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Initial findings of striatum tripartite 
model in OCD brain samples based 
on transcriptome analysis
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David Correa Martins Jr.3, Renato David Puga4, Ariane Cristine Moretto1, 
Carlos Alberto De Bragança Pereira2, Beny Lafer1, Renata Elaine Paraizo Leite1, 
Renata Eloah De Lucena Ferretti-Rebustini1, Jose Marcelo Farfel1, Lea Tenenholz Grinberg1,5, 
Wilson Jacob-Filho1, Euripedes Constantino Miguel1, Marcelo Queiroz Hoexter1 & 
Helena Brentani1,2

Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by obsessions and/or 
compulsions. Different striatal subregions belonging to the cortico-striato-thalamic circuitry (CSTC) 
play an important role in the pathophysiology of OCD. The transcriptomes of 3 separate striatal areas 
(putamen (PT), caudate nucleus (CN) and accumbens nucleus (NAC)) from postmortem brain tissue 
were compared between 6 OCD and 8 control cases. In addition to network connectivity deregulation, 
different biological processes are specific to each striatum region according to the tripartite model 
of the striatum and contribute in various ways to OCD pathophysiology. Specifically, regulation of 
neurotransmitter levels and presynaptic processes involved in chemical synaptic transmission were 
shared between NAC and PT. The Gene Ontology terms cellular response to chemical stimulus, response 
to external stimulus, response to organic substance, regulation of synaptic plasticity, and modulation 
of synaptic transmission were shared between CN and PT. Most genes harboring common and/or rare 
variants previously associated with OCD that were differentially expressed or part of a least preserved 
coexpression module in our study also suggest striatum subregion specificity. At the transcriptional 
level, our study supports differences in the 3 circuit CSTC model associated with OCD.

Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by obsessions and/or compulsions 
that are time consuming, distressing, or impair daily function and are not the direct result of a medical condition 
or substance use; the worldwide prevalence of OCD is 2–3%1. Family studies revealed OCD aggregation patterns; 
according to twin studies, the heritability of OCD is approximately 40%2,3. More recently, genome-wide asso-
ciation studies (GWAS)4,5 suggested that common variation in the heritability of OCD is between 25 and 30%, 
indicating an important contribution of single nucleotide polymorphisms (SNPs) with a minor frequency allele 
(MAF) of 5%. Meta-analysis of GWAS in OCD cases and controls6 as well as GWAS in obsessive-compulsive 
symptoms (OCS) in a population cohort7 studying polygenic risk scores (PRS) corroborate the importance of 
common variants explaining the phenotypic variance in OCD. Not all GWAS have found SNPs that are signifi-
cant at the genomic level, but all have found marginally associated SNPs. Some of these SNPs are characterized 
as methylation quantitative trait loci (mQTLs) and expression quantitative trait loci (eQTLs) in brain areas4,5, 
while ENCODE/ROADMAP data suggested that other SNPs located in genome regions have regulatory poten-
tial6. Copy number variations (CNVs) as well as exome studies examining a higher burden of de novo variations 
for the involvement of very rare variations in OCD have also been performed8–11. Using an innovative statistical 
approach and integrating information from animal studies and targeting both coding and regulatory regions, 
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Hyun Ji Noh et al.12 recently found functional variants associated with OCD. Based on Gene Ontology (GO) 
enrichment analysis and gene network analysis performed in the majority of the above studies, glutamate signal-
ing, synaptic connectivity, and cortico-striato-thalamic circuitry (CSTC) are important in OCD pathophysiology.

Three smaller circuitries from different striatal subregions encompassing CSTC may play an important role 
in the pathophysiology of OCD13,14; the main characteristics of CSTC are the innervation of the frontal cortex 
towards the striatum (caudate nucleus (CN), putamen (PT) and accumbens nucleus (NAC))14,15. Each small cir-
cuitry has specific characteristics, including affective and limbic, cognitive and dorsal associative, and ventral 
and motor. Additionally, the relation between the brain regions, paradigms and symptoms of OCD have been 
explored by neuropsychological tests associated with neuroimaging investigations16. Accordingly, distinct emo-
tional or cognitive impairments associated with OCD have been described with its brain signatures17.

In addition to symptomatic evidence involving different striatum areas associated with OCD, the striatum tri-
partite model and connectivity were defined by gene expression18. This validation of these small circuits has been 
demonstrated by delineating distinct striatum subregions based on connectivity using diffusion-weighted imag-
ing (DWI) data. The authors parcellated striatum masks by grouping seed voxels with similar profiles of extrinsic 
whole-brain connectivity using k-means clustering. Then, the authors showed that these striatum subregions can 
be distinguished with high accuracy based on their gene expression profile. Dopamine receptor signaling and 
response to amphetamine were important sources of transcript variation separating the dorsal and ventral subre-
gions of the striatum, while transcripts associated with glutamate secretion and metabolic processes separated the 
caudal subregion18. A recent paper compared the transcriptome of brain striatum subregions from controls and 
cases of Tourette syndrome (TS), which is often comorbid with OCD and has also been associated with CSTC19. 
In differentially expressed genes (DEGs) and coexpression module analyses, the authors found enrichment for 
interneuron signaling, neuronal catabolism, microglia signaling and astrocyte metabolism, but they analyzed the 
CN and PT together19.

