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Foreword

It is a great pleasure to preface EBEB 2014, the proceedings of the 12th Brazilian
Meeting on Bayesian Statistics, which was attended by the ever-growing community
of Brazilian researchers in Bayesian Statistics and by colleagues and collaborators
from around the world.

From March 10th to 14th at a beautiful resort in Atibaia, EBEB hosted fine
presentations in lecture (33) and poster (39) formats of researchers from institutions
in Belgium, Canada, Chile, Finland, India, Italy, Peru, Saudi Arabia, Switzerland,
UK, USA, and Brazil. The tradition of meeting participants serving as referees for the
selection of papers submitted to be included in this book was maintained. This was not
an easy task, as the quality of submission was very high. The EBEB 2014 organizers
made sure that graduate students had financial support for active engagement in the
meeting activities; presenting their research and interacting with researchers from
other institutions. This support is always a sound investment for the development of
Bayesian Statistics.

High-quality publications of proceedings, as of EBEB 2012 byAIP (TheAmerican
Institute of Physics) and of EBEB 2014 by Springer, motivate researchers and enrich
the EBEBs. Editing such proceedings is a tradition inspired by the Valencia and
MaxEnt series, arguably two of the most influential and long-standing meetings in
Bayesian Statistics. This requires a lot of time, great effort, and also knowledge and
experience.

Another tradition of the Brazilian Bayesian community is to invite illustrious
professors who discuss our research and suggest new directions to explore. First and
foremost among those were Dev Basu and Dennis Lindley, as I will comment in the
sequel. We look forward to maintaining that tradition at the next EBEBs. We also see
as a positive sign of maturity, the increasing number of international researchers that
spontaneously attend EBEB, as one expects from prestigious international meetings
in well-developed areas of scientific research. This trend is a direct consequence of
the existence of high-quality proceedings, and vice-versa, exactly as it is in MaxEnt
and used to be in Valencia.

The increasing presence at EBEB of several emergent centers of research in Brazil
spreads our Bayesian activities outside the Rio and São Paulo axis. Some of these
emerging centers are strongly inserted and well connected internationally, but are
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vi Foreword

also becoming increasingly capable of self-steering, exhibiting the high degree of
autonomy that is so characteristic of genuine scientific research.

My good friend and colleague Josemar Rodrigues received a most deserved ac-
colade at this EBEB. Josa’s drive for research produces many papers by himself,
his students, and colleagues. Having become a good friend of Professor Basu, Josa
was also deeply influenced by him in his move from a good frequentist to a superb
Bayesian.

In a way, Dev is a Founding Father of Brazilian Bayesianism. His visit to USP
in the eighties left seeds which became important Bayesian trees. This process was
also caused by the visit of Dennis, who sadly passed away in 2013. The Brazilian
Bayesian community owes gratitude to the two gurus and dedicates this volume to
their memory.

Fabio Spizzichino and Claudio Macci’s paper in this book is a Brazilian contri-
bution to the celebrations of the 250th anniversary of the publication of (ultimately
the reason for us to gather at Atibaia) “An Essay towards Solving a Problem in the
Doctrine of Chances” by Our Reverend Thomas Bayes.

São Paulo Sergio Wechsler
January 2015



Preface

This volume of the “Springer Proceedings in Mathematics & Statistics” contains
selected articles from EBEB 2014. The home page of the event is available at
http://www.ime.usp.br/∼isbra/ebeb/ebeb2014.

• The main promoters of EBEB 2014 were
– ISBrA—Brazilian chapter of the International Society for Bayesian Analysis

(ISBA)
– INCTMat—National Institute of Mathematical Science and Technology
– Interinstitutional Graduate Program in Statistics of UFSCar/ICMC-USP
– Graduate Program in Statistics of IME-USP
– IME-USP—Institute of Mathematics and Statistics of University of São Paulo

• Organizing Committee
– Adriano Polpo (UFSCar)
– Carlos Alberto de Bragança Pereira (IME-USP)
– Franciso Louzada Neto (ICMC-USP)
– Julio Stern (IME-USP)
– Laura Letícia Ramos Rifo (UNICAMP)
– Marcelo Lauretto (EACH-USP)
– Teresa Cristina Martins Dias (UFSCar)

• Scientific Committee
– Adriano Polpo (UFSCar / Brazil)
– Alexandra M. Schmidt (UFRJ / Brazil)
– André Rogatko (Cedars-Sinai / US)
– Carlos Alberto de Bragança Pereira (IME-USP / Brazil)
– Carlos A. R. Diniz (UFSCar / Brazil)
– Cassio de Campos (IDSIA / Switzerland)
– Dani Gamerman (IM-UFRJ / Brazil)
– Debajyoti Sinha (FSU / US)
– Francisco Louzada Neto (ICMC-USP / Brazil)
– Julio Stern (IME-USP / Brazil)
– Laura Letícia Ramos Rifo (IMECC-UNICAMP / Brazil)
– Marcelo Lauretto (EACH-USP / Brazil)
– Márcia D’Elia Branco (IME-USP / Brazil)
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– Marcio Alves Diniz (UFSCar / Brazil)
– Rosangela H. Loschi (UFMG / Brazil)
– Victor Fossaluza (IME-USP / Brazil)

• Executive committee
– Bruno Borcado (Supremum Assessoria / Brazil)
– Lourdes Vaz da Silva Netto (IME-USP / Brazil)
– Sylvia Regina A. Takahashi (IME-USP / Brazil)

The organizers thank the first president of ISBrA, Professor Sergio Wechsler, for the
Foreword and the reviewers for their careful work in selecting the papers. This book
is a consequence of the great and hard work of all people involved in the organization
of EBEB: colleagues, administrators and the convention center/hotel employers.

We also thank the support of the following promoters:
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Chapter 1
What About the Posterior Distributions
When the Model is Non-dominated?

Claudio Macci and Fabio Spizzichino

Abstract Starting from the first inception of philosophical research that had sub-
sequently led to subjective probability and Bayesian statistics, and to date the most
recent developments, the probabilistic nature and the related statistical implications
of Bayes theorem have been thoroughly discussed. However, the substantial contents
of such a formula is very deep and new contributions are still continuing after 250
years. The simplest form of Bayes theorem is met when dominated statistical models
are dealt with. This is, in a sense, comfortable, specially as far as parametric mod-
els are considered. Actually, most statistical techniques in the frame of parametric
inference refer to dominated statistical models. Different problems in the applica-
tions, however, can lead to considering non-dominated models. In these cases, some
complications and intriguing conclusions can arise. Concerning non-dominated sta-
tistical models, we devote this note to discussing some mathematical features that
may sometimes escape the attention of statisticians. We deal with questions and
results that, at a first glance, may appear of almost-exclusive measure-theoretic in-
terest. However, they have a real statistical meaning of their own and the present
note aims to stimulate some reflections about this field.

1.1 Introduction

Starting from the first inception of philosophical research that had subsequently led
to subjective probability and Bayesian statistics, and to date the most recent devel-
opments, the probabilistic nature and the related statistical implications of Bayes
theorem have been thoroughly discussed, both from the viewpoints of mathematical
formalization and heuristic meanings. However, the substantial contents of such a
formula is very deep and new contributions are still continuing after 250 years.

C. Macci (�)
Dipartimento di Matematica, Università di Roma Tor Vergata , Roma, Italia
e-mail: macci@mat.uniroma2.it

F. Spizzichino
Dipartimento di Matematica G. Castelnuovo, Sapienza Università di Roma, Roma, Italia
e-mail: fabio.spizzichino@uniroma1.it
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2 C. Macci and F. Spizzichino

The term “Bayes theorem” is in any case connected to the analysis of the relations
between the prior and posterior distributions or, in other words, between the state
of knowledge available to the analyst before and after a new source of information.
However, it can actually take different forms, depending on the specific contexts and
different mathematical forms or it may sometimes hide aspects that are relevant from
the statistical viewpoint. Thus, new related remarks come out from time to time.

The simplest form of Bayes theorem is met when dominated statistical models are
dealt with. This is, in a sense, comfortable, specially as far as parametric models are
considered. Actually, most statistical techniques in the frame of parametric inference
refer to dominated statistical models.

Different problems in the applications, however, can lead to considering non-
dominated models. In these cases, some complications and intriguing conclusions
can arise.

Concerning non-dominated statistical models, we devote this note to discussing
some mathematical features that may sometimes escape the attention of statisticians.
We deal with questions and results that, at a first glance, may appear of almost-
exclusive measure-theoretic interest. However, they have a real statistical meaning
of their own and the present note aims to stimulate some reflections about this field.
We hope that our discussion can also be of interest in the field of Bayesian non-
parametric analysis where non-dominated models are more common. A well-known
example where the statistical experiment is non-dominated is the family of all discrete
probability measures on an uncountable set. In this case, we have a conjugate family
of prior distributions formed by the Dirichlet processes (see [4]). This is a distinctive
feature of Dirichlet processes described in [7], where they take into account the
normalization of increasing processes having independent increments used in [11].

From a technical viewpoint, a basic property of dominated models is that the
posterior distribution is absolutely continuous w.r.t. the prior distribution. The start-
ing point for our discussion is that such a property can fail in the non-dominated
case. We shall then analyze some peculiar aspects of the relations tying the posterior
and the prior distributions under non-domination and, in particular, we consider the
absolutely continuous and singular parts of the posterior distribution w.r.t. the prior.

We aim to offer a friendly presentation, as far as possible. But, on the purpose
of reaching sound conclusions, a certain amount of notation and technicalities is
unavoidable. The discussion will be articulated as follows. In Sect. 2, we recall
some basic definitions about statistical models and introduce the notation that will
be used in the subsequent sections. Section 3 contains a brief review about notions of
domination and non-domination in the statistical models, from different viewpoints.
Section 4 will be devoted to the implications of non-domination in Bayesian statistics.
Finally, in Sect. 5, we present a brief discussion based on a special class of non-
dominated parametric models.



1 What About the Posterior Distributions When the Model is Non-dominated 3

1.2 Basic Definitions and Notation

We recall here the basic terminology and definitions related with Bayesian statistical
experiments and fix the notation that will be used in the following. As a reference
we mainly rely, e.g., on [5].

In a statistical model, the sample space and the parameter space will be denoted by
X and G. BX , BG are theσ -algebras over which probability measures are respectively
defined. In particular, we consider a statistical experiment (X , BX , P), where P =
{Pθ : θ ∈ G} is the family of sampling distributions with Pθ being probability
measures over (X , BX ).

Starting from (X , BX , P), one can define infinitely many different Bayesian ex-
periments. For any given probability measure μ on (G, BG), in fact, we can consider
the Bayesian experiment (G ×X , BG ⊗BX ,Πμ,P ) where G ×X is the product space

G × X = {(θ , x) |θ ∈ G; x ∈ X },
BG ⊗ BX denotes the product σ -algebra, generated by the family of all the subsets
of the form

A × B = {(θ , x) |θ ∈ A, x ∈ B} for all A ∈ BG and B ∈ BX ,

andΠμ,P is the probability measure, over (G × X , BG ⊗ BX ), defined by the position

Πμ,P (A × B) =
∫
A

Pθ (B)μ(dθ ) (for all A ∈ BG and B ∈ BX ). (1.1)

Πμ,P is then the joint distribution of the pair (parameter-observation).
The measure μ is the marginal distribution of Πμ,P on (G, BG), and it is seen then

as a prior distribution for the parameter.
The marginal distribution of Πμ,P over (X , BX ), namely

Pμ,P (B) = Πμ,P (G × B) =
∫

G
Pθ (B)μ(dθ ) (for all B ∈ BX ), (1.2)

is the predictive distribution of the observations.
Finally, the family of posterior distributions is the family of the probability

measures {μP ( · |x) : x ∈ X } over (G, BG) defined by the equation

Πμ,P (A × B) =
∫
B

μP (A|x)Pμ,P (dx) (for all A ∈ BG and B ∈ BX ). (1.3)

We remark the analogy between (1.1) and (1.3) where we have the integrals of
conditional probabilities with respect to marginal distributions. We typically consider
situations where the family {μP ( · |x) : x ∈ X } exists and it is unique Pμ,P almost
surely with respect to x.

In view of what follows, we remark that for all C ∈ BG ⊗ BX , we have

Πμ,P (C) =
∫

G
Pθ (C(θ , .))μ(dθ ) =

∫
X
μP (C(., x)|x)Pμ,P (dx), (1.4)
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where

C(θ , .) = {x ∈ X : (θ , x) ∈ C} and C(., x) = {θ ∈ G : (θ , x) ∈ C} (1.5)

are the θ -section and the x-section of the set C. Notice that, when C = A × B (for
A ∈ BG and B ∈ BX ), the equations in (1.4) reduce to (1.1) and (1.3), respectively.

Associated to a given Bayesian experiment (G ×X , BG ⊗BX ,Πμ,P ) we can also
consider over (G × X , BG ⊗ BX ) the product measure μ⊗Pμ,P , i.e., the product of
the marginal distributions μ and Pμ,P , which is defined by the equation

μ ⊗ Pμ,P (A × B) = μ(A)Pμ,P (B) (for all A ∈ BG and B ∈ BX ). (1.6)

Typically, we think of the cases where the sample space X coincides with a subset
of h-dimensional Euclidean space R

h. As to G, we typically use the term parametric
case when G ⊂ R

k for some finite integer number k.
No problem however arises in letting X and G to be Polish spaces (i.e., complete

and separable metric spaces), equipped with their Borel σ -algebras BG and BX . Such
a generalization permits us to extend everything we say here to more general cases
for both statistical observations and parameter. In particular, it allows one to consider
non-parametric models.

From a technical viewpoint, all the functions {θ �→ Pθ (B) : B ∈ BX } in the
formula (1.1) are tacitly assumed to be measurable with respect to BG in order to
guarantee the condition of measurable dependence which is needed to let the integral
(1.2) be correctly defined. Notice that this condition is not generally required in
Statistics: it is just peculiar of the Bayesian approach, where the joint probability
measure Πμ,P has a fundamental role.

1.3 Bayesian Versus Non-Bayesian Dominated Models

We now recall the concepts of domination for statistical models. Different definitions
have been introduced in the literature, but for our purposes it will be enough to
compare just the Bayesian concept with the standard non-Bayesian one.

In a non-Bayesian frame, a statistical experiment determined by P = {Pθ : θ ∈ G}
is dominated if there exists a σ -finite measure λ on (X , BX ) with respect to which
all the sampling distributions are absolutely continuous. Namely, for B ∈ BX , one
has the implication

λ (B) = 0 ⇒ Pθ (B) = 0 (for all θ ∈ G).

When the experiment is dominated, we have a family of densities
{
dPθ

dλ
: θ ∈ G

}
,

with respect to λ and, as a basic implication of this condition, it is then possible to
talk about the likelihood function.
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We recall in fact that, when ν1, ν2 are two σ -finite measures on a same measurable
space (Ω , F) with ν1 absolutely continuous with respect to ν2, then the Radon–
Nikodym theorem ensures the existence of a density dν1

dν2
, namely of a F-measurable

function such that

ν1(A) =
∫
A

dν1

dν2
(ω)ν2(dω) (for all A ∈ F).

More generally we have

ν1(A) = ν
(ac)
1 (A) + ν

(sg)
1 (A) (for all A ∈ F),

where ν(ac)
1 is absolutely continuous w.r.t. ν2, and ν

(sg)
1 and ν2 are mutually singular.

Namely, we have

ν
(ac)
1 (A) =

∫
A

dν
(ac)
1

dν2
(ω)ν2(dω) (for all A ∈ F)

for a density dν
(ac)
1

dν2
(by the Radon–Nikodym theorem), and

ν
(sg)
1 (A) = ν

(sg)
1 (A ∩ D) (for all A ∈ F)

for a set D ∈ F such that ν2(D) = 0. The pair (ν(ac)
1 , ν(sg)

1 ) is uniquely determined
by ν1 and ν2. Obviously, if ν1 absolutely continuous with respect to ν2, ν1 = ν

(ac)
1

and ν
(sg)
1 is the null measure.

Notice that the above definition of dominated experiment only concerns the family
of sampling distributions. The concept of domination in the Bayesian setting, on the
contrary, refers to the pair (μ, P) and it is seen as a property of the joint probability
measure Πμ,P , over (G × X , BG ⊗ BX ). The product measure μ⊗ Pμ,P also enters
into play. More precisely, one can formulate the following.

Definition (see [5, p. 28])
The experiment (G × X , BG ⊗ BX ,Πμ,P ) is dominated when

Πμ,P is absolutely continuous with respect to μ ⊗ Pμ,P . (1.7)

In other words
μ ⊗ Pμ,P (C) = 0 ⇒ Πμ,P (C) = 0.

We remark that, by (1.4) and (1.5), Πμ,P (C) = 0 is equivalent to each of both
conditions:

μ({θ ∈ G : Pθ (C(θ , .)) = 0}) = 1; (1.8)

Pμ,P ({x ∈ X : μP (C(., x)|x) = 0}) = 1. (1.9)
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The condition (1.7) guarantees that the posterior distributions {μP ( · |x) : x ∈ X }
are absolutely continuous w.r.t. the prior distribution μ and also that the sampling
distributions {Pθ : θ ∈ G} are such w.r.t. the predictive distribution Pμ,P . See also,
in this respect, Sect. 4.

In particular, for all choices of the prior distribution μ, the density of μP ( · |x)
w.r.t. μ is just given (Pμ,P almost surely with respect to x) by the Bayes formula:

μP (A|x) =
∫
A

dPθ

dλ
(x)μ(dθ )∫

G
dPθ

dλ
(x)μ(dθ )

(for all A ∈ BG). (1.10)

On the contrary, when the statistical experiment is non-dominated, we cannot rely
on the formula (1.10) anymore and the posterior distributions can have singular parts
with respect to the prior distribution.

Typically, parametric inference problems are modeled on dominated statistical
experiments (the reader can think of the different examples based on exponential
families), while non-dominated statistical experiments can emerge more naturally
for nonparametric inference problems. Some examples of non-dominated statistical
experiments will be briefly discussed in the last section of this note.

