = ^Twli + Y2 rli 

the hypothesis being represented by the constraint 

h{a,(3,1)=p1T{l + l/(3)-a = Q 

The gradients of fl() and h() analytical expressions, to be given to the 
optimizer, are: 

dwl = 

{ (/J - l ) / ( t + a) - ({t + a)/fff3/(t + a) + (afaf/3/a, 

1//3 + log(t + a) - log(7) - {{t + a)hf \og{{t + a) fa) + {afaf l og(a / 7 ) , 

-13 fa + ((t + a)faf/3fa - (afafPfa } 

drl = 

[ - ( ( t + a)faf(3/{t + a) + (afaf(3/a, 

-((t + a)faf log((t + a) fa) + {afaf \og{afa), 

((t + a)faf(3fa,-(afafl3fa} 

dh = 

[ - l , -p7r'( i + l/p)r(i +1//3)//32, Pr(i + i/p) ] 

For gamma and digamma functions efficient algorithms see Spanier and 
Oldham (1987). 

8. Numerical Example 

Table 1 displays 45 failure times (in years), plus 5 withdrawals, for a small 
lot of 50 panels, in a 3.5 years long experiment. The panels have suppos
edly been used, prior to acquisition, for 30% of its mean life, i.e. we want 
to test p = 0.3. In general, some prior distribution of the shape param
eter is needed to stabilize the model. Knowing color elements' life time 
to be approximately normal, we consider f3 £ [3.0,4.0]. Table 2 displays 
the evidence of some values of p. The maximum likelihood estimates of the 
Weilbull's parameters are a = 1.25, j3 — 3.28 and 7 = 3.54; so the estimates 
H = 3.17 and p = 0.39. The FBST corroborates the hypothesis p = 0.3 with 
an evidence of 98%. 
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Table 1. Failure times and withdrawals in years, n = 45, m = 5 

0.01 
1.21 
1.71 
2.30 
2.96 

P 
Evid 

0.19 
1.22 
1.75 
2.30 
2.98 

0.05 
0.04 

0.51 
1.24 
1.77 
2.41 
3.19 

0.10 
0.14 

0.57 
1.48 
1.79 
2.44 
3.25 

0.70 
1.54 
1.88 
2.57 
3.31 

0.73 
1.59 
1.90 
2.61 

+1.19 

Table 2. Evidence for 

0.20 
0.46 

0.30 
0.98 

0.40 
1.00 

0.75 
1.61 
1.93 
2.62 

+3.50 

0.75 
1.61 
2.01 
2.72 

+3.50 

some values of p 

0.50 
0.98 

0.60 0.70 
0.84 0.47 

1.11 
1.62 
2.16 
2.76 

+3.50 

0.80 
0.21 

1.16 
1.62 
2.18 
2.84 

+3.50 

0.90 
0.01 

9. Final Remarks 

The theory presented in this paper, grew out of the necessity of the au
thors' activities in the role of audit, control or certification agents, Pereira 
and Stern (1999a). These activities made the authors (sometimes painfully) 
aware of the benefit of the doubt juridical principle, or safe harbor liability 
rule. This kind of principle establishes that there is no liability as long as 
there is a reasonable basis for belief, effectively placing the burden of proof 
on the plaintiff, who, in a lawsuit, must prove false a defendant's misstate
ment. Such a rule also prevents the plaintiff from making any assumption 
not explicitly stated by the defendant, or tacitly implied by existing law or 
regulation. The use of an a priori point mass on the null hypothesis, as on 
standard Bayesian tests, can be regarded as such an ad hoc assumption. 

As audit, control or certification agents, the authors had to check com
pliance with given requirements and specifications, formulated as precise 
hypotheses on contingency tables. In Pereira et al. (1999b) we describe sev
eral applications based on contingency tables, comparing the use of FBST 
with standard Bayesian and Classical tests. The applications presented in 
this paper are very similar in spirit, but we are not aware of any standard 
exact test in the literature. The implementation of FBST is immediate and 
trivial, as long as good numerical optimization and integration programs 
are at hand. In the applications in this paper, as well in those in Pereira 
et al. (1999b), it is desirable or necessary to use a test with the following 
characteristics: 

• Be formulated directly in the original parameter space. 
• Take into account the full geometry of the null hypothesis as a manifold 

(surface) imbedded in the whole parameter space. 



Weibull Wearout Test: Full Bayesian Approach 297 

• Have an intrinsically geometric definition, independent of any non-
geometric aspect, like the particular parameterization of the (manifold 
representing the) null hypothesis being used. 

• Be consistent with the benefit of the doubt juridical principle (or safe 
harbor liability rule), i.e. consider in the "most favorable way" the claim 
stated by the hypothesis. 

• Consider only the observed sample, allowing no ad hoc artifice (that 
could lead to judicial contention), like a positive prior probability dis
tribution on the precise hypothesis. 

• Consider the alternative hypothesis in equal standing with the null 
hypothesis, in the sense that increasing sample size should make the 
test converge to the right (accept/reject) decision. 

• Give an intuitive and simple measure of significance for the null hy
pothesis, ideally, a probability in the parameter space. 

FBST has all these theoretical characteristics, and straightforward (com
putational) implementation. Moreover, as shown in Madruga et al. (2001), 
the FBST is also in perfect harmony with the Bayesian decision theory 
of Rubin (1987), in the sense that there are specific loss functions which 
render the FBST. 

We remark that the evidence calculus defining the FBST takes place 
entirely in the parameter space where the prior was assessed by the sci
entist, Lindley (1983). We call it the "original" parameter space, although 
acknowledging that the parameterization choice for the statistical model 
semantics is somewhat arbitrary. We also acknowledge that the FBST is 
not invariant under general change of parameterization. 

The FBST is in sharp contrast with the traditional schemes for dimen
sional reduction, like the elimination of so called "nuisance" parameters. 
In these "reduced" models the hypothesis is projected into a single point, 
greatly simplifying several procedures. Problems with the traditional ap
proach are presented in Pereira and Lindley (1987). The traditional reduc
tion or projection schemes are also incompatible with the benefit of doubt 
principle, as stated earlier. In fact, preserving the original parameter space, 
in its full dimension, is the key for the intrinsic regularization mechanism 
of the FBST, when it is used in the context of model selection, Pereira and 
Stern (2000,2001). 

Of course, there is a price to be paid for working with the original pa
rameter space, in its full dimension: A considerable computational work 
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load. But computational difficulties can be overcome with the used of effi
cient continuous optimization and numerical integration algorithms. Large 
problems can also benefit from program vectorization and parallelization 
techniques. Dedicated vectorized or parallel machines may be expensive 
and not always available, but most of the algorithms needed can benefit 
from asynchronous and coarse grain parallelism, a resource easily available, 
although rarely used, on any PC or workstation network through MPI, 
Portable Parallel Programming Message-Passing Interface, or similar dis
tributed processing environments, Wilson and Lu (1996). 

Finally, we notice that statements like "increase sample size to re
ject (accept) the hypothesis" made by many users of frequentist (stan
dard Bayesian) tests, do not hold for the FBST. Increasing the sample 
size makes the FBST converge to the Boolean truth indicator of hypoth
esis being tested. In this sense, the FBST has good acceptance/rejection 
symmetry, even if the safe harbor rule prevents this symmetry from being 
perfect, introducing an offset for small samples. We believe that the exis
tence of a precise hypothesis test with the FBST's symmetry properties has 
important consequences in knowledge theory, given the role played by the 
completely asymmetric standard statistical tests in some epistemological 
systems, Carnap (1962), Popper (1989). 
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