As different areas of the striatum have transcriptome signatures and each area is more associated with a dif-
ferent portion of CSTC involved in the pathophysiology of OCD, we expected to find specific molecular profiles 
deregulated in striatum subregions by comparing OCD cases and controls. At the transcriptional level, these 
findings could corroborate and better explain the participation of these subregions in different circuitries involved 
in OCD. OCD is a polygenic multifactorial disorder characterized by multiple affected genes working in gene net-
works; thus, using only single measures of DEGs cannot reveal deregulation of the activity observed in complex 
systems20. Accordingly, we searched DEGs and nonpreserved coexpressed modules to explore quantitative and 
qualitative differences in the striatum tripartite model in OCD. In addition, we determined if genes previously 
associated with OCD by prior large-scale genomic studies were represented in different striatum subregion com-
parisons, contributing to possible functional roles of different genetic variants. To our knowledge, this report 
represents the first striatal postmortem OCD transcriptome study.

Results
General population characteristics. Samples were collected between October 2008 and June 2013. A 
total of 109 cases were screened as potential cases of psychiatric disorders. Seventy-two cases were assigned to the 
psychiatric group, and 37 cases were placed in the control group. Within the psychiatric group, the final diagnosis 
was OCD in 22 cases, and the remaining 50 cases were diagnosed with psychiatric disorders (bipolar disorder 19, 
major depression 16, TS 10, schizophrenia 2 and others 3) (Supplementary Fig. 1). Of the 22 OCD cases, 8 had 
the best estimate diagnosis and all striatum areas, but only 6 OCD cases had viable tissue for our investigation. 
Finally, we selected 8 controls (Table 1) for these 6 OCD cases matched by age, sex and laterality that had CN, PT 
and NAC subregion samples available (Supplementary Table 1). Supplementary Table 2 presents descriptions of 
all OCD cases.

Differential expression. The transcriptome of 42 brain samples of 3 striatum regions (CN, PT and NAC) 
from 6 OCD cases and 8 controls was investigated using high-throughput technology, resulting in 2.57 billion 
paired-end reads (avg. 61 million per sample). A total of 2.42 billion (92.5%) reads were aligned to the genome. 
Differential expression in each striatal region was obtained according to the expression of genes in each region, 
including CN (n = 44,815, with 17,972 Ensembl genes), NAC (n = 45,701, with 18,126 Ensembl genes) and PT 
(n = 45,470 with 17,886 Ensembl genes). Most parts of the assembled transcriptome were from unannotated 
regions comprising approximately 40% of our dataset. According to the Ensembl annotated dataset, 26% of the 
transcriptome was protein-coding genes, 3.5% lincRNAs and 3% antisense (Supplementary Fig. 2). Considering 
the small sample size in this study (6 OCD cases and 8 controls), we investigated the extent to which the results 
could be affected by the interindividual differences in gene expression between the donors. We used our dataset 
to calculate sample-specific weights using voom in the limma package in R21. According to Liu and collabora-
tors22, samples with higher expression abundance are more robust measures; thus, they carry greater weight in 
expression analysis. Ideally, sample-specific weights are approximately one. In this study, we used the Surrogate 
Variable Analyses (SVA) package, which identifies sources of variation unaccounted for in a study. We used voom 
to calculate the weights with and without SVA variables (SVs) to determine whether SVs could mitigate the dif-
ferent sample weights in analyses. Sample-specific weight calculations were performed using a model including 
SVs (SVmodel) and a model that did not account for SV variables (NAmodel). For the CN dataset, compared 
with the NAmodel (mean = 1.28, var = 0.62, median = 1.23), the SVmodel resulted in sample weight variation 
(mean = 1.04, var = 0.078, median = 1.11). Therefore, sample-specific weights remained; however, including SV 
in the model resulted in a decrease in weight variation, leading to more homogeneous weights. No statistically 
significant difference was observed in weight distribution (ks = 0.1549). For the NAC dataset, both distributions 
of sample-specific weights were similar (Kolmogorov-Smirnov = 0.9205), although the SVmodel (mean = 1.03, 
var = 0.061, median = 1.09) resulted in slightly higher weights slightly than did the NAmodel (mean = 1.02, 
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var = 0.041, median = 0.99). For the PT dataset, the SVmodel (mean = 1.03, var = 0.073, medina = 1.02) was 
slightly better than the NAmodel (mean = 1.05, var = 0.12, median = 0.99), which resulted in lower sample 
weight variation, with no differences between the two weight distributions (ks = 0.9205). Although the effect of 
sample-specific weight remained in the CN dataset, the use of SVs in the model could contribute to more homo-
geneous weights. In this way, the bias of sample weights was small and would not impact further analyses.