The concept of dominated statistical experiment appeared in the literature be-
tween the forties and the fifties of last century (see, e.g., [1] and [6]) as a strong
condition of regularity for an experiment. In particular, it plays a crucial role to give
a characterization of classical sufficiency. We recall that, given a statistical experi-
ment P = {Pθ : θ ∈ G}, a σ -algebra S ⊂ BX is sufficient when the conditional
probabilities {Pθ (A|S) : A ∈ BX } do not depend on θ . Then, if P = {Pθ : θ ∈ G} is
dominated, as very well-known, S ⊂ BX is sufficient if and only if, for all θ ∈ G,
the Neyman factorization

dPθ

dλ
(x) = h(x)k(x, θ )

holds, for some BX measurable function h and S ⊗ BG measurable function k. We
also recall that S ⊂ BX is Bayes-sufficient if, for any prior distributionμ, there exists
a family of the posterior distributions {μ( · |x) : x ∈ X } such that {x �→ μ(A|x) :
A ∈ BG} are measurable with respect to S. For models with conditionally i.i.d.
observations, the existence of a fixed-dimensional sufficient statistics is equivalent to
the existence of a finitely parametrized conjugate family of priors (see, e.g., Sect. 9.3
in [3]). Finitely parametrized conjugate families, in a “weak” sense emerge in more
general situations for which sufficiency in the common sense cannot be defined.
This is the case of the very well-known Kalman filter and, more generally, in some
situations of stochastic filtering in discrete time (see, e.g., the discussion in [12]).
The concept of conjugate families, in the weak sense, could also be introduced in
the analysis of non-dominated parametric models.
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1.4 Non-dominated Bayesian Experiments and the Lebesgue
Decomposition of Πμ,P

As an immediate implication of the above definitions, a Bayesian experiment can
be non-dominated only if we can find C ∈ BG ⊗ BX such that μ ⊗ Pμ,P (C) = 0
and Πμ,P (C) > 0, i.e., (1.8) and (1.9) fail. Namely, it is possible that the statistical
observation carries information of deterministic type about parameters, giving rise
to the possibility that the posterior distribution contains some singular components
w.r.t. the prior distribution. In such cases, one can be then interested in analyzing the
Lebesgue decomposition of Πμ,P with respect to μ⊗Pμ,P . Also the decomposition
of {μP ( · |x) : x ∈ X } w.r.t. μ and the one of the sampling distributions {Pθ : θ ∈ G}
w.r.t. the predictive distribution Pμ,P are objects of interest and the analysis of the
relations among these decompositions is in order, in this frame.

In this respect, a precise result allows us to analyze the type of such relations ([8],
Proposition 1; see also Proposition 2 for a different formulation). This result gives
in fact more insight on the Lebesgue decompositions of the posterior distributions
w.r.t. the prior distribution, and on the Lebesgue decompositions of the sampling
distributions w.r.t. the predictive distribution. On this purpose we write down the
Lebesgue decomposition of Πμ,P w.r.t. μ ⊗ Pμ,P , namely

Πμ,P (E) =
∫
E

gμ,P (θ , x)μ ⊗ Pμ,P (dθ , dx) + Πμ,P (E ∩ Dμ,P ), (1.11)

for all E ∈ BG ⊗ BX , where gμ,P is the density of the absolutely continuous part of
Πμ,P w.r.t. μ⊗Pμ,P , and Dμ,P is a set such that μ⊗Pμ,P (Dμ,P ) = 0 (for instance
Dμ,P is the support of the singular part of Πμ,P ). We remark that the decomposition
in (1.11) depends on the choice of the prior distribution μ, and therefore both gμ,P
and Dμ,P depend on the choice of μ. The objects appearing in (1.11) are the basic
ingredients in the analysis of the Lebesgue decompositions cited above. The precise
result reads as follows.

Theorem 1.1 (i) The Lebesgue decomposition ofμP (·|x) with respect toμ is (Pμ,P
almost surely with respect to x)

μP (A|x) =
∫
A

gμ,P (θ , x)μ(dθ ) + μP (A ∩ Dμ,P (., x)|x) (for all A ∈ BG).

(ii) The Lebesgue decomposition of Pθ with respect to Pμ,P is (μ almost surely with
respect to θ )

Pθ (B) =
∫
B

gμ,P (θ , x)Pμ,P (dx) + Pθ (B ∩ Dμ,P (θ , .)) (for all B ∈ BX ).

Roughly speaking the main message concerning these decompositions goes as
follows:

“ Any absolutely continuous part depends on the other absolutely continuous parts only, and
any singular part depends on the other singular parts only”
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As an immediate consequence of this result (see Corollary in [8]), condition (1.7) is
equivalent to each of the two conditions

μ({θ ∈ G : Pθ absolutely continuous with respect to Pμ,P}) = 1, (1.12)

and

Pμ,P ({x ∈ X : μP ( · |x) absolutely continuous with respect to μ}) = 1. (1.13)

The following statements point out the connection between the concepts of
dominations presented above:

1. Whatever is μ, (1.7) holds if P is dominated;
2. Whatever is P , (1.7) holds if μ is discrete (i.e., μ is concentrated on an at most

countable set).

The statement 1 is well-known and can be seen as a consequence of Theorem 1.2.3
in [5]. However, it can also be seen as a consequence of the equivalence between
(1.7) and (1.13), together with the Bayes formula (1.10). The statement 2, in its turn,
is a consequence of the equivalence between (1.7) and (1.12). It contains a sound
statistical implication: condition (1.7) can hold or can fail, according to the different
choices of the prior distribution μ.

1.5 Mixed Distributions for Additive Noise and Related
Decompositions

As mentioned in the introduction, non-dominated statistical models are natural in
the non-parametric setting. As far as the parametric case is concerned, they are not
so common, on the contrary. Non-dominated experiments can however emerge, in a
very natural case, in the frame of models with an additive noise. This happens when
the probability law of the noise is a mixture between a discrete and a continuous
distribution.

Let G ⊂R
k be a finite-dimensional parameter space and assume that it is uncount-

able (otherwise we would have domination in any case). Moreover, under each Pθ

(for θ ∈ G), the observable random variable X has the form

X = K(θ ) + ε, (1.14)

where K is a measurable function defined on G with an uncountable range, and ε is
interpreted as the (random) noise. The distribution function Fε of ε has the form

Fε(y) = pFd (y) + (1 − p)Fac(y) (1.15)

where Fd and Fac are discrete and absolutely continuous distributions functions,
respectively, and p ∈ (0, 1).
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The specific form of Eq. (1.11) and the message contained in Theorem 1.1 can be
discussed for this class of models. For the sake of simplicity, we can think of the case
where G = X = R, K in (1.14) is the identity function, and Fac and Fd in (1.15) are

Fac(y) =
∫ y

−∞
f (x)dx (for all y ∈ R) (1.16)

for a continuous density f , and

Fd (y) =
⎧⎨
⎩

1 if y ≥ 0

0 if y < 0.
(1.17)

Namely, Fd is the distribution function of the (degenerate) random variable taking
value 0 with probability one. We have in mind a situation where, with positive
probabilities (1 − p) and p, the noise can respectively be present or missing in an
observation, but such a circumstance is not directly detectable for the experimenter.
Therefore, the statistical observation can carry a piece of deterministic information
about the unobservable value θ . This example actually demonstrates some main
aspects of the arguments in the previous section. A slight different presentation of
this example can be found in [8, Sect. 4]. Related with example, see also [2, p. 30]
for a discussion on the “likelihood principle” and Macci and Polettini [10, Sect. 3]
for the study of the Bayes factor in a hypothesis testing problem.

We start with the expression of the sampling distributions that, for the present
model, is given by

Pθ (B) = p1B(θ ) + (1 − p)
∫
B

f (x − θ )dx (for all B ∈ BX ). (1.18)

In our analysis, the case of interest is when the prior distribution μ is absolutely
continuous, with density m. Then, as one could expect, the posterior distribution
μ( · |x) should asses a positive probability to x (and only to x) provided m(x) > 0.
In fact there is the possibility that the observation has not been affected by any noise,
and thus the sampled value x coincides with θ . This intuition is confirmed by the
expression of the posterior distribution presented in Eq. (1.19) below, which assesses
to the value x the positive probability in (1.20). In order to derive formula (1.19), the
expression of the predictive distribution is preliminarily needed. By (1.2) and some
manipulations we get

Pμ,P (B) =
∫
B

{
pm(x) + (1 − p)

∫
G
f (x − θ )m(θ )dθ

}
dx (for all B ∈ BX ).

Moreover, combining (1.3) and the latter expression, one can obtain

μ(A|x) = pm(x)1A(x) + (1 − p)
∫
A
f (x − θ )m(θ )dθ

pm(x) + (1 − p)
∫
G f (x − θ )m(θ )dθ

(for all A ∈ BG). (1.19)



10 C. Macci and F. Spizzichino

Note that the singular components of the sampling distributions (1.18) reflect into
the presence of the singular components for the posterior distributions. In fact the
term p1B(θ ) in (1.18) triggers the term

pm(x)1A(x)

pm(x) + (1 − p)
∫
G f (x − θ )m(θ )dθ

in (1.19). In particular, for A = {x}, we have

μ({x}|x) = pm(x)

pm(x) + (1 − p)
∫
G f (x − θ )m(θ )dθ

> 0 when m(x) > 0. (1.20)

Interestingly, this probability is influenced by the behavior of the prior density m

over all the parameter space G.
We now turn to the Lebesgue decomposition of Πμ,P with respect to μ ⊗ Pμ,P .

We remind that such decomposition is generally given by the formula (1.11). In the
present case, the ingredients appearing in such formula respectively become

gμ,P (θ , x) = (1 − p)f (x − θ )

pm(x) + (1 − p)
∫
G f (x − η)m(η)dη

and
Dμ,P = {(θ , x) ∈ G × X |θ = x}.

We said above that the statistical observation can carry some piece of ” deterministic”
information about the parameter (the term p1B(θ ) in Eq. (1.18) above) and, when
the sample value is x, we must asses positive probability to x when m(x) is positive
(see Eq. (1.20) above). This happens because the statistical observation can coincide
with the parameter, and therefore the structure of the set Dμ,P is not surprising.

Let us now focus attention on what happens when we have n ≥ 2 statistical
observationsX1, . . . ,Xn conditionally independent and identically distributed, given
θ . Thus, we can write

Xi = θ + εi (for i = 1, . . . , n)

with ε1, . . . , εn i.i.d. with distribution function Fε defined by (1.15), (1.16), and
(1.17). In particular, we have P (εi = 0) = p for all i = 1, . . . , n.

In view of what follows, for any possible vector of sampled values x =
(x1, . . . , xn) ∈ X n, we can consider the distinct values xi1 , . . . , xik , say, for some
{i1, . . . , ik} ⊂ {1, . . . , n}, with their respective multiplicities. Moreover, let C(1)

n be
the subset of vectors having all distinct entries, i.e., n distinct values with multiplicity
1, and let C(2)

n be the subset of vectors having at most one repetitions, i.e., k < n

distinct values and only one entry x̂, say, (among (x1, . . . , xn)) has multiplicity
strictly greater than 1. Then, if we denote the predictive distribution for the case of
n observations by Pμ,Pn

, it is possible to check by some computations that

Pμ,Pn

(
C(1)
n ∪ C(2)

n

) = 1.

Moreover, as far as the posterior distributions {μPn
( · |x) : x ∈ X n} are concerned,

it is possible to prove that we have the following situations:
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1. If x ∈ C(1)
n , then the posterior distribution assesses an absolutely continuous part

(w.r.t. the prior distribution) and some probability masses on the distinct values
x1, . . . , xn;

2. If x ∈ C(2)
n , then the posterior distribution assesses probability 1 to the value x̂.

One could expect that, for an increasing number of observations, the probability
increases to observe repetitions in the sample. Such repetitions make the posterior
distributions to collapse and degenerate into the repeated value, as stated in item 2
above. A closer inspection of the structure of the model reveals that

Pμ,Pn

(
C(2)
n

) = 1 − Pμ,Pn

(
C(1)
n

) = 1 − [(1 − p)n + np(1 − p)n−1],

which is nondecreasing with n. Thus

Pμ,Pn

({x ∈ X n : μPn
( · |x) and μ are mutually singular})

is nondecreasing with n. This result also holds for more general situations (see, e.g.,
Eq. (4.2) in [9]).
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Chapter 2
Predictive Inference Under Exchangeability,
and the Imprecise Dirichlet Multinomial Model

Gert de Cooman, Jasper De Bock and Márcio Diniz

Abstract Coherent reasoning under uncertainty can be represented in a very gen-
eral manner by coherent sets of desirable gambles. In this framework, and for a
given finite category set, coherent predictive inference under exchangeability can be
represented using Bernstein coherent cones of multivariate polynomials on the sim-
plex generated by this category set. This is a powerful generalisation of de Finetti’s
representation theorem allowing for both imprecision and indecision. We define an
inference system as a map that associates a Bernstein coherent cone of polynomials
with every finite category set. Many inference principles encountered in the litera-
ture can then be interpreted, and represented mathematically, as restrictions on such
maps. We discuss two important inference principles: representation insensitivity—
a strengthened version of Walley’s representation invariance—and specificity. We
show that there is a infinity of inference systems that satisfy these two principles,
amongst which we discuss in particular the inference systems corresponding to (a
modified version of) Walley and Bernard’s imprecise Dirichlet multinomial models
(IDMMs) and the Haldane inference system.

2.1 Introduction

This chapter deals with predictive inference for categorical variables. We are therefore
concerned with a (possibly infinite) sequence of variables Xn that assume values in
some finite set of categoriesA. After having observed a number ň of them, and having
found that, say X1 = x1, X2 = x2, . . . , Xň = xň, we consider some subject’s belief
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model for the next n̂ variables Xň+1, . . . Xň+n̂. In the probabilistic tradition—and
we want to build on this tradition in the context of this chapter—this belief can be
modelled by some conditional predictive probability mass function pn̂( · |x1, . . . , xň)
on the set An̂ of possible values for these next variables. These probability mass
functions can be used for prediction or estimation, for statistical inferences, and
in decision making involving the uncertain values of these variables. In this sense,
predictive inference lies at the heart of statistics, and of learning under uncertainty.

What connects these predictive probability mass functions for various values
of ň, n̂ and (x1, . . . , xň) are the requirements of temporal consistency and coher-
ence. The former requires that when n1 ≤ n2, pn1 ( · |x1, . . . , xň) can be obtained
from pn2 ( · |x1, . . . , xň) through marginalisation; the latter essentially demands that
these conditional probability mass functions should be connected with temporally
consistent unconditional probability mass functions through Bayes’s Rule.

A common assumption about the variables Xn is that they are exchangeable.
De Finetti’s famous representation theorem [4, 11] then states that the temporally
consistent and coherent conditional and unconditional predictive probability mass
functions associated with a countably infinite exchangeable sequence of variables in
A are completely characterised by1 a unique probability measure on the Borel sets
of the simplex of all probability mass functions on A, called its representation.

This leads us to the central problem of predictive inference: since there is an
infinity of such probability measures on the simplex, which one does a subject choose
in a particular context, and how can a given choice be motivated and justified? The
subjectivists of de Finetti’s persuasion would answer that this question needs no
answer: a subject’s personal predictive probabilities are entirely his, and temporal
consistency and coherence are the only requirements he should heed. Proponents of
the logicist approach to predictive inference would try enunciating general inference
principles in order to narrow down, and hopefully eliminate entirely, the possible
choices for the representing probability measures on the simplex. Our point of view
holds a compromise between the subjectivist and logicist positions: it should be
possible for a subject to make assessments for certain predictive probabilities, and
to combine these with certain inference principles he finds reasonable. Although
this is not the topic of the present chapter, the inference systems we introduce in
Sect. 2.6 provide an elegant framework and tools for making conservative predictive
inferences that combine (local) subjective probability assessments with (general)
inference principles.

This idea of conservative probabilistic inference brings us to a central idea in
de Finetti’s approach to probability [13]: a subject should be able to make certain
probability assessments, and we can then consider these as bounds on so-called
precise probability models. Calculating such most conservative but tightest bounds
is indeed what de Finetti’s fundamental theorem of prevision [13, 19] is about. The
theory of imprecise probabilities [25, 28, 30] looks at conservative probabilistic
inference precisely in this way: how can we calculate as efficiently as possible the

1 . . . unless the observed sequence has probability zero.
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consequences—in the sense of most conservative tightest bounds—of making certain
probability assessments. One advantage of imprecise probability models is that they
allow for imprecision, or in other words, the use of partial probability assessments
using bounding inequalities rather than equalities. In Sect. 2.2, we give a concise
overview of the relevant ideas, models and techniques in the field of imprecise
probabilities.

The present chapter, then, can be described as an application of ideas in impre-
cise probabilities to predictive inference. Its aim is to study—and develop a general
framework for dealing with—coherent predictive inference using imprecise probabil-
ity models. Using such models will also allow us to represent a subject’s indecision,
which we believe is a natural state to be in when knowing, or having learned little,
about the problem at hand. It seems important to us that theories of learning under
uncertainty in general, and predictive inference in particular, start out with conserva-
tive, very imprecise and indecisive models when little has been learned, and become
more precise and decisive as more observations come in.

Our work here builds on, but manages to reach much further than, an earlier
chapter by one of the authors [9]. The main reason why it does so, is that we are now
in a position to use a very powerful mathematical language to represent imprecise-
probabilistic inferences: Walley’s [28] coherent sets of desirable gambles. Here,
the primitive notions are not probabilities of events, nor expectations of random
variables. The focus is rather on the question whether a gamble, or a risky transaction,
is desirable to a subject—strictly preferred to the zero transaction, or status quo. And
a basic belief model is now not a probability measure or lower prevision, but a set of
desirable gambles.

Let us briefly summarise why, in the present chapter, we work with such sets as
our basic uncertainty models for doing conservative probabilistic inference. Most im-
portantly, and as we shall see in Sects. 2.2 and 2.3, marginalisation and conditioning
are especially straightforward, and there are no issues whatsoever with conditioning
on sets of (lower) probability zero. Furthermore, sets of desirable gambles provide
an extremely expressive and general framework: It encompasses and subsumes as
special cases both classical (or ‘precise’) probabilistic inference and inference in
classical propositional logic [7].

So, now that we have argued why we want to use sets of desirable gambles to
extend the existing probabilistic theory of predictive inference, let us explain in some
detail how we intend to go about doing this. The basic building blocks are introduced
in Sects. 2.2–2.8. As already indicated above, we give an overview of relevant notions
and results concerning our imprecise probability model of choice—coherent sets
of desirable gambles—in Sect. 2.2. In particular, we explain how to use them for
conservative inference as well as conditioning; how to derive more commonly used
models, such as lower previsions and lower probabilities, from them; and how they
relate to precise probability models.

In Sect. 2.3, we explain how we can describe a subject’s beliefs about a sequence
of variables in terms of predictive sets of desirable gambles, and the derived notion
of predictive lower previsions. These imprecise probability models generalise the
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above-mentioned predictive probability mass functions pn̂( · |x1, . . . , xň), and they
constitute the basic tools we shall be working with. We also explain what are the
proper formulations for the above-mentioned temporal consistency and coherence
requirements in this more general context.