Differential expression analysis with adjusted p ≤ 0.05 resulted in 245 genes (186 ENSEMBL genes) in CN, 
35 genes (20 ENSEMBL genes) in NAC and 38 genes (24 ENSEMBL genes) in PT (Supplementary Tables 3–5). 
No common genes were found in all three areas, but genes observed in more than one comparison (n = 6 with 
6 ENSEMBL genes) were concordant in differential expression levels according to log2FC (OCD/CON). In the 
biological process enrichment analysis in CN, 19 categories mostly associated with immune response, synapse 
transmission and ion transport were identified. The PT enrichment analysis showed (97 categories) predom-
inantly biological process associated with cell response and proliferation in addition to metabolic regulation 
(Supplementary Table 6). We could not achieve any enrichment for NAC. Our goal in this work was to compare 
striatum areas between cases and controls and to compare differences between striatum areas to achieve a biologi-
cally meaningful understanding of the comparison between areas. Thus, we explored DEGs using a p-value ≤ 0.01, 
without adjustment for multiple testing. We identified 1127 genes (757 ENSEMBL genes) in CN, 310 genes in 
NAC (201 ENSEMBL genes) and 306 genes (193 ENSEMBL genes) in PT (Supplementary Tables 3–5).

Genes observed in more than one comparison (n = 134 with 96 ENSEMBL genes, Fig. 1) were concordant in 
differential expression levels according to log2FC (OCD/CON) (Supplementary Table 7). Eight ENSEMBL genes, 
including three downregulated (NPAS4, RNUSA-1 and RP11.20J15.5) and five upregulated in OCD (TMPRSS5, 
bP-21264C1.3, bP-21264C1.1, and the two unannotated genes XLOC058328 and XLOC087511), were identified 
by comparing the analyses of three areas. Enrichment analysis of DEGs for functional categories (253 categories) 
showed predominant pathways related to immune response for CN but also synapse transmission and ion trans-
port, as expected according to the more stringent criteria for DEGs in previous analyses. In PT, 68 categories were 
found. These categories corroborated the previous GO enrichment analyses, but cell response and regulation 
were more clearly associated with synapse function and neurotransmitter processes. For NAC, 14 categories were 
enriched. All these categories were associated with synapse and neurotransmission (Supplementary Table 6).

As we worked with bulk tissue, we also performed enrichment analysis for genes exclusive to different brain 
cell types23 (Table 2). To explore whether DEGs have been previously described in large-scale genomic OCD stud-
ies, we performed enrichment analysis using data from published GWAS4,5, exome9 and CNVs8. We also checked 
for DEGs in TS that could be comorbid with OCD19. We observed enrichment (p ≤ 0.05) only for TS genes in the 
three areas. Although none of the gene lists of common variations (all GWAS) or rare variations (exome and CNV 
studies) were enriched, some genes overlapped in specific OCD and control comparisons by region (Table 2 and 
Supplementary Table 8).

Finally, we compared our DEGs with those in a TS paper. Interesting DEGs (comparing CN and PT) in TS19 
were enriched in all specific areas from this study, but differential expression levels were in the same direction in 
CN only; only three genes out of 161 were inverted (Fig. 2). For PT and NAC, only 15 (43%) and 9 (37.5%) genes 
had expression levels in the same direction, respectively.

Variable Parameters
OCD 
(ss = 6)

Control 
(ss = 8) p-value

Age (years)*
Median 79.0 74.5

0.64
Mean (SE) 79.8 (5.1) 74.1 (4.8)

Sex n (%)**
Female 2 (33) 3 (38)

0.87
Male 4 (67) 5 (62)

Hemisphere n (%)**
Left 4 (67) 4 (50)

0.67
Right 2 (33) 4 (50)

Education in years*
Median 2.0 4.0

0.29
Mean (SE) 2.7 (1.3) 5.5 (1.9)

Alcohol abuse (%)**
Never 5 (83) 6 (75)

0.71
Yes 1 (17) 2 (25)

Tobacco abuse (%)**
Never 3 (50) 2 (25)

0.34
Yes 3 (60) 6 (75)

Postmortem interval in hours*
Median 15:20 14:27

1.00
Mean (SE) 15:26 (1:02) 14:51 (1:05)

NPI n (%)**
Nil 2 (33) 7 (87)

0.05
Positive 4 (67) 1 (13)

Volume (ml) 1 missing in each arm*
Median 1100 1192

0.1
Mean (SE) 1078 (35) 1283 (116)

Mass (g) 1 missing in each arm*
Median 1162 1220

0.56
Mean (SE) 1152 (56) 1182 (47)

Table 1. Demographic characteristics of obsessive-compulsive disorder (OCD) cases and controls (n = 14). (%)* 
Test for median; (%)** test for log odds ratio; ss = sample size; n = frequency; NPI = Neuropsychiatric Inventory.
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Coexpression analysis. To identify discrete modules according to gene expression, we performed coexpres-
sion module preservation analysis by using Weighted Correlation Network Analysis (WGCNA)24. To investigate 
which module genes were altered by comparing OCD and controls in each striatum area, we chose the least 
preserved module (the gene module that lost its network properties between the groups) according to median-
Rank, Zsummary and kME correlation. For CN data, we found 13 modules, and the Tan module (kME: n = 762; 
cor = 0.051, p = 0.16) was the least preserved. For NAC data, the Purple module (kME: n = 877, cor = 0.022, 
p = 0.52) was the least preserved from 16 modules; for PT, the Lightgreen module (kME: n = 522, cor = 0.094, 
p = 0.032) was the least preserved from 18 modules. Figure 3 shows the preservation module statistics, as well as 
the kME module correlation of the chosen least preserved module for each of the three brain regions (for medi-
anRank and Zsummary scores, see Supplementary Table 9).