In Sect. 2.4, we discuss a number of inference principles that we believe could
be reasonably imposed on predictive inferences, and we show how to represent
them mathematically in terms of predictive sets of desirable gambles and lower
previsions. Representation insensitivity means that predictive inferences remain es-
sentially unchanged when we transform the set of categories, or in other words that
they are essentially insensitive to the choice of representation—the category set. An-
other inference principle we look at imposes the so-called specificity property: when
predictive inference is specific, then for a specific question involving a restricted
number of categories, a more general model can be replaced by a more specific
model that deals only with the categories of interest, and will produce the same
relevant inferences [2].

The next important step is taken in Sect. 2.5, where we recall from the literature
[8, 10] how to deal with exchangeability when our predictive inference models are
imprecise. We recall that de Finetti’s representation theorem can be significantly
generalised. In this case, the temporal consistent and coherent predictive sets of de-
sirable gambles are completely characterised by a set of (multivariate) polynomials
on the simplex of all probability mass functions on the category set. This set of poly-
nomials must satisfy a number of properties, which taken together define the notion
of Bernstein coherence. It serves completely the same purpose as the representing
probability measure: it completely determines, and conveniently and densely sum-
marises, all predictive inferences. This is the reason why the rest of the developments
in the chapter are expressed in terms of such Bernstein coherent sets of polynomials.

We introduce coherent inference systems in Sect. 2.6 as maps that associate with
any finite set of categories a Bernstein coherent set of polynomials on the simplex of
probability mass functions on that set. The inference principles in Sect. 2.4 impose
connections between predictive inferences for different category sets, so we can rep-
resent such inference principles mathematically as restrictions on coherent inference
systems, which is the main topic of Sect. 2.7.

The material in Sects. 2.8–2.10 shows, by producing explicit examples, that there
are quite a few different types—even uncountable infinities—of coherent inference
systems that are both representation insensitive and specific. We discuss the vacuous
inference system in Sect. 2.8, the family of IDMM inference systems in Sect. 2.9
and the Haldane inference system in Sect. 2.10.

In the Conclusion (Sect. 2.11) we point to a number of surprising consequences
of our results, and discuss avenues for further research.
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2.2 Imprecise Probability Models

In this section, we give a concise overview of imprecise probability models for
representing, and making inferences and decisions under, uncertainty.

We shall focus on sets of desirable gambles as our uncertainty models of choice,
because they are the most powerful, expressive and general models at hand, because
they are very intuitive to work with—though unfortunately less familiar to most
people not closely involved in the field—and very importantly, because they avoid
problems with conditioning on sets of (lower) probability zero. For more details,
we refer to Refs. [1, 5, 8, 21, 28]. We shall, of course, also briefly mention derived
results in terms of the more familiar language of (lower) previsions and probabilities.

We consider a variable X that assumes values in some possibility space A. We
model a subject’s beliefs about the value of X by looking at which gambles on
this variable the subject finds desirable, meaning that he strictly prefers them to
the zero gamble—the status quo. This is a very general approach, that extends the
usual rationalist and subjectivist approach to probabilistic modelling to allow for
indecision and imprecision.

A gamble is a (bounded) real-valued function f on A. It is interpreted as an
uncertain reward f (X) that depends on the value of X, and is expressed in units
of some predetermined linear utility. It represents the reward the subject gets in a
transaction where first the actual value x of X is determined, and then the subject
receives the amount of utility f (x)—which may be negative, meaning he has to pay
it. Throughout the chapter, we shall use the device of writing f (X) when we want
to make clear what variable the gamble f depends on. Events are subsets of the
possibility space A. With any event B ⊆ A we can associate a special gamble IB ,
called its indicator, which assumes the value 1 on B and 0 elsewhere.

We denote the set of all gambles onA by G(A). It is a linear space under point-wise
addition of gambles, and point-wise multiplication of gambles with real numbers.
For any subset A of G(A), posi(A) is the set of all positive linear combinations of
gambles in A: posi(A) := {∑n

k=1 λkfk : fk ∈ A, λk ∈ R>0, n ∈ N}. Here, N is the
set of natural numbers (without zero), and R>0 is the set of all positive real numbers.
A convex cone of gambles is a subset A of G(A) that is closed under positive linear
combinations, meaning that posi(A) = A. For any two gambles f and g on A, we
write ‘f ≥ g’ if (∀x ∈ A)f (x) ≥ g(x), and ‘f > g’ if f ≥ g and f �= g. A gamble
f > 0 is called positive. A gamble g ≤ 0 is called non-positive. G>0(A) denotes the
convex cone of all positive gambles, and G≤0(A) the convex cone of all non-positive
gambles.

We collect the gambles that a subject finds desirable—strictly prefers to the zero
gamble—into his set of desirable gambles, and we shall take such sets as our basic
uncertainty models. Of course, they have to satisfy certain rationality criteria:

Definition 1 [Coherence] A set of desirable gambles D ⊆ G(A) is called coherent
if it satisfies the following requirements:
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D1. 0 /∈ D;
D2. G>0(A) ⊆ D;
D3. D = posi(D).

Requirement D3 turns D into a convex cone. Due to D2, it includes G>0(A); by
D1–D3, it avoids non-positivity:

D4. if f ≤ 0 then f /∈ posi(D), or equivalently G≤0(A) ∩ posi(D) = ∅.

G>0(A) is the smallest coherent subset of G(A). This so-called vacuous model there-
fore, reflects minimal commitments on the part of the subject: if he knows absolutely
nothing about the likelihood of the different outcomes, he will only strictly prefer
to zero those gambles that never decrease his wealth and have some possibility of
increasing it.

Let us suppose that our subject has a coherent set D of desirable gambles on A,
expressing his beliefs about the value that a variable X assumes in A. We can then
ask what his so-called updated set D�B of desirable gambles on B would be were he
to receive the additional information—and nothing more—that X actually belongs
to some subset B of A. The updating, or conditioning, rule for sets of desirable
gambles states that:

g ∈ D�B ⇔ gIB ∈ D for all gambles g on B. (2.1)

It states that the gamble g is desirable to a subject were he to observe that X ∈ B

if and only if the called-off gamble gIB is desirable to him. This called-off gamble
gIB is the gamble on the variable X that gives a zero reward—is called off—unless
X ∈ B, and in that case reduces to the gamble g on the new possibility space B. The
updated set D�B is a set of desirable gambles on B that is still coherent, provided
that D is [8]. We refer to Refs. [5, 21, 22] for detailed discussions of updating sets
of desirable gambles.

We now use coherent sets of desirable gambles to introduce derived concepts,
such as coherent lower previsions and probabilities. Given a coherent set of desirable
gambles D, the functional P defined on G(A) by

P (f ) := sup{μ ∈ R : f − μ ∈ D} for all f ∈ G(A), (2.2)

is a coherent lower prevision [25] [Theorem 3.8.1]. The conjugate upper prevision
P is defined by P (f ) := inf{μ ∈ R : μ − f ∈ D} = −P ( − f ). For any gamble f ,
P (f ) is called the lower prevision of f , and for any event B, P (IB) is also denoted
by P (B), and called the lower probability of B. Similarly for upper previsions and
upper probabilities.

The coherent conditional model D�B, with B a non-empty subset of A, induces
a conditional lower prevision P (· |B) on G(B), by applying Eq. 2.2:

P(g|B) := sup{μ ∈ R : g − μ ∈ D�B} = sup{μ ∈ R : [g − μ]IB ∈ D}
for all gambles g on B. (2.3)
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It is not difficult to show [25] that P and P (· |B) are related through the following
coherence condition:

P ([g − P (g|B)]IB) = 0 for all g ∈ G(B), (GBR)

called the Generalised Bayes Rule. This rule allows us to infer P ( · |B) uniquely
from P , provided that P (B) > 0. Otherwise, there are an infinity of coherent lower
previsions P ( · |B) that are coherent with P in the sense that they satisfy GBR.

Coherent sets of desirable gambles are more informative than coherent lower
previsions: a gamble with positive lower prevision is always desirable and one with
a negative lower prevision never, but a gamble with zero lower prevision lies on the
border of the set of desirable gambles, and the lower prevision does not generally
provide information about the desirability of such gambles. If such border behaviour
is important—and it is when dealing with conditioning on events with zero (lower)
probability [5, 21, 22, 28]—it is useful to work with sets of desirable gambles rather
than lower previsions, because as Eqs. 2.1 and 2.3 tell us, they allow us to derive
unique conditional models from unconditional ones.

When the lower and the upper prevision coincide on all gambles, then the real
functional P defined on G(A) by P (f ) := P (f ) = P (f ) for all f ∈ G(A) is a
linear prevision. In the particular case that A is finite, this means that it corresponds
to the expectation operator associated with a probability mass function p: P (f ) =∑

x∈A f (x)p(x) := Ep(f ), where p(x) := P (I{x}) for all x ∈ A.

2.3 Predictive Inference

Predictive inference, in the specific sense we are focussing on here, considers a num-
ber of variables X1, . . . ,Xn assuming values in the same category set A—we define
a category set as any non-empty finite set. We start our discussion of predictive infer-
ence models in the most general and representationally powerful language: coherent
sets of desirable gambles, as introduced in the previous section.

Predictive inference assumes generally that a number ň of observations have been
made, so we know the values x̌ = (x1, . . . , xň) of the first ň variables X1, . . . ,Xň.
Based on this observation sample x̌, a subject then has a posterior predictive model
Dn̂

A�x̌ for the values that the next n̂ variables Xň+1, . . . ,Xň+n̂ assume in An̂. Dn̂
A�x̌ is

a coherent set of desirable gambles f (Xň+1, . . . ,Xň+n̂) on An̂. Here, we assume that
n̂ ∈ N. On the other hand, we want to allow that ň ∈ N0 := N ∪ {0}, which is the set
of all natural numbers with zero: we also want to be able to deal with the case where
no previous observations have been made. In that case, we call the corresponding
model Dn̂

A a prior predictive model. Of course, technically speaking, ň + n̂ ≤ n.
As we said, the subject may also have a prior, unconditional model, for when no

observations have yet been made. In its most general form, this will be a coherent
set Dn

A of desirable gambles f (X1, . . . ,Xn) on An, for some n ∈ N. Our subject
may also have a coherent set Dn̂

A of desirable gambles f (X1, . . . ,Xn) on An, where
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n̂ ≤ n; and the sets Dn̂
A and Dn

A then be related to each other through the following
marginalisation, or temporal consistency, requirement:

f (X1, . . . ,Xn̂) ∈ Dn̂
A ⇔ f (X1, . . . ,Xn) ∈ Dn

A for all gambles f on An̂. (2.4)

In this expression, and throughout this chapter, we identify a gamble f onAn̂ with its
cylindrical extension f ′ on An, defined by f ′(x1, . . . , xn̂, . . . , xn) := f (x1, . . . , xn̂)
for all (x1, . . . , xn) ∈ An. If we introduce the marginalisation operator margn̂(·) :=
· ∩ G(Ak), then the temporal consistency condition can also be rewritten simply as
Dn̂

A = margn̂(Dn
A) = Dn

A ∩ G(An̂).
Prior (unconditional) predictive models Dn

A and posterior (conditional) ones Dn̂
A�x̌

must also be related through the following updating requirement:

f (Xň+1, . . . ,Xň+n̂) ∈ Dn̂
A�x̌ ⇔ f (Xň+1, . . . ,Xň+n̂)I{x̌}(X1, . . . ,Xň) ∈ Dn

A

for all gambles f on An̂, (2.5)

which is a special case of Eq. 2.1: the gamble f (Xň+1, . . . ,Xň+n̂) is desirable after
observing a sample x̌ if and only if the gamble f (Xň+1, . . . ,Xň+n̂)I{x̌}(X1, . . . ,Xň)
is desirable before any observations are made. This called-off gamble is the gamble
that gives zero reward—is called off—unless the first ň observations are x̌, and in
that case reduces to the gamble f (Xň+1, . . . ,Xň+n̂) on the variables Xň+1, . . . ,Xň+n̂.
The updating requirement is a generalisation of Bayes’s Rule for updating, and in
fact reduces to it when the sets of desirable gambles lead to (precise) probability
mass functions [7, 28]. But contrary to Bayes’s Rule for probability mass functions,
the updating rule 2.5 for coherent sets of desirable gambles clearly does not suffer
from problems when the conditioning event has (lower) probability zero: it allows
us to infer a unique conditional model from an unconditional one, regardless of the
(lower or upper) probability of the conditioning event.

As explained in Sect. 2.2, we can use the relationship 2.2 to derive prior (un-
conditional) predictive lower previsions P n̂

A( · ) on G(An) from the prior sets Dn̂
A

through:

P n̂
A(f ) := sup{μ ∈ R :f − μ ∈ Dn̂

A} for all gamblesf onAn̂,

and posterior (conditional) predictive lower previsions P n̂
A( · |x̌) on G(An̂) from the

posterior sets Dn̂
A�x̌ through:

P n̂
A(f x̌) := sup{μ ∈ R : f − μ ∈ Dn̂

A�x̌} for all gambles f on An̂.

We also want to condition predictive lower previsions on the additional information
that (Xň+1, . . . ,Xň+n̂) ∈ Bn̂, where B is some proper subset of A. Using the ideas
in Sects. 2.2, this leads for instance to the following lower prevision:

P n̂
A(g|x̌,Bn̂) := sup{μ ∈ R :[g − μ]IBň ∈ Dn̂

A�x̌} for all gambles g on Bn̂, (2.6)

which is the lower prevision P n̂
A( · |x̌) conditioned on the event Bn̂.
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2.4 Principles for Predictive Inference

So far, we have introduced coherence, marginalisation and updating as basic re-
quirements of rationality that prior and posterior predictive inference models must
satisfy. In addition to these, we now also consider a number of further conditions,
which have been suggested by a number of authors as reasonable properties—or
requirements—for predictive inference models.

We shall call representation insensitivity the combination of pooling, renaming
and category permutation invariance; see Ref. [9] for more information. It means
that predictive inferences remain essentially unchanged when we transform the set
of categories, or in other words that they are essentially insensitive to the choice of
representation—the category set. It is not difficult to see that representation insen-
sitivity can be formally characterised as follows. Consider two category sets A and
B such that there is a so-called relabelling map ρ : A → B that is onto, such that
B = ρ(A) := {ρ(x) : x ∈ A}. Then with a sample x in An, there corresponds a
transformed sample ρx := (ρ(x1), . . . , ρ(xn)) in Bn. And with any gamble f on Bn

there corresponds a gamble f ◦ ρ on An.
Representation insensitivity: For all category sets A and B such that there is an

onto map ρ : A → B, all ň, n̂ ∈ N considered, all x̌ ∈ Aň and all gambles f on Bn̂:

P n̂
A(f ◦ ρ) = P n̂

B(f ) and n̂
A(f ◦ ρ)x̌ = P n̂

B(f |ρx̌), (RI1)

or alternatively, and more generally, in terms of predictive sets of desirable gambles:

f ◦ ρ ∈ Dn̂
A ⇔ f ∈ Dn̂

B and f ◦ ρ ∈ Dn̂
A�x̌ ⇔ f ∈ Dn̂

B�ρx̌. (RI2)

There is another peculiar, but in our view intuitively appealing, potential property
of predictive inferences. Assume that in addition to observing a sample of obser-
vations x̌ of ň observations in a category set A, our subject comes to know or
determine in some way that the n̂ following observations will belong to a proper
subset B of A, and nothing else—we might suppose for instance that an observation
of (Xň+1, . . . ,Xň+n̂) has been made, but that it is imperfect, and only allows him to
conclude that (Xň+1, . . . ,Xň+n̂) ∈ Bn̂.

We can then make the following requirement, which uses models conditioned on
the event Bn̂, as introduced through Eqs. 2.1, 2.3 and 2.6.

Specificity: For all category setsA andB such thatB ⊆ A, all ň, n̂ ∈ N considered,
all x̌ ∈ Aň and all gambles f on Bn̂:

P n̂
A(f |Bn̂) = P n̂

B(f ) and P n̂
A(f |x̌,Bn̂) = P n̂

B(f |x̌↓B), (SP1)

or alternatively, and more generally, in terms of predictive sets of desirable gambles:

f IBn̂ ∈ Dn̂
A ⇔ f ∈ Dn̂

B and f IBn̂ ∈ Dn̂
A�x̌ ⇔ f ∈ Dn̂

B�x̌↓B , (SP2)

where x̌↓B is the tuple of observations obtained by eliminating from the tuple x̌ all
observations not in B. In these expressions, when x̌↓B is the empty tuple, so when
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no observations in x̌ are in B, the ‘posterior’ predictive model is simply taken to
reduce to the ‘prior’ predictive model. Specificity [2, 3, 24] means that the predictive
inferences that a subject makes are the same as the ones he would get by focussing
on the category set B, and at the same time discarding all the previous observations
producing values outside B, in effect only retaining the observations that were inside
B! It is as if knowing that the future observations belong to B allows our subject to
ignore all the previous observations that happened to lie outside B.

2.5 Adding Exchangeability to the Picture

We are now, for the remainder of this chapter, going to add two additional assump-
tions. The first assumption is that we are dealing with a countably infinite sequence
of variables X1, . . . ,Xn, . . . that assume values in the same category set A. For our
predictive inference models, this means that there is a sequence Dn

A of coherent sets
of desirable gambles on An, n ∈ N. The second assumption is that this sequence of
variables is exchangeable, which means, roughly speaking, that the subject believes
that the order in which these variables are observed, or present themselves, has no
influence on the decisions and inferences he will make regarding these variables.

In this section, we explain succinctly how to deal with these assumptions techni-
cally, and what their consequences are for the predictive models we are interested
in. For a detailed discussion and derivation of the results presented here, we refer to
Refs. [8, 10].