In all 3 analyses, all genes had a corresponding Ensembl gene annotation. Few gene ontologies were over-
represented in the least preserved modules in each striatal area (FDR ≤ 0.05). For NAC, positive regulation of 
the pathway-restricted SMAD protein phosphorylation biological process was enriched. In CN and PT, cellular 
component categories were enriched, specifically related to plasma membrane for CN (7 categories) and synapses 
for PT (10 categories) (Supplementary Table 10). In network analysis, some topological properties of nodes could 
characterize their relative importance in the network25. Hub genes are important genes because they are the most 
connected in the networks.

The complete list of hub genes comparing cases and controls of the least preserved modules of each striatum 
region are available in Supplementary Table 11. In PT, out of 522 genes in the module, we found 83 exclusive 
hubs in controls, 5 hubs in both cases and controls and 18 genes in exclusive hubs in OCD. In NAC, out of 877 
genes in the module, we found 44 exclusive hubs in controls, 2 hubs in both cases and controls and 49 genes in 
exclusive hubs in OCD. In CN, out of 762 genes, we found 58, 6 and 48, respectively. To check whether DEGs were 

Figure 1. (A) Venn diagram of DEGs (p-value ≤ 0.01) of each striatal region CN, NAC and PT. (B) Dot blot of 
log2FC (OCD/CON) on the x-axis, and genes are represented on the y-axis. Each color corresponds to a striatal 
area CN (black), NAC (red) and PT (blue).

DEGs

Caudate Nucleus (CN) Accumbens Nucleus (NAC) Putamen (PT)

p-value N matched genes p-value N matched genes p-value N matched genes

CNVs 0.1134 38 0.1930 11 0.8011 6

SNVs de novo 0.5010 1 1.0000 0 1.0000 0

GWAS 0.0514 10 0.7608 1 0.3971 2

Tourette syndrome 0.0001 159 0.0001 23 0.0001 35

Microglia 0.0001 108 0.5865 5 0.0290 10

Astrocytes 0.0186 32 0.3236 7 0.4389 6

Cortical Neuron 05 0.0411 12 0.0001 14 0.0988 4

Cortical Neuron 10 0.0001 51 0.0001 32 0.0001 20

Oligodendrocyte 01 0.1059 4 0.0867 2 0.0886 2

Oligodendrocyte 04 0.0001 14 1.0000 0 0.6662 1

Oligodendrocyte 2.5 0.0805 4 0.0078 3 0.0620 2

Table 2. Enrichment results for genes previously described in OCD studies and different brain cell types.
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identified in the least preserved modules and associated with hub genes in each striatal area, we compared both 
results. In general, few genes were present in both analyses. In the CN module, there were 27 DEGs, including two 
hub genes in control (PIK3R5 and RP11-1319K7.1) and one (BAIAP2-AS1) in OCD. In the NAC module, there 
were only three DEGs, and none were hub genes. In PT, there were only 7 DEGs, and RPH3A was a hub gene in 
OCD only. Finally, we determined whether the least preserved modules of the 3 striatum regions have the same 
genes (Supplementary Figs 3 and 4). As expected, we did not observe any important overlap.

To check whether the less preserved modules from each area from the striatum have been described in 
large-scale genomic OCD studies, we performed the same analysis on DEGs with all datasets (Table 3). None 
were enriched, although overlaps were present in some specific areas, and astrocytes and cortical neurons were 
overrepresented in PT data only.

Discussion
In this study, we used postmortem brain tissue to search for DEGs and nonpreserved coexpressed modules in 
OCD cases and controls. We showed that different DEGs as well as network connectivity deregulation were spe-
cific for each striatum region (CN, NAC and PT) by comparing OCD cases and controls. In addition, some 
genes associated with rare or common variation in published large-scale OCD genomic studies were differentially 
expressed in specific region comparisons.

The biological process enrichment analysis of DEGs showed that synaptic signaling was enriched for 
case-control comparisons in all areas, as well as the enrichment for neuron genes. Specifically, regulation of neu-
rotransmitter levels and presynaptic processes involved in chemical synaptic transmission were shared between 
NAC and PT. Cellular response to chemical stimulus, response to external stimulus, response to organic sub-
stance, regulation of synaptic plasticity and modulation of synaptic transmission were shared between CN and 
PT. In addition, comparisons between areas showed that CN has a larger number of DEGs and that they have a 
greater overlap with DEGs from PT. Notably, common genes between different areas showed the same differen-
tially expressed direction. Importantly, specific looking at the combination of DEGs from all areas showed that 
58%, 15%, and 11% were exclusive to CN, NAC and PT, respectively. Additionally, only 0.5% of DEGs were com-
mon to all areas, suggesting that despite some shared biological processes, each area had exclusive transcriptomic 
signatures. The gene internexin neuronal intermediate filament protein alpha (INA), exclusive to NAC, has an 
important role in the transmission of information between neurons, in addition to being involved in neuronal 
morphogenesis for exoskeleton support26,27. The gene solute carrier family 5 (choline transporter) member 7 
(SLC5A7), an exclusive DEG from NAC, was involved in cholinergic neuron functions28. In PT, we found some 
important genes, such as nitric oxide synthase 1 (NOS1) and synaptotagmin II (SYT2). The gene associated 
with modulator of synaptic activity, the (neuronal) NOS1 gene, is secreted by nerve terminals of brain regions 
that play a role in behavior and memory29. These findings related to synaptic alterations can be reinforced by 
the SYT2 gene, which is highly associated with synaptic vesicle membrane30. In CN, exclusive DEGs included 
gene regulator of G-protein signaling 7 binding protein (RGS7BP), nitric oxide synthase trafficking (NOSTRIN) 
and oligodendrocyte transcription factor 1 (OLIG1). RGS7BP, a G protein that is an important component of a 
chemistry system, can extend the excitability or inhibitory mechanism of synaptic transmission in postsynaptic 
neurons31. Similarly, the NOSTRIN gene can promote long-term neuronal transmission29. The OLIG1 gene plays 
a role in the maturation of the central nervous system and is directly associated with the development of oligo-
dendrocytes32. Oligodendrocyte cells protect and support neurons, but new evidence in animal models shows that 
oligodendrocyte death can be associated with demyelination and an immediate immune response33. Thus, acute 
and chronic inflammation pathways are closely related to brain injuries and OLIG1 imbalance34.

The coexpression module analysis as well as the least preserved modules corroborate differences between 
areas. By comparing OCD cases and controls in each area, genes from the least preserved coexpressed module 

Figure 2. Scatter plots representing log2FC (TS/CON) of differentially expressed genes in Tourette syndrome 
in striatal regions (CN and PT) in the x-axis and log2FC (OCD/CON) of OCD DEGs in each striatal area CN, 
NAC and PT.
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Figure 3. Preservation statistics–medianRank and Zsummary (A,C,E) and kME module correlation (B,D,F) 
of the least preserved module of the 3 brain regions, Tan (CN), Purple (NAC) and Lightgreen (PT). The 
preservation ranking for medianRank follows an ascending order (the least preserved module presents the 
highest scores), while for Zsummary, the least preserved modules have the lowest scores. For example, in 
(E), the Lightgreen module is the least preserved – its score in medianRank is 18 and 1 in Zsummary. For the 
correlation between the kME module, the control network is represented by the x-axis and OCD by the y-axis. 
The genes in red are the ones with the largest ratio of correlation between control and OCD groups; therefore, 
these genes are the most distinct by connectivity parameters.
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showed that 33.7%, 38.9%, and 23.4% of genes were exclusive to CN, NAC and PT, respectively, and none were 
common to all areas. Among the overlapping genes in the least preserved module in each area, CN shared more 
genes with NAC. Although PT did not present a greater number of DEGs, it had the most gene-gene correlations 
brooked between cases and controls in the coexpression module analysis, suggesting important gene network 
deregulation in OCD. Interestingly, in the cell enrichment analysis, astrocytes were enriched for PT DEGs. In ani-
mal models, astrocytes in striatal regions are associated with the dysfunction of calcium channels, contributing to 
synaptic deregulation of glutamatergic signaling35. We identified the D-amino acid oxidase (DAO) gene as a hub 
gene in CN. This gene plays an important role as a modulator of D-serine metabolism and consequently in the 
activity of the N-methyl-D-aspartate (NMDA) receptors36. NMDA is the most important receptor of the gluta-
matergic system. The SLC6A7 gene, which is also a hub gene to OCD in CN, is a gene from gamma-aminobutyric 
acid (GABA) neurotransmitter family37. The GO enrichment analysis based on the coexpression gene modules 
in NAC revealed positive regulation of SMAD protein phosphorylation by bone morphogenetic protein (BMP) 
genes, which is important to maintain the homeostasis of tissue, that plays essential roles in neurotransmitter 
specifications38. The BMP4 gene can induce a dopaminergic phenotype in mouse striatal neurons39.

The limited overlap of DEGs and the least preserved module genes in each striatal area confirmed the ability 
of the analyses20 to search for differences between OCD cases and controls in distinct striatum areas. Moreover, 
both analyses confirmed the specificity of the transcription signatures of the striatum areas previously described 
by Parkes18. Parkes also showed enrichment of the discrimination between dorsal and ventral subregions of the 
striatum for dopamine receptor signaling, whereas genes that can accurately classify the caudal subregion of the 
striatum were enriched for glutamate secretion. In our results, these differences were maintained in the compar-
ison between OCD cases and controls.

The involvement of the immune system in OCD has long been suggested40. Kumar and colleagues41 found a 
rich association of microglial-activated inflammation and increased bilateral nucleo in TS. Recent robust out-
comes demonstrated neuroinflammation in main areas from the CSTC in OCD cases42. Both studies support 
previous studies that found “pediatric autoimmune neuropsychiatric disorders associated with streptococcus” 
(PANDAS) by PET43,44. One interesting point revealed by our analyses is that biological processes specifically 
enriched for the immune system and cytokines appear in CN only. In CN, the categories related to cell adhesion 
molecules, which are strongly related to the immune system, were enriched. Dysregulation in these categories 
was also observed in methylation analyses comparing OCD and control45. Interestingly, CN showed microglial 
enrichment. OCD and TS frequently cooccur in individuals. There is evidence for shared OCD/TS genetic risk 
from family studies. GWAS joint analyses of TS and OCD suggested a higher burden of known pathogenic neu-
rodevelopmental deletions in OCD/TS cases than in controls but not an overall higher burden of pathogenic 
CNVs. Alternatively, cross-disorder polygenic analyses based on PRS showed evidence for genetic heterogeneity 
between OCD and TS and suggested that OCD with and without chronic tics have different genetic architec-
tures46,47. We compared our DEGs between cases and controls in each striatum area with a published study of 
DEGs from TS cases and controls performed with both PT and CN brain samples19. Significant enrichment of TS 
DEGs in all 3 areas of the striatum in our datasets was observed, but DEGs in TS were in the same direction of 
differential expression levels as OCD DEGs in CN. For PT and NAC, only 15 (43%) and 9 (37.5%) genes were in 
the same direction of expression levels. Therefore, deregulation of CN genes could be part of the specific genetic 
architecture shared by some TS and OCD cases and associated with microglial functions, including failures in 
neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning48.