We begin with some useful notation, which will be employed numerous times in
what follows. Consider any element α ∈ R

A. We consider α as an A-tuple, with
as many (real) components αx ∈ R as there are categories x in A. For any subset
B ⊆ A, we then denote by αB := ∑

x∈B αx the sum of its components over B.
Consider an arbitrary n ∈ N. We denote by x = (x1, . . . , xn) a generic, arbitrary

element of An. Pn is the set of all permutations π of the index set {1, . . . , n}. With
any such permutation π , we can associate a permutation of An, also denoted by π ,
and defined by (πx)k := xπ (k), or in other words, π (x1, . . . , xn) := (xπ (1), . . . , xπ (n)).
Similarly, we lift π to a permutation πt of G(An) by letting πtf := f ◦ π , so
(πtf )(x) := f (πx). The permutation invariant atoms [x] := {πx:π ∈ Pn}, x ∈ An

are the smallest permutation invariant subsets of An.
We now introduce the counting map T : An → N n

A : x �→ T(x), where the count
vector T(x) is the A-tuple with components Tz(x) := |{k ∈ {1, . . . , n}xk = z}| for
all z ∈ A, and the set of possible count vectors for n observations in A is given by
N n

A := {m ∈ N
A
0 : mA = n}. So, Tz(x) is the number of times the category z appears

in the sample x. If m = T(x), then [x] = {y ∈ An : T(y) = m}, so the atom [x]
is completely determined by the single count vector m of all its elements, and is
therefore also denoted by [m].
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We also consider the linear expectation operator Hyn
A( · |m) associated with the

uniform distribution on the invariant atom [m]:

HynA(f |m) := 1

|[m]|
∑

x∈[m]

f (x) for all gambles f on An,

where the number of elements ν(m) := |[m]| in the invariant atom [m] is given by
the multinomial coefficient:

ν(m) =
(
mA

m

)
=
(
n

m

)
:= n!∏

z∈A mz! .

This expectation operator characterises a (multivariate) hyper-geometric distribution
[16] [Sect. 39.2], associated with random sampling without replacement from an
urn with n balls of types z ∈ A, whose composition is characterised by the count
vector m. This hyper-geometric expectation operator can also be seen as a linear
transformation HynA between the linear space G(An) and the generally much lower-
dimensional linear space G(N n

A), turning a gamble f on An into a so-called count
gamble HynA(f ) := HynA(f | · ) on count vectors.

Next, we consider the simplex ΣA of all probability mass functions θ on A:
ΣA := {θ ∈ R

A : θ ≥ 0 and θA = 1}. With a probability mass function θ ∈ ΣA on
A, there corresponds the following multinomial expectation operator MnnA( · |θ ):2

MnnA(f |θ ) :=
∑
x∈An

f (x)
∏
z∈A

θTz(x)
z for all gambles f on An,

which characterises the multinomial distribution, associated withn independent trials
of an experiment with possible outcomes in A and probability mass function θ . Ob-
serve that MnnA(f |θ ) = ∑

m∈N n
A

HynA(f |m)ν(m)
∏

z∈A θ
mz
z = CoMnnA(HynA(f )|θ ),

where we used the so-called count multinomial expectation operator:

CoMnnA(g|θ ) :=
∑

m∈N n
A

g(m)ν(m)
∏
z∈A

θmz
z for all gambles g on N n

A. (2.7)

Let us introduce the notation NA := ⋃
m∈N

Nm
A for the set of all possible count

vectors, corresponding to samples of at least one observation. N 0
A is the singleton

containing only the null count vector 0, all of whose components are zero. Then⋃
m∈N0

Nm
A = NA ∪ {0} is the set of all possible count vectors. For any such count

vector m ∈ NA ∪ {0}, we consider the (multivariate) Bernstein basis polynomial
BA,m of degree mA on ΣA, defined by:

BA,m(θ ) := ν(m)
∏
z∈A

θmz
z =

(
mA

m

)∏
z∈A

θmz
z for all θ ∈ ΣA. (2.8)

2 To avoid confusion, we make a (perhaps non-standard) distinction between the multinomial expec-
tation, which is associated with sequences of observations, and the count multinomial expectation,
associated with their count vectors.
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In particular, of course, BA,0 = 1. Any linear combination p of Bernstein basis
polynomials of degree n ≥ 0 is a (multivariate) polynomial (gamble) on ΣA, whose
degree deg(p) is at most n.3 We denote the linear space of all these polynomials
of degree up to n by Vn(A). Of course, polynomials of degree zero are simply real
constants. For any n ≥ 0, we can introduce a linear isomorphism CoMnnA between
the linear spaces G(N n

A) and Vn(A): with any gamble g on N n
A, there corresponds

a polynomial CoMnnA(g) := CoMnnA(g| · ) = ∑
m∈N n

A
g(m)BA,m in Vn(A), and

conversely, for any polynomial p ∈ Vn(A) there is a unique gamble bnp on N n
A such

that p = CoMnnA(bnp) [8].4 We denote by V(A) := ⋃
n∈N0

Vn(A) the linear space of
all (multivariate) polynomials on ΣA, of arbitrary degree.

A set HA ⊆ V(A) of polynomials on ΣA is called Bernstein coherent if it satisfies
the following properties:

B1. 0 /∈ HA;
B2. V+(A) ⊆ HA;
B3. posi(HA) = HA.

Here, V+(A) is the set of Bernstein positive polynomials onΣA: those polynomialsp
such thatp(θ ) > 0 for all θ in the interior int(ΣA) := {θ ∈ ΣA : (∀x ∈ A)θx > 0} of
ΣA. As a consequence, for the set V−

0 (A) := −V+(A)∪{0} of Bernstein non-positive
polynomials:

B4. V−
0 (A) ∩ HA = ∅.

We are now ready to deal with exchangeability. We shall give a definition for coherent
sets of desirable gambles that generalises de Finetti’s definition [11, 13], and which
allows for a generalisation of his representation theorem.

First of all, fix n ∈ N. Then the subject considers the variables X1, . . . ,Xn to be
exchangeable when he does not distinguish between any gamble f on An and its
permuted version πtf , or in other words, if the gamble f − πtf is equivalent to
the zero gamble for—or indifferent to—him. This means that he has a so-called set
of indifferent gambles: In

A := {f − πtf : f ∈ G(An) and π ∈ Pn}. If the subject
also has a coherent set of desirable gambles Dn

A, then this set must be compatible
with the set of indifferent gambles In

A, in the sense that it must satisfy the rationality
requirement Dn

A + In
A = Dn

A [8, 23]. We then say that the sequence X1, . . . ,Xn, and
the model Dn

A, are exchangeable. Next, the countably infinite sequence of variables
X1, . . . ,Xn . . . is called exchangeable if all the finite subsequences X1, . . . ,Xn are,
for n ∈ N. This means that all models Dn

A, n ∈ N are exchangeable. They should of
course also be temporally consistent.

3 The degree may be smaller than n because the sum of all Bernstein basis polynomials of fixed
degree is one. Strictly speaking, these polynomials p are restrictions to ΣA of multivariate poly-
nomials q on R

A, called representations of p. For any p, there are multiple representations, with
possibly different degrees. The smallest such degree is then called the degree deg(p) of p.
4 Strictly speaking, Eq. 2.7 only defines the count multinomial expectation operator CoMnnA for
n > 0, but it is clear that the definition extends trivially to the case n = 0.
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Theorem 1 [Representation Theorem [8]] The sequence of sets Dn
A of desirable

gambles on An, n ∈ N is coherent, temporally consistent and exchangeable if and
only if there is a Bernstein coherent set HA of polynomials on ΣA such that for all
n̂ ∈ N, all gambles f on An̂, all m̌ ∈ NA and all x̌ ∈ [m̌]:

f ∈ Dn̂
A ⇔ Mnn̂A(f ) ∈ HA and f ∈ Dn̂

A�x̌ ⇔ Mnn̂A(f )BA,m̌ ∈ HA. (2.9)

In that case this representation HA is unique and given by HA := ⋃
n∈N

MnnA(Dn
A).

The representation HA is a set of polynomials that plays the same role as a density,
or distribution function, on ΣA in the precise-probabilistic case. It follows from
Eq. 2.9 that HA completely determines all predictive inferences about the sequence
of variablesX1, . . . ,Xn, . . . , as it fixes all prior predictive models Dn̂

A and all posterior
predictive models Dn̂

A�x̌.
Equation 2.9 also tells us that the posterior predictive models Dn̂

A�x̌ only depend
on the observed sequence x̌ through the count vector m̌ = T(x̌): Count vectors are
sufficient statistics under exchangeability. For this reason, we shall from now on
denote these posterior predictive models by Dn̂

A�m̌ as well as by Dn̂
A�x̌. Also, every

now and then, we shall use Dn̂
A�0 as an alternative notation for Dn̂

A.
An immediate but interesting consequence of Theorem 1 is that updating on obser-

vations preserves exchangeability: after observing the values of the first ň variables,
with count vector m̌, the remaining sequence of variables Xň+1,Xň+2, . . . is still
exchangeable, and Eq. 2.9 tells us that its representation is given by the Bernstein
coherent set of polynomials HA�m̌ defined by:

HA�m̌ := {p ∈ V(A) :BA,m̌p ∈ HA}. (2.10)

For the special case m̌ = 0, we find that HA�0 = HA. Clearly, HA�m̌ is completely
determined by HA. One can consider HA as a prior model on the parameter space
ΣA, and HA�m̌ plays the role of the posterior that is derived from it. We see from
Eqs. 2.9 and 2.10 that—similar to what happens in a precise-probabilistic setting—
the multinomial distribution serves as a direct link between on the one hand, the
‘prior’ HA and its prior predictive inference models Dn̂

A and, on the other hand, the
‘posterior’HA�m̌ and its posterior inference models Dn

A�m̌. Recalling our convention
for m̌ = 0, we can summarise this as follows: for all n̂ ∈ N and all m̌ ∈ NA ∪ {0}:

Dn̂
A�m̌ = {f ∈ G(An̂) :Mnn̂A(f ) ∈ HA�m̌} (2.11)

and, as an immediate consequence,

P n̂
A(f |m̌) = sup{μ ∈ R :Mnn̂A(f ) − μ ∈ HA�m̌} for all f ∈ G(An̂). (2.12)

The sets of desirable polynomials HA are the fundamental models, as they allow us
to determine the HA�m̌ and all predictive models uniquely.
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2.6 Inference Systems

We have seen in the previous section that, once we fix a category set A, predictive
inferences about exchangeable sequences assuming values in A are completely de-
termined by a Bernstein coherent set HA of polynomials on ΣA. So, if we had some
way of associating a Bernstein coherent set HA with every possible set of categories
A, this would completely fix all predictive inferences. This leads us to the following
definition.

Definition 2 [Inference systems] We denote by F the collection of all category sets,
i.e. finite non-empty sets. An inference system is a map Φ that maps any category
set A ∈ F to some set of polynomials Φ(A) = HA on ΣA. An inference system
Φ is coherent if for all category sets A ∈ F, Φ(A) is a Bernstein coherent set of
polynomials on ΣA.
So, a coherent inference system is a way to systematically associate coherent pre-
dictive inferences with any category set. Since the inference principles in Sect. 2.4
impose connections between predictive inferences for different category sets, we
now see that we can interpret these inference principles—or rather, represent them
mathematically—as properties of, or restrictions on, coherent inference systems.

2.7 Representation Insensitivity and Specificity Under
Exchangeability

Let us now investigate what form the inference principles of representation insen-
sitivity RI2 and specificity SP2 take for predictive inference under exchangeability,
when such inference can be completely characterised by Bernstein coherent sets of
polynomials. This will allow us to reformulate these principles as constraints on—or
properties of—inference systems.

Recalling the notations and assumptions in Sect. 2.4, we start by considering the
surjective (onto) map Cρ : R

A → R
B , defined by Cρ(α)z := ∑

x∈A:ρ(x)=z αx for all
α ∈ R

A and all z ∈ B. It allows us to give the following elegant characterisation of
representation insensitivity.

Theorem 2 An inference system Φ is representation insensitive if and only if for all
category sets A and B such that there is an onto map ρ : A → B, for all p ∈ V(B)
and all m ∈ NA ∪ {0}: (p ◦ Cρ)BA,m ∈ Φ(A) ⇔ pBB,Cρ (m) ∈ Φ(B).

Next, we turn to specificity. Let us define the surjective map rB : R
A → R

B by:
rB(α)z := αz for all α ∈ R

A and all z ∈ B. So in particular, rB(m) is the count vector
on B obtained by restricting to B the (indices of the) components of the count vector
m on A. We also define the one-to-one map iA : R

B → R
A by iA(α)x := αx if x ∈ B

and 0 otherwise, for all α ∈ R
B and all x ∈ A. This map can be used to define the
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following one-to-one maps r IB,A : V(B) → V(A), for any r ∈ N0, as follows:

r IB,A(p) :=
∑

n∈N deg(p)+r
B

bdeg(p)+r
p (n)BA,iA(n) for all polynomials p in V(B). (2.13)

The maps r IB,A allow us to give the following elegant characterisation of specificity:

Theorem 3 An inference system Φ is specific if and only if for all category sets
A and B such that B ⊆ A, for all p ∈ V(B), all m ∈ NA ∪ {0} and all r ∈ N0:
r IB,A(p)BA,m ∈ Φ(A) ⇔ pBB,rB (m) ∈ Φ(B).

2.8 The Vacuous Inference System

In this and the following sections, we provide explicit and interesting examples of
representation insensitive and specific inference systems. We begin with the simplest
one: the vacuous inference system ΦV, which is the smallest, or most conservative,
coherent inference system. It associates with any category set A the smallest Bern-
stein coherent set ΦV(A) = HV ,A := V+(A) containing all the Bernstein positive
polynomials—the ones that are guaranteed to be there anyway, by Bernstein coher-
ence alone. Since V+(A) consists of all the polynomials that are positive on int(ΣA)
we easily derive that, for any m̌ ∈ NA ∪ {0}, HV ,A�m̌ = HV ,A = V+(A). The
predictive models for this inference system are now straightforward to find, as they
follow directly from Eqs. 2.11 and 2.12. For any n̂ ∈ N and any m̌ ∈ NA ∪ {0}, we
find that

Dn̂
V,A = Dn̂

V,A�m̌ = {f ∈ G(An̂) : Mnn̂A(f ) ∈ V+(A)} (2.14)

P n̂
V,A(f ) = P n̂

V,A(f |m̌) = min
θ∈ΣA

Mnn̂A(f |θ ) for allf ∈ G(An̂). (2.15)

In particular, D1
V,A = D1

V,A�m̌ = G>0(A), and P 1
V,A(f ) = P 1

V,A(f |m̌) = minf for
all f ∈ G(A). These are the most conservative exchangeable predictive models, and
they arise from making no other assessments than exchangeability alone. They are
not very interesting, because they involve no non-trivial commitments, and they do
not allow learning from observations.

Even though it makes no non-trivial inferences, the vacuous inference system
satisfies representation insensitivity and specificity.

Theorem 4 The vacuous inference system ΦV is coherent, representation insensi-
tive and specific.
We now show that there is, besides ΦV, an infinity of other, more committal, specific
and representation insensitive coherent inference systems.
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2.9 The IDMM Inference Systems

Imprecise Dirichlet models (or IDMs, for short) are a family of parametric inference
models introduced by Walley [26] as conveniently chosen sets of Dirichlet densities
diA(· |α) with constant prior weight s:

{diA(· |α) : α ∈ Ks
A}, with Ks

A := {α ∈ R
A
>0 : αA = s} = {st : t ∈ int(ΣA)}, (2.16)

for any value of the (so-called) hyperparameter s ∈ R>0 and any category set A. The
Dirichlet densities diA(· |α) are defined on int(ΣA).

These IDMs generalise the imprecise beta models introduced earlier by Walley
[25]. In a later chapter [29], Walley and Bernard introduced a closely related family
of predictive inference models, called the IDMMs. We use the ideas behind Walley’s
IDM(M)s to construct an interesting family of coherent inference systems. Interest-
ingly, we shall need a slightly modified version of Walley’s IDMs to make things
work. The reason for this is that Walley’s original version, as described by Eq. 2.16,
has a number of less desirable properties, that were either unknown to, or ignored by,
Walley and Bernard. For our present purposes, it suffices to mention that, contrary
to what is often claimed, and in contradistinction with our new version, inferences
using the original version of the IDM(M) do not always become more conservative
(or less committal) as the hyperparameter s increases.

In our version, rather than using the hyperparameter sets Ks
A, we consider the sets

Δs
A := {α ∈ R

A
>0 : αA < s}for any s ∈ R>0.

Observe that Δs
A = {s ′t : s ′ ∈ R>0, s ′ < s and t ∈ int(ΣA)} = ⋃

0<s′<s Ks′
A . For any

s ∈ R>0, and any category set A, we now consider the following set of desirable
polynomials p, with positive Dirichlet expectation DiA(p|α) for all hyperparameters
α ∈ Δs

A:

Hs
IDM,A := {p ∈ V(A) : (∀α ∈ Δs

A)DiA(p|α) > 0}.
We shall see further on in Theorem 5 that this set is Bernstein coherent. We call
the inference system Φs

IDM, defined by Φs
IDM(A) := Hs

IDM,A for all category sets A,
the IDMM inference system with hyperparameter s > 0. The corresponding updated
models are, for any m̌ ∈ NA ∪ {0}, given by:

Hs
IDM,A�m̌ = {p ∈ V(A) : (∀α ∈ Δs

A)DiA(p|m̌ + α) > 0} (2.17)

Using these expressions, the predictive models for the IDMM inference system are
straightforward to find; it suffices to apply Eqs. 2.11 and 2.12. For any n̂ ∈ N and
any m̌ ∈ NA ∪ {0}:

Ds,n̂
IDM,A�m̌ = {f ∈ G(An̂) : (∀α ∈ Δs

A)DiA(Mnn̂A(f )|m̌ + α) > 0}, (2.18)

P
s,n̂
IDM,A(f |m̌) = inf

α∈Δs
A

DiA(Mnn̂A(f )|m̌ + α) for all f ∈ G(An̂), (2.19)
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where:

DiA(Mnn̂A(f )|m̌ + α) =
∑

m̂∈N n̂
A

Hyn̂
A(f |m̂)

1

(m̌A + αA)(n̂)

⎛
⎝ n̂

m̂

⎞
⎠∏

x∈A
(m̌x + αx)(m̂x ).

In general, these expressions seem forbidding, but for n̂ = 1, the so-called immediate
prediction models are manageable enough: for any m̌ ∈ NA ∪ {0}

Ds,1
IDM,A�m̌ =

{
f ∈ G(A) : f > −1

s

∑
x∈A

f (x)m̌x

}
, (2.20)

P
s,1
IDM,A(f |m̌) = 1

m̌A + s

∑
x∈A

f (x)m̌x + s

m̌A + s
minf for allf ∈ G(A) (2.21)

Interestingly, the immediate prediction models of our version of the IDMM inference
system coincide with those of Walley’s original version.

The IDMM inference systems constitute an uncountably infinite family of coher-
ent inference systems, each of which satisfies the representation insensitivity and
specificity requirements.