Large-scale genomic OCD studies implied PRS as well as single very rare variations with larger effect sizes 
represented by SNVs and CNVs. In these studies, mQTLs, eQTLs and brain expression databases were compared, 
implying possible transcriptomic alterations and supporting an integrated model for OCD49. Accordingly, we 
searched different variations previously associated with OCD in our transcriptome analyses. Neither common 
nor very rare class variations were enriched in DEGs or least preserved coexpression modules in any striatal 
area between OCD cases and controls in this study. Jaffe et al.50 selected SNPs based on candidate gene studies 
for eating disorders (EA) and OCD from the literature. These authors showed the association of these SNPs with 

WGCNA

Caudate Nucleus (CN) Accumbens Nucleus (NAC) Putamen (PT)

p-value N matched genes p-value N matched genes p-value N matched genes

CNVs 0.6897 24 0.9537 22 0.1908 22

SNVs de novo 1 0 0.4506 1 0.2982 1

GWAS 0.3103 6 0.7699 4 1 0

Tourette syndrome 0.7404 20 0.9642 18 0.5893 15

Adult Microglia 0.184 20 0.9883 10 0.9889 5

Astrocytes 0.1788 22 0.9716 13 0.0057 22

Cortical Neuron 05 0.9239 3 0.989 2 0.195 6

Cortical Neuron 10 0.9978 5 0.9889 8 6.00E-04 21

Oligodendrocyte 01 0.8266 1 0.3136 3 1 0

Oligodendrocyte 04 0.8996 2 0.9367 2 0.9268 1

Oligodendrocyte 2.5 0.8275 1 0.5891 2 0.6925 1

Table 3. Enrichment results for genes previously described in OCD studies and different brain cell types from 
WGCNA least preserved modules.
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gene expression across the lifespan in the prefrontal cortex (PFC) among controls. When the authors used brain 
PFC samples from patients with EA and OCD/obsessive-compulsive personality disorder or tics and compared 
them with samples from controls, they found some DEGs, but none of the risk SNPs were eQTLs or associated 
with gene expression. Jaffe and colleagues50 argued that larger sample sizes would be necessary. Our small sample 
size probably explains our results, even though some genes harboring common and/or rare variants previously 
associated with OCD appeared in our gene sets. CNV studies uncovered 113 genes in at least one striatum com-
parison. Six (5.3%) out of 113 genes appeared in two striatum regions. From the SNV list, one gene was also 
represented in each striatum area, specifically WW domain containing E3 ubiquitin protein ligase 1 (WWP1) 
in NAC, CCDC108 in PT and complement C3b/C4b receptor 1 (CR1) in CN. Twenty-two genes were shared 
between GWAS and our gene sets. Only protein phosphatase 1 regulatory subunit 15A (PPP1R15A, 4.5%) was 
present in two different regions, CN and PT. Considering all genome studies and all gene sets from our study, 
27% (37) were exclusive DEGs or in the least preserved coexpression gene modules in NAC, 17% (24) in PT, 51% 
(70) in CN and only 5% (7) in at least two striatum areas, confirming area specificity. The WWP1 gene is highly 
related to protein degradation and RNA transcription51 that is related to neurotransmitter imbalance. Thus, the 
PP1R15A gene, found in CN and PT, encodes proteins that contribute to stabilization of protein synthesis after 
stress exposition52. The specific gene in CN confirms that changes in the immune system can be related to OCD, 
and the CR1 gene encodes proteins with important functions in the activation of immune complexes, such as the 
neurabin 2 gene (PPP1R9B), found in CN and GWA studies, which is involved in the NK immunological syn-
apse53. We also highlighted the synaptoporin gene (SYNPR), found in GWAS and a DEG in PT. SYNPR encodes a 
membrane protein involved in cholinergic imbalance and behavior, motor, cognition dysfunctions54, most likely 
affecting the nicotinic receptor in PT. The NSF attachment protein beta (NAPB) gene plays a role in the fusion 
of vesicles in presynaptic membranes55. Interestingly, the follistatin-like 5 (FSTL5) gene, previously implicated in 
cancer56 but expressed in the human brain57, was found in NAC and CNV studies. FSTL5 is expressed in cortical 
neurons and involved in Wnt/β-catenin signaling58. In addition, FSTL5 is important in cell development, synaptic 
transmission and plasticity59.

Importantly, the limitations of this study must be noted. The first limitation is the small sample size and relative 
heterogeneity of clinical symptoms. However, collecting OCD postmortem brains, maintaining high-quality frozen 
specimens and performing reliable clinical assessments are difficult. Notably, multiple steps with different trained 
personnel were performed to reach the psychiatric diagnosis. Although some Neuropsychiatric Inventory (NPI) 
items were abbreviated for some individuals, the assessment by more than one psychiatrist excludes any comorbidity.  
We also took care at all stages to ensure high-quality samples, short postmortem intervals, good pH for cerebro-
spinal fluid, good quality of the RNA integrity number (RIN) after RNA extraction and library preparation, using 
random samples distributed in the pooling library to obtain better results and reduce bias. Moreover, considering 
the small sample size in this study, we investigated the extent to which the results could be affected by interindivid-
ual differences in gene expression between the donors. Although a small effect of sample-specific weight existed 
in the CN dataset only, we used SVs in the model to prevent an impact on further analyses. Another important 
issue is that part of the assembled transcriptome was from unannotated regions comprising approximately 40% 
of our dataset and consequently was not used in the biological process enrichment analysis. As we used stringent 
quality control parameters and the same fact was observed in a TS transcriptome19 paper, we are likely capturing 
new striatum transcripts that could be very important to the OCD transcriptome. Finally, although we used age 
paired cases and controls, accessed different measures (anatomopathological and clinical information) associated 
with neurodegeneration and excluded any dubious samples, our study represents the transcriptome of individuals 
more than 65 years old, and our conclusions could be different for younger individuals.

In conclusion, this study is the first to explore the transcriptome of the separate striatum areas in OCD cases 
compared to that in controls. The results confirm the specificity of the transcription signatures of the striatum 
areas and better clarify possible different roles of each area in OCD pathophysiology at the transcriptional level. 
However, given the small sample size and heterogeneity of the OCD cases, this study is clearly the first step in 
efforts to sort the molecular basis of OCD in key brain regions. Future studies with more samples are necessary 
to understand this complexity.

Methods
Subjects and clinical evaluation. Brain samples were collected in the Sao Paulo Autopsy Service (SPAS) 
of the University of Sao Paulo and are part of the psychiatric collection of the Brain Bank of the Brazilian Aging 
Brain Study Group–University of Sao Paulo (BBBABSG). All subjects were 50 years of age or older and had no 
dementia, no factors related to hypoxia and no brain autolysis. The postmortem interval was less than 24 hours, 
and the minimum pH of cerebrospinal fluid was 6.0. The functional and psychiatric evaluations were performed 
by a family member or close caregiver who had at least weekly contact with the deceased and was available to 
answer the screening and semistructured questionnaires60. All family members gave written informed consent to 
participate in the study. The study itself, as well as the use of samples, was conducted with ethical approval granted 
by the FM-USP’s Institutional Review Board–Comissão de Ética para Análise de Projetos de Pesquisa (CAPPesq) 
under protocol number 0740/09, with all experiments performed in compliance with CAPPesq rules.

The clinical evaluation was performed in two steps. First, a screening to detect OCD and symptoms was 
performed according to DSM-IV. The screening consisted of the NPI, the short version of the structured clin-
ical interview (SCID)61 and a short version of the Dimensional Yale-Brown Obsessive-Compulsive Scale 
(DY-BOCS)62,63. The Clinical Dementia Rating Scale (CDR)64 and semistructured questionnaires to detect 
Parkinsonism65, functionality and cognition were applied. During the second step, a psychiatric interview with 
an informant was performed, including the SCID for DSM-IV, the Yale-Brown Obsessive-Compulsive Scale 
(Y-BOCS)62 and the short version of the DY-BOCS. Thus, two psychiatrists who specialized in OCD performed 
two assessments for each case.
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RNA extraction and bioinformatics analysis. Dissected regions were stored at −80 °C until use. Total 
RNA was isolated from CN, PT, and NAC using a QIAsymphony RNA Kit (Qiagen, Germantown, MA, USA) 
according to the manufacturer’s instructions. The RIN was evaluated to check quality. The library was constructed 
with a TruSeq Stranded Total RNA Ribo-Zero Library Preparation Kit ((Illumina Inc., San Diego, CA, USA), and 
paired-end sequencing was performed with a HiSeq2500 (Illumina Inc., San Diego, CA, USA).

Quality control was performed using FASTQC (v.0.11.2)66 to check the sequence quality in 42 sequenced 
samples. Sequences were trimmed to eliminate poor base quality and adaptor contamination using FASTX 
(v.0.0.13)67. Sequences were mapped to Genome Reference Consortium Human build 38 (GRCh38) using 
Tophat2 (v.2.0.13)68 with a maximum of 2 mismatches. Cufflinks (v.2.2.1)68 was used to assemble transcripts 
using an Ensembl gene (GRCh38.78) as a reference annotation. Read counts were computed with the HT-seq69 
algorithm with paired-end reads and gene attributes.

All statistical analyses were performed within the R environment (v.3.2.5)21. Transcripts assigned to more than 
one Ensembl gene, and any possible ribosomal RNA that bypassed depletion processes was removed from the 
data. To determine which genes were expressed, we converted read counts to counts per million (CPM) values 
(edgeR package - v.3.12.1)70, and transcripts with at least 0.3 CPM in 50% samples of a group (case or control) 
were used in downstream analysis. The data were normalized by the rlog function (DESeq2, v.1.10.1)71 to estimate 
hidden covariates using the SVA algorithm (v.3.18.0)72. The group was variables of interest, and sex, age and lab-
oratory batch were adjustment variables. Differential expression analyses were performed within DESeq2, with 
the covariates sex, age, laboratory batch, and surrogate variables estimated by SVA included in the linear model.