Theorem 5 For any s ∈ R>0, the IDMM inference system Φs
IDM is coherent,

representation insensitive and specific.

2.10 The Haldane Inference System

We can ask ourselves whether there are representation insensitive (and specific) in-
ference systems whose posterior predictive lower previsions become precise (linear)
previsions. In the present section, we show that this is indeed the case. We use the
family of IDMM inference systems Φs

IDM, s ∈ R>0, to define an inference system
ΦH that is more committal than each of them:

ΦH (A) = HH,A :=
⋃

s∈R>0

Hs
IDM,A =

⋃
s∈R>0

Φs
IDM(A) for all category sets A.

We call this ΦH the Haldane inference system, for reasons that will become clear
further in this section.

Theorem 6 The Haldane inference system ΦH is coherent, representation insensi-
tive and specific.

It can be shown that, due to its representation insensitivity, the Haldane system
satisfies prior near-ignorance: this means that before making any observation, its
immediate prediction model is vacuous, and as far away from a precise probability
model as possible. But after making even a single observation, its inferences become



30 G. de Cooman et al.

precise-probabilistic: They coincide with the inferences generated by the Haldane
(improper) prior. To get there, we first take a look at the models involving sets of
desirable gambles. For any m̌ ∈ NA ∪ {0}:

HH,A�m̌ = {p ∈ V(A) : (∃s ∈ R>0)(∀α ∈ Δs
A)DiA(p|m̌ + α) > 0}. (2.22)

The corresponding predictive models are easily derived by applying Eq. 2.11. For
any m̌ ∈ NA ∪ {0}:

Dn̂
H,A�m̌ = {f ∈ G(An̂) : (∃s ∈ R>0)(∀α ∈ Δs

A)DiA(Mnn̂A(f )|m̌ + α) > 0}.
(2.23)

The immediate prediction models are obtained by combining Eqs. 2.23, 2.18 and 2.20.
For any m̌ ∈ NA:

D1
H,A = G>0(A) and D1

H,A�m̌ =
{
f ∈ G(A) :

∑
x∈A

f (x)m̌x > 0

}
∪ G>0(A).

(2.24)

It turns out that the expressions for the corresponding lower previsions are much
more manageable. In particular, for m̌ = 0:

P n̂
H,A(f ) = min

x∈Af (x, x, . . . , x) for all f ∈ G(An̂), (2.25)

and for any m̌ ∈ NA:

P n̂
H,A(f |m̌) = P

n̂

H,A(f |m̌) = P n̂
H,A(f |m̌) =

∑
n∈N n̂

A

Hyn̂
A(f |n)

⎛
⎝n̂

n

⎞
⎠
∏

x∈A m̌(nx )
x

m̌
(n̂)
A

.

(2.26)

For the immediate prediction models, we find that for any m̌ ∈ NA:

P 1
H,A(f ) = minf andP 1

H,A(f |m̌) =
∑
x∈A

f (x)
m̌x

m̌A

for all f ∈ G(A), (2.27)

The precise posterior predictive previsions in Equation 2.26 are exactly the ones
that would be found were we to formally apply Bayes’s rule with a multinomial
likelihood and Haldane’s improper prior [14, 15, 17], whose ‘density’ is a function
on int(ΣA) proportional to

∏
x∈A θ−1

x . This, of course, is why we use Haldane’s
name for the inference system that produces them. Our argumentation shows that
there is nothing wrong with these posterior predictive previsions, as they are based
on coherent inferences. In fact, our analysis shows that there is an infinity of precise
and proper priors on the simplex ΣA that, together with the multinomial likelihood,
are coherent with these posterior predictive previsions: every linear prevision on
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V(A) that dominates the coherent lower prevision HH,A on V(A),5,6 as defined by
HH,A(p) := sup{μ ∈ R : p − μ ∈ HH,A} for all polynomials p on ΣA.

2.11 Conclusion

We believe this is the first chapter that tries to deal in a systematic fashion with
predictive inference under exchangeability using imprecise probability models. A
salient feature of our approach is that we consistently use coherent sets of desirable
gambles as our uncertainty models of choice. This allows us, in contradistinction with
most other approaches in probability theory, to avoid problems with determining
unique conditional models from unconditional ones when conditioning on events
with (lower) probability zero. A set of polynomials HA completely determines all
prior and posterior predictive models Dn̂

A�m̌ and P n̂
A( · |m̌), even when the (lower)

prior probability P ň
A([m̌]) = HA(BA,m̌) of observing the count vector m̌ is zero.

An approach using only lower previsions and probabilities would make this much
more complicated and involved, if not impossible. Indeed, it can be proved that any
inference system that satisfies representation insensitivity has near-vacuous prior
predictive models, and that therefore its prior predictive lower previsions must satisfy
P ň

A([m̌]) = 0. This simply means that it is impossible in a representation insensitive
inference system for the prior lower previsions to uniquely determine posteriors.
And therefore, any systematic way of dealing with such inference systems must
be able to resolve—or deal with—this non-unicity in some way. We believe our
approach involving coherent sets of desirable gambles is one of the mathematically
most elegant ways of doing this.

We might also wonder whether there are other representation insensitive and spe-
cific inference systems. We suggest, as candidates for further consideration, the
inference systems that can be derived using Walley’s bounded derivative model
[27], and inference systems that can be constructed using sets of infinitely divisible
distributions, as recently proposed by Mangili and Benavoli [20].
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5 Actually, a suitably adapted version of coherence, where the gambles are restricted to the
polynomials on ΣA.
6 It is an immediate consequence of the F. Riesz extension theorem that each such linear prevision
is the restriction to polynomials of the expectation operator of some unique σ -additive probability
measure on the Borel sets of ΣA; see for instance [6].



32 G. de Cooman et al.

References

1. Augustin, T., Coolen, F.P.A., de Cooman, G., Troffaes, M.C.M. (eds.): Introduction to
Imprecise Probabilities. Wiley (2014)

2. Bernard, J.M.: Bayesian analysis of tree-structured categorized data. Revue Internationale de
Systémique 11, 11–29 (1997)

3. Bernard, J.M.: An introduction to the imprecise Dirichlet model for multinomial data. Int. J.
Approx. Reason 39, 123–150 (2005)

4. Cifarelli, D.M., Regazzini, E.: De Finetti’s contributions to probability and statistics. Stat. Sci.
11, 253–282 (1996)

5. Couso, I., Moral, S.: Sets of desirable gambles: conditioning, representation, and precise
probabilities. Int. J. Approx. Reason 52(7), 1034–1055 (2011)

6. de Cooman, G., Miranda, E.: The F. Riesz representation theorem and finite additivity. In:
D. Dubois, M.A. Lubiano, H. Prade, M.A. Gil, P. Grzegorzewski, O. Hryniewicz (eds.) Soft
Methods for Handling Variability and Imprecision (Proceedings of SMPS 2008), pp. 243–252.
Springer (2008)

7. de Cooman, G., Miranda, E.: Irrelevant and independent natural extension for sets of desirable
gambles. J. Artif. Intell. Res. 45, 601–640 (2012). http://www.jair.org/vol/vol45.html

8. de Cooman, G., Quaeghebeur, E.: Exchangeability and sets of desirable gambles. Int. J.Approx.
Reason 53(3), 363–395 (2012). (Special issue in honour of Henry E. Kyburg, Jr.).

9. de Cooman, G., Miranda, E., Quaeghebeur, E.: Representation insensitivity in imme-
diate prediction under exchangeability. Int. J. Approx. Reason 50(2), 204–216 (2009).
doi:10.1016/j.ijar.2008.03.010

10. de Cooman, G., Quaeghebeur, E., Miranda, E.: Exchangeable lower previsions. Bernoulli
15(3), 721–735 (2009). doi:10.3150/09-BEJ182. http://hdl.handle.net/1854/LU-498518

11. de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut
Henri Poincaré 7, 1–68 (1937). (English translation in [18] )

12. de Finetti, B.: Teoria delle Probabilità. Einaudi, Turin (1970)
13. de Finetti, B.: Theory of Probability: A Critical Introductory Treatment. Wiley, Chichester

(1974–1975). (English translation of [12], two volumes)
14. Haldane, J.B.S.: On a method of estimating frequencies. Biometrika 33, 222–225 (1945)
15. Jeffreys, H.: Theory of Probability. Oxford Classics series. Oxford University Press (1998).

(Reprint of the third edition (1961), with corrections)
16. Johnson, N.L., Kotz, S., Balakrishnan, N.: Discrete Multivariate Distributions. Wiley Series in

Probability and Statistics. Wiley, New York (1997)
17. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press (2003)
18. Kyburg Jr., H.E., Smokler, H.E. (eds.): Studies in Subjective Probability. Wiley, New York

(1964). (Second edition (with new material) 1980 )
19. Lad, F.: Operational Subjective Statistical Methods: A Mathematical, Philosophical and

Historical Introduction. Wiley (1996)
20. Mangili, F., Benavoli, A.: New prior near-ignorance models on the simplex. In: F. Cozman, T.

Denœux, S. Destercke, T. Seidenfeld (eds.) ISIPTA ’13 – Proceedings of the Eighth Interna-
tional Symposium on Imprecise Probability: Theories and Applications, pp. 213–222. SIPTA
(2013)

21. Moral, S.: Epistemic irrelevance on sets of desirable gambles. Ann. Math. Artif. Intell. 45,
197–214 (2005). doi:10.1007/s10472-005-9011-0

22. Quaeghebeur, E.: Introduction to Imprecise Probabilities, (Chapter: Desirability). Wiley (2014)
23. Quaeghebeur, E., de Cooman, G., Hermans, F.: Accept & reject statement-based uncertainty

models. Int. J. Approx. Reason. (2013). (Submitted for publication)
24. Rouanet, H., Lecoutre, B.: Specific inference in ANOVA: From significance tests to

Bayesian procedures. Br. J. Math. Stat. Psychol. 36(2), 252–268 (1983). doi:10.1111/j.2044-
8317.1983.tb01131.x

http://www.jair.org/vol/vol45.html
http://hdl.handle.net/1854/LU-498518


2 Predictive Inference Under Exchangeability, and the Imprecise Dirichlet . . . 33

25. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London
(1991)

26. Walley, P.: Inferences from multinomial data: learning about a bag of marbles. J. R. Stat. Soc.,
Series B 58, 3–57 (1996). (With discussion)

27. Walley, P.: A bounded derivative model for prior ignorance about a real-valued parameter.
Scand. J. Stat. 24(4), 463–483 (1997). doi:10.1111/1467-9469.00075

28. Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approx. Reason 24,
125–148 (2000)

29. Walley, P., Bernard, J.M.: Imprecise probabilistic prediction for categorical data. Tech. Rep.
CAF-9901, Laboratoire Cognition et Activitées Finalisées, Université de Paris 8 (1999)

30. Williams, P.M.: Indeterminate probabilities. In: M. Przelecki, K. Szaniawski, R.Wojcicki (eds.)
Formal Methods in the Methodology of Empirical Sciences, pp. 229–246. Reidel, Dordrecht
(1976). (Proceedings of a 1974 conference held in Warsaw)



Chapter 3
Bayesian Learning of Material Density Function
by Multiple Sequential Inversions of 2-D Images
in Electron Microscopy

Dalia Chakrabarty and Shashi Paul

Abstract We discuss a novel inverse problem in which the data is generated by
the sequential contractive projections of the convolution of two unknown functions,
both of which we aim to learn. The method is illustrated using an application that
relates to the multiple inversions of image data recorded with a scanning electron
microscope, with the aim of learning the density of a given material sample and
the microscopy correction function. Given the severe logistical difficulties in this
application of taking multiple images at different viewing angles, a novel imaging
experiment is undertaken, resulting in expansion of information. In lieu of train-
ing data, it is noted that the highly discontinuous material density function cannot
be modelled using a Gaussian process (GP) as the parametrisation of the required
nonstationary covariance function of such a GP cannot be achieved without train-
ing data. Consequently, we resort to estimating values of the unknown functions at
chosen locations in their domain—locations at which an image data are available.
Image data across a range of resolutions lead to multiscale models which we use to
estimate material densities from the micrometre to nanometre length scales. We dis-
cuss applications of the method in nondestructive learning of material density using
simulated metallurgical image data, as well as perform inhomogeneity detection in
multicomponent composite on nanometre scales, by inverting real image data of a
brick of nanoparticles.
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3.1 Introduction

In general, an inverse problem entails the estimation of the unknown model parameter
vector ρ ∈ R

d , given available data that comprises measurements of the variable I.
In some circumstances, the measurable is vector-valued, (I ∈ R

m), while in other
applications it can also be tensor-valued.

The measurements would be noisy, with ε representing the noise in the data.
Then, defining the measurable as a function of the unknown model parameter, we
write I = ξ (ρ) + ε, where this functional relationship between the measurable I and
model parameter ρ is ξ (·). Then, estimation of the unknown ρ is given in the classical
paradigm by operating the inverse of ξ (·) on the data. However, the fatal flaw in this
plan to estimate ρ is that in real-life situations ξ (·) is not necessarily known.

We advance a classification of inverse problems: inverse problems of Type I are
those in which ξ (·) is known, distinguished from inverse problems of Type II in
which ξ (·) is unknown. As far as inverse problems of Type II are concerned, as
mentioned above, these problems are characterised by the ambition of estimating an
unknown model parameter vector, the relation of which to the data is also unknown
[1, 6, 8, 20, 25–27]. In fact, on first glance, such a problem appears difficult and is
perhaps more conventionally treated as a general modelling challenge within the do-
main of application. However, treating this as an inverse problem suggests requiring
to learn ξ (·), in addition to estimating the unknown ρ [4]. In principle, ρ can be esti-
mated following learning ξ (·) by fitting splines or wavelets to training data and then
inverting this learnt function to operate it on the measured values of I, or by mod-
elling ξ (·) with a Gaussian process (GP). However, in high-dimensions, fitting using
splines or wavelets, and particularly of inversion of the fit function, becomes diffi-
cult; splines and wavelets also fail to capture the correlations between components
of the sought function in high-dimensions. At the same time, it is difficult to achieve
parametrisation of the covariance kernels of a high-dimensional GP–especially when
the application motivates a nonstationary covariance for this GP, i.e. if the sought
function enjoys discontinuous support.

However, the crucial point to realise is that neither fitting of splines/wavelets,
nor modelling with a GP is feasible in the absence of training data; it is after all to
training data that the fitting can be performed. By “training data”, is implied data
that comprises computed/measured value i� of I at known or chosen value ρ� of ρ,
i.e. the data set {(ρ�

k , i�k)}nk=1. Therefore, in applications marked by the unavailability
of training data, these methods are not useful unless simplifications are included in
the modelling. Such can alternatively be addressed via a state space-based modelling
strategy in which the likelihood is written in terms of the state space density, into the
support of which, the unknown model parameter ρ is embedded [4]. An application
of this method to missing data was discussed by [4].

The lack of training data can plague even inverse problems of Type I, for which
the known functional relation between data and model parameters is known [2, 3,
11, 13, 22]. An example of such an inverse problem is a known projection of the
model parameter vector results in the measurable. Inversion of the data is possible
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in principle but the difficulty of such inversion depends on the complexity of the
projection operation in question. In the Bayesian framework, the posterior probability
of an unknown system property or system behaviour—represented by the function
ρ(X)—given the available measurements of its projection (I), is computed; here
X ∈ R

p. We consider the fiduciary case of ρ(·) to be scalar-valued, but the sought
system behaviour could be a high-dimensional function as well. One way of learning
this sought system function ρ(X) could be to model it using a GP of appropriate
dimensionality. However, such an attempt stands thwarted when training data is not
available. Even when such data exists, parametrising the covariance kernel of the
GP when ρ(·) is not compactly supported, is acutely difficult. Basically, then one
needs to forgo the very ambition of attempting to learn the correlation structure of
the unknown function ρ(·) and has to settle for the learning of values of ρ(X) at
chosen values of X. This can be achieved by discretising the range of values that X
takes in the application under consideration and defining ρ = (ρ1, . . . , ρk)T where
ρi := ρ(x) for x ∈ [xi−1, xi), i = 1, . . . , k. Thus, it is the values of the system
function at chosen points in its support that then defines the sought model parameter
vector ρ.

In this paper, we present a particularly hard inverse problem of Type I; see [5].
First, we will find that the data results from a sequence of projections of the convo-
lution of two unknown functions. Second, there is no training data available. Third,
the unknown that depicts the intrinsic system property, is known to be highly dis-
continuous, multimodal, sparse in some examples while dense in others, and convex
or concave. Finally, on the other unknown function, there is sometimes low and
sometimes high levels of information available. We will address this inverse prob-
lem in a Bayesian framework, and attempt to address the various nuances of this hard
problem by attempting a novel experiment that allows for expansion of information,
developing priors on the sparsity of the unknown that represents an intrinsic system
property, building less and more informed models of the other unknown using elic-
itation from the literature and finally, by pragmatically resorting to the learning of
values of the unknown functions at discrete points in their respective supports, in
place of trying to learn the functions themselves. We allow the discreteness of the
data to propel the choice of discreteness in the support of the unknown functions.
Thus, variation in the scale of resolution at which data are available gives rise to
mutiscale models. We recognise the convolution of the unknown functions to be
unique in our framework of expanded information. The particular example that will
embody this harder-than-usual inverse problem, pertains to an application in electron
microscopy.

3.2 Application at Hand

In the application, we aim to learn the density function of a given (cuboidal) slab
of a material, by inverting images of this system taken with electron microscopes.
In electron microscopy, a system is imaged using a beam of electrons that is made
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incident of the system [7, 14, 23]. A beam of electrons is made incident on the (ith
point on the) surface of the material slab; let there be a total of NI such incidences
on the system surface, i.e. i = 1, . . . ,NI . Once the electron beam impinges on the
surface, the electrons of the beam, owing to their energy, can penetrate the surface
and travel over a distance inside the bulk of the material slab, before coming to a
halt. This depth of penetration depends on the energy E of the electrons, as well as
on the material constitution of the sample (atomistic parameters of the constituent
materials such as its atomic number Z and weight, and the mass per unit volume
of the materials). In fact, models have been fit to the penetration depths realised in
simulation studies so that we know the maximal distance that electrons of a given
energy (E = ε) can go up to is ∝ ε1.65 [12], where the constant of proportionality is
a function of the material parameters.