Enrichment analyses of biological pathways from DEGs were performed in the web-based tool WebGestalt 
(http://www.webgestalt.org), using the Overrepresentation Enrichment Analysis (ORA) method and GO func-
tional database. The reference lists used as background were all transcripts mapped as Ensembl genes. Functional 
categories with FDR ≤ 0.05 were considered enriched. Enrichment analysis for genes previously described in 
OCD studies and TS were performed using the Modular Single-set Enrichment Test tool73 within the R environ-
ment. The genes from each previous OCD study were acquired from the original papers and/or supplementary 
materials. From GWAS4,5, genes and eQTls for which the p-value was less than 10−5 were considered. The analyses 
of tissue specificity were based on genes from GWAS of animal model brains23. For these analyses, we performed 
orthologous conversion using an online tool DRSC ortholos (http://www.flyrnai.org/cgi-bin/DRSC orthologs.pl) 
with the following parameters: search field (Entrez ID, Gene name, Ensembl, HGNC and MGI ID). We selected 
all prediction tools (including Compara, eggNOG, HGNC, Homologene, Inparanoid, Isobase, OMA, OrthoDB, 
orthoMCL, Panther, and Phylome), and we selected the option, “return only best match when there is more 
than one match per input gene or protein”. From other OCD studies9,19, we based the list for our analysis on the 
best-scoring genes considered by the author.

WGCNA parameters. WGCNA is an algorithm designed to evaluate connectivity differences between the 
coexpression network modules of two groups (i.e., case vs. control groups) based exclusively on expression data24. 
WGCNA uses Pearson’s correlation (rho) expression values between all gene pairs to calculate whether a pair of 
genes (nodes) are connected (edges) to each other. Nevertheless, the network must have a scale-free topology to 
conduct WGCNA analysis. The adjacency correlation matrix is elevated to a sequence of powers (N) with the 
intent to preserve only highly correlated values and to achieve a scale-free network topology. Choosing a mini-
mum power (beta) value that implies a power-law degree distribution equivalent to a scale-free network (coeffi-
cient of determination R2 ≥ 0.8) is necessary.

In WGCNA, we used 23,713 transcripts with Ensembl gene annotations as input. Each brain region was ana-
lyzed separately. For each experiment, WGCNA removed transcripts for which more than 50% of the values 
were not available (NA) in both the case and OCD groups. In this way, CN represented a total of 20,960 genes, 
NAC 21,037 genes and PT 20,634 genes. For all three analyses (related to CN, NAC and PT regions), the chosen 
power (beta) value for both the control and OCD groups was 9. With the connectivity parameter set, all case and 
control datasets were analyzed separately. By using the connectivity parameters of the correlation matrix based 
on power (beta) = 9, the algorithm starts to cluster the pairs of genes based on Euclidean distance (d) between its 
correlation values, creating different modules (Topological Overlap Matrix–TOM). All TOM values range from 
0 (closest) to 1 (farthest). We set a minimum size of 500 genes per module. Each module represents a different 
connected network of genes. Based on different connectivity parameters, WGCNA selects the first principal com-
ponent of each module, identifying its value as a Module Eigengene (ME).

With the creation of all control and disease modules, we selected the control network as our reference net-
work. In this way, the algorithm mapped all genes to each control network module and formed the same modules 
(with the same set of genes) in the OCD group. This analysis evaluates the difference between the connectivity of 
the same modules across different conditions (e.g., whether a set of hub genes in the control group remain hub 
genes in the OCD group). This analysis, Preservation Module Analysis24, is composed of two processes, median-
Rank and Zsummary statistics.

Zsummary uses a set of permutations (default value: 100 permutations) to analyze whether the connectivity 
parameters in the created modules are in fact significantly different from with modules (with the same size) 
created with random genes from the dataset. Zsummary provides a scale indicating the preservation level of a 
module; a Zsummary of 2 indicates a module with very little preservation, whereas 10 represents a well-preserved 
module. The medianRank does not use permutations; instead, it ranks modules according to connectivity param-
eters (such as separability, density and connectivity) based on the median value of each result. The results are 
presented in reverse order by Zsummary.

It is possible for medianRank and Zsummary to present distinct modules as the lowest preserved modules 
(partially because of the different methodologies of both statistics). In such cases, we used the correlation between 
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the results of kME and the genes of the 3 lowest preserved modules of each analysis–the module that presents the 
most neutral correlation (closest to 0) is chosen as the least preserved module. We assume that the module with 
the lowest preservation represents the cluster of genes that are more altered between the OCD and control groups 
(considering the connectivity parameters). Thus, this set of genes would be the most promising to evaluate.

In addition to the preservation statistics, we analyzed the conservation of the hub genes of the least preserved 
modules. A gene with an absolute Pearson’s correlation ≥0.9 between its expression values and the kME value of 
each module was considered a hub.

Data Availability
The datasets generated during the current study are available in the SRA repository under Accession Number 
SRP127180, https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA421175. All data generated in this study are 
included in the Supplementary Information.
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