These studies also indicate that the shape that is carved out in the interior of the
3-D material slab, by the intrusive electrons, resembles a hemi-spherical bowl for
materials with high values of Z . For lower Z materials, the shape is more like a
pear. We assume in our modelling that the shape sculpted out by the electrons of
the incident beam is hemispherical; the radius of this hemispherical region is known
(proportional to ε1.65) and its centre is at the point of incidence of the beam. Thus,
the more energetic the electrons in the incident beam, the bigger is the volume of this
hemispherical region. This region signifies the 3-D volume within which atomistic
interactions are taking place between the beam electrons and the material particles;
therefore, microscopists refer to this region as the “interaction-volume”.

These atomistic interactions inside any interaction-volume give rise to radiations
of different types. The radiation generated within an interaction-volume then escapes
the bulk of the material slab, by making its way out of the surface. At the surface,
the radiation is captured by a detector placed at the point of incidence of the beam,
i.e. the centre of the hemispherical interaction-volume. The detector captures this
radiation in the form of a pixel on the 2-D image of the system taken with the scanning
electron microscope (SEM), of which the detector is a component. In other words, a
contractive projection of the emerging radiation, onto the centre of the interaction-
volume, is captured as a measurable. Actually, as the radiation generated inside the
interaction-volume makes its way out, it gets modulated via further interactions with
the material molecules; such modulation is modelled as convolution of the radiation
intensity with the “microscopy correction function” or a kernel. It is the projection
of the convolution of the radiation density and the kernel that is captured as the pixel
on the image taken with an SEM. Thus, the convolution of the unknown material
density and the unknown microscopy correction function, onto the centre of the
interaction-volume, gives rise to an image datum. Here, the density of the radiation
generated at any point inside the interaction-volume is proportional to the material
density function at this point.

It is customary in image inversion (aimed at the estimation of a system prop-
erty) that multiple images be generated by varying an imaging parameter—usually
the angle at which the image is taken. This ties in directly with the concept
of Radon transform [10, 13] of a function f (·) that enjoys compact support in
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R
n; the Radon transform gives the projection of this function onto the hyper-

plane p that is inclined at given angle φ and is at distance ψ from the origin:
R[f ](φ, ψ) := ∫

p
f (x)δ(p − ψ · x)dx. The inverse Radon transform is also de-

fined but it involves taking spatial derivative of the projection, i.e. the image data in
this application. Therefore, if the image data is discontinuous, the inversion may not
be numerically stable. Such is the case in our application which is also characterised
by lack of compact support of the sought material density function. Li and Speed
[15] suggested that noise in the image data can also render the inversion unstable.
Importantly, the implementation of the Radon transform requires the viewing angle
(φ) as an input; this may not be known or may not be a measurable in certain ap-
plications. Panaretos [19] discusses one such situation while in our application, the
measurement of the viewing angle is logistically cumbersome and difficult enough
to warrant its measurement and variation impossible. First, the sample will have to
be seated on an inclined stub for its orientation with respect to the electron beam
to be rendered nonzero. This tilt, however, causes the distribution of the electronic
paths inside the material slab to become skewed towards one side and no theoretical
models of this lopsided interaction-volume is known in the microscopy literature
(as the lopsidedness depends on the tilt angle). Moreover, installing a differently in-
clined stub into the imaging chamber of the SEM implies breaking the vacuum that is
required for SEM imaging experiments. This is most cumbersome for the practising
micoscopist. Finally, it is nearly an impossible task to reconfigure the electron beam
to target the exact same area on the newly inclined sample, as the targeted area on
the originally inclined sample. Markoe and Qunito and Rullgård [16, 24] discussed
possible numerical instability of the inverse Radon transform given limited angle
images. Thus, we realise that implementation of the inverse Radon transform of
the image data is not acceptable in our application. However, it is imperative that
multiple images be taken of our material sample, by varying some imaging param-
eter, which we realise cannot be the angle of inclination of the electron beam to the
sample surface (as established above). We suggest a novel way of acquiring multiple
images: by imaging the same system at NE number of different beam energies. The
image taken by impinging an identified part of the sample at NI number of points,
with a beam of electrons with energy E = εj forms the j th image of this system—
comprising NI pixels. Then, the image of the same system taken at E = εj+1 is the
j + 1th image with NI pixels in it, but this time, the ith pixel manifests information
that comes from an interaction-volumes of radius R0(j+1), as distinguished from the
ith pixel in the j th image, which manifests information coming from a concentric
interaction-volume of radius R0(j ), with R0(j ) < R0(j+1). In principle, intercom-
parison of the intensity of the ith pixel in the j th and j + 1th images allows us a
method of performing piecewise construction of the sub-surface density function.
Here, i = 1, . . . ,NI and j = 1, . . . ,NE .
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3.3 Modelling

Above we discussed the generation of the I
(j )
i th image datum in the ith pixel of the

image taken with the j th value of beam energy; I (j )
i results from a projection onto the

centre of the interaction-volume, of the convolution of the unknown material density
ρ(X) and the microscopy correction function η(X) where X = (X1,X2,X3)T . Here,
the cuboidal system is spanned by the 3-D Cartesian coordinate system with axes
X1,X2,X3 where the X3-axis is along the sub-surface depth direction that is orthog-
onal to the system surface on theX1−X2 plane. Now, the centre of the hemispherical
interaction-volume is an incidence point of the electron beam. Projection onto this
point is a composition of three sequential, contractive, orthogonal and commutable
projections. For example, the projection C onto a beam incidence point could be due
to projection C1 onto the X1 −X2 plane, followed by projection C2 onto the X1 axis,
followed by projection C3 onto the centre of the hemispherical interaction-volume.
Thus, C = C1 ◦ C2 ◦ C3.

The ij th interaction-volume is the one generated by the beam of energy E = εj ,
incident on the ith incidence point; thus its radius is R0(j ). We define the projection
of the material density and kernel inside the ij th interaction-volume to be (ρ ∗ η)(j )

i ,
∀ i = 1, . . . ,NI , j = 1, . . . ,NE . Then, the classical representation of this

inverse problem is I (j )
i = C[(ρ ∗ η)(j )

i ] + ε
(j )
I , where ε

(j )
I represents the error in the

measurement of the ij th image datum. The classical picture then motivates three
sequential inversions of the image data to have to be performed for each i and j in
order for the convolution of (ρ ∗ η)(j )

i to be estimated. Thereafter, we will require
deconvolution of the estimated {(ρ ∗ η)(j )

i }i,j so that we have individual estimates
of the two unknown functions. This is what renders this a harder-than-usual inverse
problem. However, we attempt Bayesian inference of the unknown functions as we
discuss below. The projection is clarified as:

C(ρ ∗ η)(j )
i =

∫ R0(k)

R=0

∫ φmax

ψ=0 RdRdψ
∫ x3=x3max (R,ψ)
x3=0 ρ(s) ∗ η(s)dx3∫ Rmax

R=0

∫ ψmax

ψ=0 RdRdψ
(3.1)

for i = 1, . . . ,NI . Here, the vector s represents value of displacement from the
point of incidence (x1i , x2i , 0), to a general point (x1, x2, x3), inside the interaction-
volume, i.e.

s := (x1 − x1i , x2 − x2i , x3)T = (R cosψ ,R sinψ , z)T

R =
√

(x1 − x1i)2 + (x2 − x2i)2 tanψ = x2 − x2i
x1 − x1i

.

(3.2)

Here, the ith point of incidence is (x1i , x2i , 0), x1i := i modulo (
√
NI ), x2i :=

int(i/
√
NI ) + 1 for i = 1, . . . ,NI and j = 1, . . . ,NE .
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Fig. 3.1 Unfilled contour plot
(in black solid lines) of
material density parameters
estimated using synthetic
image data that was generated
by projecting the convolution
of a chosen sparse density and
correction function in a
simulation of SEM imaging
carried out at a coarse
resolution (chosen to simulate
imaging by X-rays). The
estimates on the X1 = 0 plane
are displayed. The true
material density function is
depicted in the filled contours

3.3.1 Why We Discretise the Domain of the Unknown Functions

Typical SEM images reveal that the image data is highly discontinuous; see Fig. 3.4
for the real SEM image taken by us of a brick of nanoparticles that was deposited in
the laboratory. This indicates that the underlying material density function and/or the
microscopy correction function are/is highly discontinuous. Microscopy literature
however includes simulation models that are available for the correction function
for certain, known material samples are imaged [7, 17]. Such shapes do not indicate
discontinuity. This motivates us to consider the discontinuity observed in image data
to be generally due to the discontinuous nature of the material density function. Then
in principle, we could model the discontinuous ρ(X1,X2,X3) with a GP, which will
have to be ascribed a nonstationary covariance function. That too, the level of dis-
continuity in ρ(X) can be high—typically characterised by few isolated islands of
over-density (see Figs. 3.1 and 3.4). The sought GP required to model such a func-
tion then needs to have covariance kernels that suffer discontinuous spatial variation.
Modelling a nonstationary covariance function with kernels that exhibit nonsmooth
variation is hard, especially when no training data is available—for a new material
sample, ρ(X) is not known a priori at any value of X. When time replicated data are
available, Paciorek and Schervish [18] offer a prescription for a globally nonstation-
ary (but locally stationary) covariance function marked by smooth spatial variation
of the kernels. Suggesting a more general nonstationary covariance structure in the
presence of training data is a topical challenge in statistics that is under consideration.

In lieu of an available solution, we resort to discretising the range of values of
X and learn the material density at these values. Thus, with no training data, it is
not possible to model the abruptly varying spatial correlation structure that underlies
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the highly discontinuous, trivariate density function of real-life material samples, so
that prediction at other values of X is not possible either. We allow the resolution
(ω) available in the data to dictate the discretisation of ρ(X). Here, ω is the length
over which structure is resolved in the image data. Thus, ω cannot be less than the
diameter of the beam of electrons that is used to image with an SEM. In practice,
SEM images can have very fine resolution (when imaged in the radiation of back
scattered electrons, ω ∼ nanometres, or nm) or can have coarse resolution (when
imaged in X-rays, ω ∼ micrometres, or μm).

3.3.2 A General Voxel and a General Interaction-Volume

Thus, we consider ρ(x1, x2, x3) to be a constant within a voxel where the ij th voxel
is defined by x1 ∈ [x1i , x1i + ω), x2 ∈ [x2i , x2i + ω), x3 ∈ [R0(j−1),R0(j )),
where R0(0)=0, the ith point of incidence of the beam is (x1i , x2i , 0), x1i :=
i modulo (

√
NI ), x2i := int(i/

√
NI ) + 1. Here i = 1, . . . ,NI and j = 1, . . . ,NE .

We refer to the material density in the ij th voxel as ρij . In order to achieve
identifiability of solutions for the two unknown functions, we set the microscopy
correction function to be a function of the depth coordinate X3 alone, i.e. the correc-
tion function is modelled as independent of beam incidence location. Then, the range
of X3 values is discretised and for x3 ∈ [R0(j−1),R0(j )), ηj := η(x3). Thus, there
are NI × NE number of material density parameters and NE number of correction
function parameters that we estimate.

The ij th interaction-volume on the other hand is the hemispherical interaction-
volume with centre at (x1i , x2i , 0), generated by the electron beam of energyE = εj ,
i.e. has a radius of R0(j ) ∝ ε1.65

j where the constant of proportionality is material
dependent. Thus, the size of the lateral cross-section (parallel to the X3 = 0 plane)
of the interaction-volume is given by the energy of the electrons in the beam and the
material at hand while the size of a voxel is determined by ω, the resolution of the
data.

3.3.3 Multi-Scale Models

Depending on the resolution of the image data, ω, there can be multiple or even
less than a whole voxel, the lateral cross-section of which fits inside that of the
ij th interaction-volume. When ω is large enough to warrant the latter for all j , the
material density inside the ij th interaction-volume, for a given x3, is the constant
material density inside the enveloping voxel. In that case, integration of ρ ∗ η over
the plane at this x3 inside this interaction volume is integration of a constant. This is
easy compared to the other case (of fine resolution) when multiple voxels fit inside
the interaction-volume; in that case, this integration in not over a constant integrand.
Thus, we can ease the difficulty of computation of the projection integral (Eq. 3.1) in
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the case of coarse resolution but not when the resolution is fine. This differentiation
corresponds to multiscale models differentiated by how the computation of C(rho ∗
η)ij is carried out (Eq. 3.1). Our three models are:

1. Model 1: ω ∼ μm and high Z to ensure that π (R0(k))2 ≤ ω2, ∀ k = 1, . . . ,Neng.
Integration over the angular coordinate (ψ in Eq. 3.1) is not required.

2. Model 2: π (R0(k))2 ≤ ω2, ∀ k = 1, . . . , kin and π (R0(k))2 > ω2, ∀ k = kin +
1, . . . ,Neng. To avoid performing the integration over ψ in Eq. 3.1, we compute
the nearest neighbour averaging over density.

3. Model 3: π (R0(k))2 > ω2, ∀ k = 1, . . . ,Neng. Integration over ψ cannot be
avoided.

3.4 Priors on Sparsity of Material Density Function

We develop priors on the material density function, such that the priors adapt to
the density. One way to check for voxels that contain zero density is to check if
C(ρ∗η)(j )

i = C(ρ∗η)(j )
−im (where C(ρ∗η)(j )

−im is the projection onto the centre of the ij th
interaction-volume performed without considering density in the mj th voxel). If it
holds, then ρmj = 0. But computationally speaking, such checking is very expensive
as it entails as many checks as voxels inside this interaction-volume. Rather, we
check if a voxel has zero density at a chosen probability. Therefore, we check if the
following statement is true with some probability:

C(ρ ∗ η)(j )
i ≤ C(ρ ∗ η)(j−1)

i �⇒ ρij = 0 (3.3)

∀ i, j . Define the random variable τij , with 0 < τij ≤ 1, such that

τij := C(ρ ∗ η)(j )
i

C( ρ ∗ η)(j−1)
i

, if C(ρ ∗ η)(j )
i ≤ C(ρ ∗ η)(j−1)

i , C(ρ ∗ η)(j−1)
i �= 0

τij := 1 otherwise.

Then, Statement 3.3 is recast as: “smaller is τij , higher is the probability ν(τij )
that ρij=0”, where ν(τij ) is

ν(τij ) = pτij (1 − p)1−τij , (3.4)

with the hyper-parameter p controlling the nonlinearity of response of ν(τij ) to
increase in τij . The hyper-parameter p ∼ U[0.6, 0.99].

The prior on the density parameter ρij is then defined as

π0(ρij ) = exp
[
− (ρij ν(τij )

)2
]
. (3.5)

Thus, π0(ρij ) ∈[0,1] ∀ i, j . Only for i, j for which τij is unity, is ν(τij ) a constant,
(= p) and only for such i, j , the prior on the material density parameter is propor-
tional to a half-normal density distribution (with nonnegative support). For all other
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i, j , the prior is not of any recognisable parametric form; nonparametric priors on
sparsity are also reported, including the nonparametric prior without mixing [9]. Our
prior also does not include mixing, but like other priors on sparsity, it adapts well to
the sparsity in the material density function

3.5 Priors on Microscopy Correction Function

In the literature on electron microscopy, models that approximate the shape of the
microscopy correction function have been advanced [17, 21] as akin to a folded-
normal distribution. However, the scale of this function and details of the shape
are not known a priori but need to be estimated using system-specific Monte Carlo
simulations of the system or approximations based on curve-fitting techniques; see
[7]. Such simulations or model-based calculations are material-specific and are based
on the assumption of homogeneous material samples, amongst other assumptions.
Given this situation, it is meaningful to seek to learn the correction function from
the image data.

We recall that we model the correction function as dependent on X3 alone and
instead of learning the function η(X3), we estimate the discrete values of it such that
for x3 ∈ [R0(j−1),R0(j )) �⇒ ηj := η(x3), j = 1, . . . ,NE , R(0) = 0. We develop
the more-well informed model for the correction function in which it is approximated
by a scaled, two-parameter folded normal density. In the less-well developed model,
folded-normal priors are slapped on ηj , ∀ j = 1, . . . ,NE .

3.6 Inference

The likelihood is defined in terms of the distance between the image datum Ĩ
(j )
i and

the projection of the unknowns onto the centre of the ij th interaction volume. A
Gaussian likelihood is chosen:

L
(
ρ11, . . . , ρ1NE

, . . . , ρNI 1, . . . , ρNINE
, η1, . . . , ηNE

|Ĩ (1)
1 , . . . , Ĩ (NE )

1 , . . . , Ĩ (NE )
NI

)
=

NE∏
j=1

NI∏
i=1

1√
2πσ (j )

i

exp

⎡
⎢⎣−

(
C(ρ ∗ η)(j )

i − Ĩ
(j )
i

)2

2
(
σ

(j )
i

)2

⎤
⎥⎦, (3.6)

where the noise in the image datum Ĩ
(j )
i is σ (j )

i .
The priors on the density and correction function parameters are invoked allowing

the formulation of the joint posterior probability density of the unknown parameters,
given the image data. We sample from the posterior probability density of the un-
known parameters {ρij , ηj } given the image data {Ĩ (j )

i } using (adaptive) Metropolis
within Gibbs.
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Had the inference been classical, we could state that in the small noise limit,
(ρ ∗ η)(j )

i is the unique solution to the least squares problem Ĩ
(j )
i = C(ρ ∗ η)(j )

i . In
the presence of noise in the data, ρ ∗ η is no longer unique;the bound on the lack of
uniqueness is given by condition number κ(C) of the matrix version C of the operator
C. As C is product of orthogonal projection matrices κ(C) =1. Therefore, fractional
deviation of uniqueness in learnt value of ρ ∗ η is the same as the noise in the image
data, which is at most 5 %.

Of course, we perform Bayesian inference on our parameters and in this frame-
work, the uncertainty on learnt parameters governed by strength of priors for a given
data set. We have conducted a number of simulation studies in which we vary the
different model parameters that can perturb the likelihood. Such parameters include
the noise in the data and the level of sparsity in the material density function; we
also vary the level of information in the priors of the correction function parameters

3.7 Results Using Simulated Data

We carry out inversion of synthetic image data generated by projecting the convo-
lution of the material density and correction functions for simulated samples of an
alloy of two chosen metals (Nickel and Tungsten). The projection is performed to
simulate SEM imaging under a chosen resolution. The synthetic image data are then
inverted to estimate the material density and correction function parameters of this
alloy, which are then compared to the known material density and correction function
of the simulated model.

For a simulated model, the true density of which is sparse, the learnt material
density parameters on the X2 − X3 plane, at X1 = 0, is displayed in Fig. 3.1 in
unfilled contours that are superimposed upon the true density function (shown in
filled contours). For another simulated model, the density of which is not sparse,
the variation in the estimated density parameters is superimposed in red over the
true values that are shown in black in Fig. 3.2. In both cases the imaging resolution
chosen to simulate the SEM imaging is chosen to be coarse (μm), so as to render
Model 1 relevant. Figure 3.3 represents the comparison of the correction function
parameters estimated using a synthetic image data simulated at a slightly more fine
resolution (making Model 2 relevant), and the true values. A less-informed model of
the priors on the correction function parameters was used in this estimation.

3.8 Results Using Real SEM Image Data

We produced a brick of Silver and Aluminium nanoparticles in the laboratory and
imaged it at 11 different beam energies. The image data generated at one of these
energies is shown in the left panel of Fig. 3.4. A fraction of this image data (contained
in a rectangular area spanning 101×101 pixels) is inverted to help learn the unknown
parameters. The estimated density parameters are shown on a contour plot in the right
panel of Fig. 3.4.
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Fig. 3.2 The left and right panels respectively show variation with X2 and X3 of material density
parameters estimated using synthetic image data that was generated by projecting the convolution
of a chosen nonsparse density and correction function, in a simulation of SEM imaging carried out
at a coarse resolution (chosen to simulate imaging by X-rays). The true material density is in black
while the estimates are shown in red, accompanied by the 95 % HPD regions

Fig. 3.3 Variation with X3 of
correction function
parameters estimated using
synthetic image data that was
generated by projecting the
convolution of a chosen
density and correction
function, in a simulation of
SEM imaging carried out at a
slightly less coarse resolution
than that used to generate
results in Figs. 1 and 2
(rendering our Model 2
relevant). The true parameter
values are shown in black
while the estimates are shown
in red, accompanied by the
95 % HPD regions.

3.9 Conclusions

This inverse problem stands out in its complexity owing to the multiple inversions
of the image data that are required to estimate the convolution of the two sought
unknown functions; further, deconvolution of this estimate leads to solutions for the
unknowns. There is no training data available for us to train a model for the density
function on. Also, the material density function is anticipated as being not compactly
supported in R

3. Besides, it can be sparse in some material samples but not so in
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Fig. 3.4 Left: Image data of a brick of Silver and Aluminium nanoparticles, taken with an SEM, at
beam energy of 12 keV. Right: Contour plot (at X1 = 0) representing material density parameters
estimated by inverting real image data taken at energies of 10, 11,. . . 20eV

others. We address the problem within a Bayesian framework. The salient features
of the methodology advanced to tackle is inverse problem include the following.

• Novel imaging experiment: multiple images taken of same point on the sample,
at distinct values of an easy-to-manipulate parameter (beam energy E) that allow
for information on density structure to arrive from different sub-surface depths.

• Set correction function dependence only on sub-surface depth: η(X3). Known
value of η(0) helps achieve identifiability.

• Develop priors on sparsity of material density function.
• Priors on kernel are elicited from the microscopy literature.
• Discretise the unknown functions: ρij = ρ(x1i , x2i , x3) if X1 = x1i , X2 = x2i

define the ith beam incidence location and z ∈ [R0(j−1),R0(j )); similarly, ηj =
η(z) if z ∈ [R0(j−1),R0(j )). Here, i = 1, . . . ,NI , j = 1, . . . ,NE . We perform
Bayesian inference on the unknown parameters ρij and ηj .

• Formulate multiscale models to address inversion of image data recorded at
different length scales, i.e. different imaging resolutions.

Applications to real image data of a system of nanoparticles as well as to simulated
metallurgical image data demonstrate the efficiency of the method across a range of
length scales.
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Chapter 4
Problems with Constructing Tests to Accept
the Null Hypothesis

André Rogatko and Steven Piantadosi

Abstract Futility designs have been proposed and used by constructing classical
(non-Bayesian) hypothesis tests such that the decision of therapeutic interest is to ac-
cept the null hypothesis. A consequence is that the probability of accepting (failing to
reject) the null when the null is false is unknown. Reversal of the conventional null and
alternative hypotheses is not required either to demonstrate futility/nonsuperiority,
or to align type I and II errors with their consequences. Conventional methods to test
whether the response to the investigational agent is superior to a comparative control
(superiority trial) are preferable and in the case that the null hypothesis is rejected,
the associated type I error is known.

4.1 Introduction

In recent years, a class of formal futility designs to eliminate unpromising therapies
in middle development has been proposed [1–4]. These designs are used especially
for trials in neurologic disease where their properties appear to resonate with the
needs of therapeutic development, and their use seems to have increased in recent
years [5]. This design carries significant flaws that investigators should know before
implementing.

The essence of a futility design is an effect threshold or threshold improvement
below which we lose interest in further developing a treatment. The effect threshold
is based on clinical considerations. Performance below the threshold stops the trial
or development. If we defined a threshold for improvement, the treatment would
be discarded as nonsuperior. In futility designs it is typical for the null hypothesis
to be that the treatment exceeds some specified tolerance for superiority, while the
alternative hypothesis is that the treatment does not meet the criterion for superiority.
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This is an inversion of the classical setup for the null and alternative hypothesis, and
gives the design its name.

4.2 Statistical Background

The classical approach to construct a null hypothesis is through a statement of equiv-
alence or lack of improvement. This is more than a simple convention because of
the asymmetry in the way type I and II errors are managed. A hypothesis test pro-
vides certain and quantifiable control over the type I error. When we reject the null
(classically when we declare that there is a significant difference or a treatment im-
provement) we know exactly the probability of a type I error. In other words, the
chance of advancing a truly ineffective therapy is controlled at the α-level of the test.
Provided we are wise about the ways that a type I error can be inflated (e.g., multi-
plicity), the probability of this error is always under the control of the experimenter
by the choice of the α-level and critical value for the test. When we reject the null,
the type II error is irrelevant.

R. A. Fisher, in his classical work published in 1935 wrote: “. . . the null hy-
pothesis is never proved or established, but is possibly disproved, in the course of
experimentation. Every experiment may be said to exist only in order to give the
facts a chance of disproving the null hypothesis.”

Since then, as well summarized by S. Wellek in the introduction of his book
“Testing Statistical Hypotheses of Equivalence and Noninferiority” [6]: “It is a basic
fact well known to every statistician that in any hypotheses testing problem there
is an inherent logical asymmetry concerning the roles played by the two statements
(traditionally termed null and alternative hypotheses) between which a decision shall
be taken on the basis of the data collected in a suitable trial or experiment: Any valid
testing procedure guarantees that the risk of deciding erroneously in favor of the
alternative does not exceed some prespecified bound whereas the risk of taking a
wrong decision in favor of the null hypothesis can typically be as high as 1 minus
the significance level (i.e., 95 % in the majority of practical applications).”

Therefore, the null hypothesis is usually constructed by reversing the scientist’s
belief regarding what he/she would like to prove. The Neyman-Pearson lemma (NPL)
[7], which provides the foundation of classical (non-Bayesian) hypothesis testing,
assures that for a fixed type I error probability (α), the power of the test is maximized.

In the development of new therapies, the concept of designing trials to screen
out ineffective therapeutic regimens (phase II clinical trials) has been established
since the early work of Gehan [8]. Many single arm designs have been described
and extensively used [9]. They are all constructed such that the rejection of the null
hypothesis leads to the “interesting decision,” e.g., H0: the new treatment is no better
than the standard treatment versus HA: the new treatment is better than the standard
treatment. As any valid frequentist test procedure, one wishes to reject the null that
the new treatment is no better than the standard treatment and accept the alternative.
Rejecting the null at the preset significance value alpha will assure that the probability
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of rejecting the null when the null is true is bounded by alpha. NPL guarantees that
the power of this test is maximal.

In summary, as Aberson [10] elaborated: “Null hypothesis significance testing
do not allow for conclusions about the likelihood that the null hypothesis is true,
only whether it is unlikely that null is true. . . . Rejecting H0 tells us something
meaningful. Specifically, that the parameter specified in H0 is not likely to be the
parameter actually observed in the population. Failing to reject H0 tells us we cannot
rule out the value specified in H0 as a likely value for the parameter. Keeping in mind
that scientific reasoning centers on principles of falsification, it becomes clear that
rejecting H0 provides falsification whereas failing to reject H0 does not. Using this
reasoning, rejecting H0 is valid scientific evidence whereas failing to reject H0 is
not.” More succinctly, as insightfully worded by Altman and Bland [11]: “Absence
of evidence is not evidence of absence.”

4.3 Example

In a series of articles, Palesch, Tilley and colleagues [1, 4] introduced the concept
of designing trials to screen out ineffective therapeutic regimens in the field of neu-
rology denoting this class of trials by “futility studies.” Levin [3] highlights their
importance and futility trials have been conducted since in the search for better treat-
ments for neurologic diseases, e.g., [2, 12]. The hypotheses and decision process
are defined as follows [4]: “H0: ptx − p∗ > � versus HA: ptx − p∗ < �, where
ptx is the hypothesized proportion of treated subjects with a favorable outcome, p∗
is the reference proportion of favorable outcomes for the single-arm phase II futil-
ity study, and � is the “minimally worthwhile improvement” in the proportion of
favorable outcomes. If we reject the null hypothesis that a “minimally worthwhile”
improvement exists, we conclude the benefit of the new treatment is less than what
we would want, and it is futile to proceed to further testing in a phase III trial. If we
fail to reject the null hypothesis that a minimally worthwhile improvement exists, we
conclude there is insufficient evidence of futility, and the treatment deserves further
testing in a phase III trial to determine its efficacy.”

That is, the hypotheses were reversed. The consequence of constructing the hy-
potheses by reversing H0 and HA is that by accepting (failing to reject) the null, the
probability of accepting the null when the null is false is unknown (NPL tells us
only that it is minimal). This explains why statistical tests are constructed so that the
rejection of the null is the interesting result. Note that one can always accept the null
by decreasing the sample size. Although adequate power can be sought by estimating
an appropriate sample size before a trial is designed, many other assumptions and
guesses are made before the trial is realized about unknown parameters (e.g., p∗).

The notion of “proving the null hypothesis” in the context of NPL has been studied
for a long time [13, 14] and nowadays, the concept of equivalence and noninferiority
trials are well established [6].
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4.4 Discussion

The type II error given for any experiment was a hypothetical, conditioned on a
specific effect size. There were many type II error probabilities, some high and some
low, depending on the hypothetical effect size (i.e., a power curve). Failing to reject
the null hypothesis does not inform us which specific alternative is the relevant one,
and therefore does not tell us the type II error. We can only say that we have a low
probability of discarding a large effect size and a higher chance of discarding a lower
effect size. Thus, the hypothesis testing framework codifies an asymmetry: the type
I error is knowable unconditionally and the type II error is not.

We can now see a pitfall of reversing the null and alternative hypotheses. Suppose
the null hypothesis states “the effect of treatment X exceeds standard therapy by
30 % or more” and the alternative states “the effect of treatment X is less than a
30 % improvement.” If results cause us to reject the null, treatment X will not be
developed further and we know exactly the chance that we have discarded a useful
therapy: the chance that treatment X exceeded our threshold but was discarded is
exactly the α-level of our hypothesis test. In contrast, if we do not reject the null
hypothesis, we continue to develop treatmentX and are unsure of the true probability
that it actually performs below our intended threshold.

These properties may not always be the wisest choice. Recall that strong evidence
against the null is required to reject, and strong evidence is unlikely to mislead. Weak
evidence is more likely to mislead, and unlikely to reject the null [15]. When the
null hypothesis is one of efficacy/improvement, weak evidence can contribute to
further development and does not illuminate the chance of carrying forward a loser.
Strong evidence (rejection of the null), which typically is desirable, actually supports
nonefficacy or nonsuperiority. Why do we want to generate strong evidence that a
new therapy is inferior to our benchmark? Broadly speaking, it may be inferentially
and ethically more appropriate for us to generate strong evidence that a new treatment
is superior rather than inferior.

Gauging type I and II errors to account for the cost of false positives or false
negatives can be easily implemented in conventional designs [16]. When comparing
treatments in phase III studies, one judges whether a new treatment is superior
to a standard control. In this case, generally the control is of known efficacy and
should not be superseded without strong evidence of the superiority of its competitor.
Accordingly, the chance of a false positive is often set to 5 % (α = 0.05 = type I error)
and the chance of a false negative to a larger number, say 20 % or less (β = 0.2 = 1 -
power = type II error), However, in phase II (or in “futility”) trials, the relative costs
of false-positive and false-negative conclusions may be reversed. On the one hand,
we do not want to inflict an ineffective treatment on more patients than is absolutely
necessary, but we do not want to reject a potentially effective treatment. The cost
of a false positive in phase II trials is that of repeated studies, which will eventually
demonstrate the lack of efficacy. However, the cost of a false negative is that a useful
treatment is completely discarded. Accordingly, if we were to set the chance of a false
positive to, say, α = 0.15 and the chance of a false negative to β = 0.05, we would
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be protecting the new treatment from an untimely demise. For example, suppose we
test the null hypothesis that a treatment has a 15 % response frequency versus the
alternative of a 35 % response frequency. After evaluating 35 patients, if ten or more
responses are observed, we may reject the null hypothesis. The trial has an actual
2.9 % type I error and an 83 % power (17 % type II error). If we change the cut point
from ten to eight responses, using the same sample size, the trial has a 14 % type I
error and a 95.8 % power (4.2 % type II error). The sum of error probabilities is about
the same for both arrangements, but the second design protects an effective treatment
from premature rejection. Moreover, by increasing power from 83 to 95.8 %, we have
decreased the false-negative error probability by a factor of four.

Reversal of the null and alternative hypotheses is not required either to construct
an optimistic pipeline, demonstrate futility/nonsuperiority, or to align type I and II
errors with their consequences. For example, we could conventionally construct the
null hypothesis to be “the effect of treatment X is less than a 30 % improvement over
standard,” and the alternative hypothesis to be “the effect of treatment X exceeds
standard therapy by 30 % or more.” This is a clean nonsuperiority hypothesis. If we
want an optimistic pipeline that favors moving therapies forward, we might set the
type I error at 10 % or even 20 %. It could be a very serious error to miss a treatment
that actually represented a 50 % improvement, in which case we might want the type
II error for that alternative to be as small as say 5 %. Then weak evidence makes it
difficult to advance a treatment, and strong evidence is likely to advance a treatment
when it is actually good. Thus the properties that we admire in a “futility” design
can be achieved using conventional ideas.
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Chapter 5
Cognitive-Constructivism, Quine, Dogmas
of Empiricism, and Münchhausen’s Trilemma

Julio Michael Stern

Abstract The Bayesian research group at University of São Paulo has been exploring
a specific version of cognitive constructivism (Cog-Con) that has, among its most
salient features, a distinctive objective character. Cog-Con is supported by a specially
designed measure of statistical significance, namely, ev(H |X)—the Bayesian epis-
temic value of sharp hypotheses H , given the observed data X. This article explores
possible parallels or contrasts between Cog-Con and the epistemological framework
developed by the philosopher Willard van Orman Quine.

A gente vive repetido, o repetido... Digo: O real não está na
saída nem na chegada: Ele se dispõem para a gente é no meio

da travessia. ...Existe é homem humano. Travessia.
João Guimarães Rosa (1908–1967); Grande Sertão, Veredas.

We live repeating the repeated... I say: What’s real can be found
neither at departure nor upon arrival: It only becomes available

during the journey. ...What exists is the living man;
Crossing-over.

Warum ist Wahrheit fern und weit? Birgt sich hinab in tiefste
Gründe? Niemand versteht zur rechten Zeit! Wenn man zur

rechten Zeit verstünde, So wäre Wahrheit nah und breit, Und
wäre lieblich und gelinde.

Goethe (1749–1832); Westöstlicher Diwan. As quoted in
Rosenzweig (1921).

Why is truth so remote and far away? Down at the deepest
bottom hold astray? Nobody understands its proper time! If,

however, in its due time understood; Then truth would be close
and sublime; And would be graceful and good.

...the idea of circularity: That’s where everything begins.
Heinz von Foerster (1911–2002); Understanding Systems.
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5.1 Introduction

For the last 18 years, the Bayesian research group of the Institute of mathematics
and Statistics of the University of São Paulo (IME-USP) has been exploring a spe-
cific version of cognitive constructivism (Cog-Con) that has among its most salient
features a distinctive objective character and the support of specially designed tools
of Bayesian Statistics.

In previous presentations about the Cog-Con epistemological framework, for
audiences with interests spanning Logic and Epistemology, foundations of Bayesian
Statistics, and foundations of science, we were asked several questions concerning
possible parallels or contrasts between Cog-Con and the epistemological framework
developed by the philosopher Willard van Orman Quine. This chapter begins to
explore this topic.

Section 5.2 gives a succinct overview of Cog-Con—the cognitive constructivist
epistemological framework used in this chapter. The following sections explore sim-
ilarities and differences between Cog-Con and Quine’s epistemological frameworks.
Section 5.3 analyzes the Two Dogmas of Empiricism denounced by Quine, as well as
the Third Dogma proposed by Davidson, making some parallels between Cog-Con
and Quine’s epistemological frameworks. Section 5.4 contrasts the two frameworks
on their respective strategies to anchor a scientific theory to reality. Section 5.5
uses the Münchhausen Trilemma to continue the comparative analysis of the two
frameworks, while Sect. 5.6 compares them on the role played by Ontology and
Metaphysics. Section 5.7 brings our final remarks.

5.2 Objects as Tokens for Eigen-Solutions

Eigen-solution is the key concept of the objective version of Cog-Con used in this
chapter. Eigen-solutions emerge as invariant entities (i.e., as operational eigen-
equilibrium-invariant-fixed-...-solutions-states-behaviors-points) for an autonomous
system interacting with its environment. The fundamental insight of this episte-
mological framework is summarized by the celebrated aphorism of Heinz von
Foerster—objects are tokens for eigen-solutions. In other words, objects, and the
names we use to call them, stand for and point at such invariant entities (see [44] and
[30], pp. 127, 145).

In Cog-Con, the concept of autonomy can be further specified using the idea
of concrete or abstract autopoietic system—a system organized as a network of
processes of production of components that, through their interactions and trans-
formations, recursively regenerate the same production network and its constituent
components (see [17], p. 78).

As possible examples of an autonomous interacting system in its respective en-
vironment, we may consider a bacteria in its culture medium, a human individual
living in his or her social environment, or a scientific discipline and its field of study,
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Theoretical Metaphysical Experimental

Mathematical ⇒ Causal ⇒ Hypotheses
formalization explanation formulation

⇑ ⇓
Speculative Eigen-solution Experiment
interpretation verification (trial) design

⇑ ⇓
Statistical Data Technological
modeling ⇐ acquisition ⇐ implementation

Parameter space Operational Sample space

Fig. 5.1 Scientific production diagram

i.e., the discipline’s standard language, theories, empirical means and methods, ex-
perimental tools and equipment, etc., that have been developed for the continuous
research of its area of expertise.

Figure 5.1 depicts a generic diagram of systemic interaction for a scientific dis-
cipline. The right side of the square depicts activities related to empirical trial or
experiment design and implementation. The lower side depicts operations related to
data observation, generation, acquisition, and analysis. The left side relates to theo-
retical modeling and formalization. Finally, the upper side relates to metaphysics; the
conception and application of causal mechanisms, explaining why things behave the
way they do. In statistical models, observable quantities of interest are represented
by (stochastic) variables in the sample space, while latent (unobservable) quantities
of interest are represented by variables in the parameter space.

Eigen-solutions can be tagged or labeled by words, and these words can be ar-
ticulated in language. Of course, the articulation rules defined for a given language,
its grammar and semantics, only make the language useful if they somehow corre-
spond to the composition rules for the objects the words stand for. Ontologies are
carefully controlled languages used in the practice of science. They are developed
as tools for procedure specification, thinking, and communication. According to the
constructivist perspective, keywords in scientific ontologies are labels for eigen-
solutions. This is the constructivist approach to the classic problem of external symbol
grounding and alignment of scientific ontologies, as discussed in [38].

Eigen-solutions are characterized by four essential attributes, namely, precision,
stability, separability, and composability. Depending on context, precision is better
described as sharpness, lower dimensionality, discreetness, singularity, etc. In several
well-known examples in exact sciences, these four essential attributes lead to the
concept of basis, for example: basis of a finite vector space, like in linear algebra;
basis of a Hilbert space, like in Fourier or Wavelet analysis, etc. Nevertheless, the
concept of eigen-solution and its four essential attributes is so important in the Cog-
Con framework, that it is used as a fundamental metaphor in far more general, and
not necessarily formalized, contexts.



58 J. M. Stern

In the context of statistics, the essential attributes of eigen-solutions makes them
amenable for representation as statements of a very special form, namely, sharp or
precise hypotheses. A hypothesis H = {θ ∈ � | g(θ ) ≤ 0 ∧ h(θ ) = 0}, states that
the (continuous vector) parameter θ of a statistical model lays in a region of the
parameter space specified by (vector) inequalities and equality constraints. Sharp
hypotheses must have at least one equality constraint. The treatment of sharp statis-
tical hypotheses, in turn, is far from trivial, demanding the employment of suitable
mathematical techniques and requiring the use of coherent methods of inference.

For the past 18 years, the Bayesian Statistics research group of IME-USP,
at the University of São Paulo, has been developing a significance measure known as
the e-value—the epistemic value of a sharp or precise statistical hypotheses H , given
the observational data X or, in short, ev(H |X); see [16, 19, 20]. At the same time,
we have been exploring the strong algebraic properties for composition of e-values
and the characterization of these rules for combination and propagation of truth func-
tions and truth values as abstract belief calculi or logical inferential systems, see [6,
31, 40]. These algebraic rules or logical properties further reflect essential compo-
sitional properties of the underlying (or represented) eigen-solutions. Moreover, we
have been developing Cog-Con as a suitable epistemological counterpart for this
novel statistical theory, and vice-versa, see Stern [32–38].

5.3 Parallels Between Cog-Con and Quine’s Epistemological
Frameworks

In the opening paragraph of his famous paper of 1951, Willard van Orman Quine
denounces Two Dogmas of Empiricism, as stated in the first of the following quota-
tions. In 1974, Donald Davidson denounced what he saw as a third dogma, as stated
in the second quotation. However, as stated in the third quotation after carefully
constraining the context and scope of his argument, Quine accepts the premise of
scheme-content dualism as necessary, see further comments on Sect. 5.6.

Modern empiricism has been conditioned in large part by two dogmas. One is a belief in
some fundamental cleavage between truths which are analytic, or grounded in meanings
independently of matters of fact and truths which are synthetic, or grounded in fact. The
other dogma is reductionism: the belief that each meaningful statement is equivalent to
some logical construct upon terms which refer to immediate experience. Both dogmas, I
shall argue, are ill founded. One effect of abandoning them is, as we shall see, a blurring of
the supposed boundary between speculative metaphysics and natural science. Another effect
is a shift toward pragmatism. [22, p. 20]
I want to urge that this... dualism of scheme and content, of organizing system and something
waiting to be organized, cannot be made intelligible and defensible. It is itself a dogma of
empiricism, the third dogma. The third, and perhaps the last, for if we give it up it is not
clear that there is anything distinctive left to call empiricism. [9, p. 11]
If empiricism is construed as a theory of truth, then what Davidson imputes to it as a
third dogma is rightly imputed and rightly renounced... As a theory of evidence, however,
empiricism remains with us, minus indeed the two old dogmas. The third purported dogma,
understood now in relation not to truth but to warranted belief, remains intact. It has both
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a descriptive and a normative aspect, and in neither do I think of it as a dogma. It is what
makes scientific method partly empirical rather than solely a quest for internal coherence.
[25, p. 39]

Closely related to rejecting the first dogma, analytic–synthetic dualism, is Quine’s
idea of naturalism, namely,

... the recognition that it is within science itself, and not in some prior philosophy, that reality
is properly to be identified and described. [25, p. 21]

Closely related to rejecting the second dogma, reductionism, is Quine’s idea of
confirmational holism, stated as follows:

The totality of our so-called knowledge or beliefs... is a man-made fabric which impinges
on experience only along the edges. Or, to change the figure, total science is like a field of
force whose boundary conditions are experience. A conflict with experience at the periphery
occasions readjustments in the interior of the field. But the total field is so undetermined by its
boundary conditions, experience, that there is much latitude of choice as to what statements
to re-evaluate in the light of any single contrary experience. No particular experiences are
linked with any particular statements in the interior of the field, except indirectly through
considerations of equilibrium affecting the field as a whole. [22, pp. 42–43]

In summary, Quine’s epistemological framework involves the following five
interconnected premises.

1. Rejection of analytic–synthetic dualism
2. Rejection of reductionism
3. Acceptance of scheme–content dualism
4. Acceptance of naturalism
5. Acceptance of confirmational holism

We believe that these five premises account for most of the similarities often perceived
between Cog-Con and Quine’s epistemological frameworks, and with good reason
indeed.

Let us start with a comparative examination of Quine’s third premise in relation
to the Cog-Con framework. Cog-Con departing point is the existence of a concrete
or abstract autonomous system interacting with its environment. Of course, a clear
distinction between the system itself, including its characteristic features or internal
organization, versus an external environment and its inherent form, i.e., the structural
constraints of the system’s domain, range or scope of interaction, is a necessary
condition for analyzing such an interaction process. Hence, we immediately correlate
Cog-Con’s system–environment distinction with scheme–content dualism.

Let us proceed asserting that, in the Cog-Con framework, Mathematics is regarded
as a quasi-empirical science, using a terminology developed by the philosopher Imre
Lakatos, see [14, 15, 42]. For a detailed analysis of this concept, in the context of
the Cog-Con framework, see [36]. For the purposes of this chapter, it suffices to
say that mathematics as a quasi-empirical science is an idea consonant with Quine’s
premises of rejecting analytic–synthetic dualism and accepting naturalism.

Finally, let us turn our attention to Fig. 5.1, depicting the Scientific production
diagram. From this diagram, we see that the production of eigen-solutions in the
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practice of science depends not only on the pertinent scientific theory as a whole,
but also on the necessary technological means, on appropriate methods of experi-
ment design and data analysis, etc. Clearly, these ideas are in accord with Quine’s
premises of rejecting reductionism and accepting confirmational holism. Hence, con-
cerning the five premises examined in this section, we find Cog-Con and Quine’s
epistemological frameworks in comprehensive agreement.

Before ending this section, we should emphasize that, in both of the epistemolog-
ical frameworks at hand, rejection of reductionism and acceptance of confirmational
holism does not conflict with the concept of having testable statements somehow in-
serted in the fabric of scientific knowledge. However, there are important differences
on the form, role, and position of such testable statements according to each of the
two epistemological frameworks, as examined in the following sections.

5.4 Contrasting Strategies Against Skepticism

The holistic perspective, preeminent either in Quine’s or in the the Cog-Con frame-
works, brings the danger of vicious circularity that, in turn, easily leads to skepticism.
Hence, in both of these frameworks, it is important to defeat skepticism. Specifically,
it is important to carefully explain how to anchor the theory and methods of a scientific
discipline into reality. Contrasting the two epistemological frameworks’ strategies
for defeating skepticism, we find the main differences between the two approaches.
Let us start analyzing the short but very dense Reply to Stroud in [26].

Stroud [26, p. 457] raises some questions concerning the possibility that the world
is completely different in general from the way our sensory impacts and our internal
makeup lead us to think of it.

Quine [26, pp. 473–474] gives his reply in three basic steps, namely:

• First, he assumes an inclusive theory of the world, regimented in the framework
of predicate logic;

• Next, using the standard tools of predicate logic, he view[s] this [Stroud’s]
possibility in the perspective of proxy functions and displaced ontologies;

• Finally, after appropriate manipulation and reinterpretation of predicative state-
ments, he comes to the conclusion that:

The structure of our theory of the world will remain unchanged. Even its links to obser-
vational evidence will remain undisturbed, for the observation sentences are conditioned
holophrastically to stimulations, irrespective of any reshuffling of objective reference.
Once we take observation sentences holophrastically, however, reference and objects gen-
erally go theoretical. The indifference or inscrutability of ontology comes to apply across
the board.
The relations of language to stimulations are unaffected by any shift of our ontology through
proxy functions. Evidently then such shifts are indifferent to use, to meaning. The platitude
that meaning determines reference goes by the board, along with the absoluteness of ref-
erence. The objects, or values of variables, serve only as nodes in a verbal network whose
termini a quis et ad quos are observations, stimulatory occasions.
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Quine’s arguments in his answer to Stroud depend critically on two additional (and
explicit) premises:

6-Quine. Acceptance of a predicate logic structure, i.e., assuming that predicate
logic (or similar belief calculi) gives the symbolic structure of choice for the
regimentation of science.

7-Quine. Acceptance of the finite regress premise, that is, to assume the availability of
terminal nodes when parsing down well-formulated truth-bearing statements within
the scope a well-regimented theory. In Quine’s framework, these terminal or bottom
nodes come in the form of observation sentences, conditioned holophrastically to
stimulations (In logic and computer science, the standard representation of this
parsing process is a tree structure having its starting node or root at the top and its
terminal nodes or leaves at the bottom).

In contrast, in the Cog-Con framework, these two additional premises are replaced
by alternatives of a very different nature, namely,

6-Cog-Con. Acceptance of a statistical model structure, i.e., assuming that prob-
ability and mathematical statistics (or alternative models based on similar belief
calculi), gives a symbolic structure of choice for testing operations (verification /
falsification) in empirical science.

7-Cog-Con. Acceptance of objects as tokens for eigen-solutions—invariants or fixed-
points in essentially cyclic and recursively defined processes.

Moreover, the premises of objects as tokens for eigen-solutions and statistical model
structure are linked by assuming the availability of sharp statistical hypotheses
as check points in well-posed scientific disciplines. Successful (statistical) testing
of such sharp hypotheses implies an evaluation of objectivity (or verification of
existence), for a corresponding set of objects in the pertinent scientific ontology.

Statistical models make use of real-vector variables for representing observed
quantities or latent parameters. Moreover, in such models, learning (ex. Bayesian up-
dates) and (stochastic) convergence properties are appropriately described by contin-
uous mathematics, in sharp contrast with the discrete character of propositional logic.

The contrasting assumptions examined so far in Cog-Con and Quine’s episte-
mological frameworks are also related to the perceived position, from a central to
peripheral range, of the testable statements in scientific knowledge. For Quine, these
contact-points with reality have a peripheral position, as clearly stated in his analogy
of scientific knowledge to a man-made fabric which impinges on experience only
along the edges [22, p. 42]. In contrast, the Cog-Con framework relates its testable
hypotheses to valid of eigen-solutions, entities that, by their very nature, are per-
ceived as deeply (and recursively) embedded in systemic activity. We believe that
this topic can be further elucidated studying the Münchhausen Trilemma.
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5.5 Münchhausen Trilemma

The difference between adopting the premise of finite regress, in Quine’s approach to
epistemology, and adopting the premise of objects as tokens for eigen-solutions, in
the Cog-Con epistemological framework, may be seen as a consequence of choosing
different horns of the celebrated Münchhausen trilemma, as it was formulated by
[2, p. 18]:

If one demands a justification for everything, one must also demand a justification for the
knowledge to which one has referred back the views initially requiring foundation. This leads
to a situation with three alternatives, all of which appear unacceptable: in other words, to a
trilemma which, in view of the analogy existing between our problem and the one which the
celebrated and mendacious baron once had to solve, I should like to call the Münchhausen
trilemma. For, obviously, one must choose here between
(a) an infinite regress, which seems to arise from the necessity to go further and further back
in the search for foundations, and which, since it is in practice impossible, affords no secure
basis;
(b) a logical circle in the deduction, which arises because, in the process of justification,
statements are used which were characterized before as in need of foundations, so that they
can provide no secure basis; and, finally,
(c) the breaking-off of the process at a particular point, which, admittedly, can always be done
in principle, but involves an arbitrary suspension of the principle of sufficient justification.

Of course, each epistemological framework must deal with the perils of its favorite
(or least feared) horn of Münchhausen trilemma:

• Quine must show how to achieve a finite break-off when parsing down well-posed
truth-bearing statements formulated in the scope of a theory regimented according
to his chosen symbolic structure, namely, predicate logic.

• In our opinion, Quine should also accomplish the far more difficult task of con-
vincing his potential clientele that his choices 6 and 7, namely, his premises
of predicate logic structure and finite regress, are the most appropriate for the
(naturalized) epistemological task of verifying and evaluating scientific theories.
Moreover, from the same naturalistic perspective, it would be very helpful if the
same choices were also the most suitable for use in active duty by scientists trying
to test or validate their empirical models and working hypothesis.

Of course, the proponents of the Cog-Con framework must also justify their choices
6 and 7. In particular it is vital to:

• Justify abandoning predicate logic as the single belief calculus used for epistemo-
logical reasoning, i.e., the only set of rules used for truth analysis and propagation
in the evaluation of scientific models, and the introduction of continuous logics
or belief calculi such as probability or possibility theory. The introduction of new
belief calculi requires careful argumentation, since predicate logic and its vari-
ants have a long-standing tradition of playing all alone the aforementioned role
in many frameworks for epistemology and philosophy of science.
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• Show how to tame the circularity looming at horn (b) of Münchhausen trilemma
into a virtuous form, for vicious forms of circularity threaten to poison the health
of any epistemological framework, and hand over victory to skepticism.

Quine himself, and many of his followers, have worked extensively in the aforemen-
tioned tasks. Although Cog-Con in general, and the objective version of it used in this
chapter in particular, are much younger—presumably only at the beginning of their
development; several already published theoretical results and practical applications
show how these tasks can be successfully accomplished.

Ultimately, it will be up to the user to choose the framework that he or she
considers the most natural, intuitive, and well-adapted to its field of interest. In the
case of Cog-Con, the available or required mathematical tools may have an influence
in this choice. On one hand, statistics is (or should be) a well-known tool of the trade
for the working scientist. On the other hand, the abstract representation of virtuous
forms of circularity is a far less common task.

Nonetheless, some fields, most specially computer science, have developed pow-
erful formalisms for the abstract representation of essentially circular processes that
produce, nevertheless, well-defined objects. Some nonstandard logics and set theo-
ries are, in fact, mathematical tools tailor-made for the logical representation of such
recursively defined objects. As interesting examples, we could mention Hypersets
or Non-Well-Founded Set Theory and its derivatives, see for example ([1], [3], [4,
Chap. 4], [5], [10, Chap. 8]).

5.6 Ontology and Metaphysics

Once again, we start noticing striking similarities between Cog-Con and Quines’s
frameworks at important departing points, followed by significant differences in
their evolution. The common departing point we have in mind is the relation between
ontology (understood as studies on what there is) and language, as stated in [22, p. 16]:

Our acceptance of an ontology is, I think, similar in principle to our acceptance of a scientific
theory, say a system of physics: we adopt, at least insofar as we are reasonable, the simplest
conceptual scheme into which the disordered fragments of raw experience can be fitted and
arranged... To whatever extent the adoption of any system of scientific theory may be said to
be a matter of language, the same-but no more-may be said of the adoption of an ontology.

As seen in Sect. 5.2, from the Cog-Con perspective, ontologies are carefully con-
trolled languages used in the practice of science, developed as tools for procedural
description and specification, theoretical reasoning, and communication. A scientific
ontology includes a (formal) definition of the collection of objects of knowledge
of a given scientific discipline and its organization, i.e., the (semantic) relations that
exist between these objects. Hence, so far, Cog-Con and Quine’s frameworks seem
to be in good agreement concerning issues of ontology and language.

However, as previously seen, Quine’s epistemological framework leads him to
ascertain the indifference or inscrutability of ontology. This indifference, in turn,
takes him to a strict observation/ prediction/ verificationalist position, that gives
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little room for more important roles to be played by ontology or metaphysics. In [27,
p. 31], see also [11, pp. 137–138], he states:

Reference and ontology recede thus to the status of mere auxiliaries. True sentences,
observational and theoretical, are the alpha and omega of the scientific enterprise.

In [24, p. 80], he goes to the extreme of saying of the Vienna Circle that they
- espoused a verification theory of meaning but did not take it seriously enough,
see also [11, p. 226]. Ironically, this takes Quine to embrace an extreme form of
positivism concerning the role of metaphysics, in perfect syntony with the ideas of
Auguste Comte, founder of the Positivist movement, as seen in the following quotes.

Now it is an ironical but familiar fact that though the business of science is describable in
unscientific language as the discovery of cause, the notion of cause itself has no firm place in
science. The disappearance of causal terminology from the jargon of one branch of science
and another has seemed to mark the progress in understanding of the branches concerned.
[23, p. 242], as quoted in [12, p. 358].
The first characteristic of the Positive Philosophy is that it regards all phenomena as subjected
to invariable natural Laws. Our business is - seeing how vain is any research into what are
called Causes, whether first or final, - to pursue an accurate discovery of these Laws, with
a view to reducing them to the smallest possible number. By speculating upon causes, we
could solve no difficulty about origin and purpose. Our real business is to analyze accurately
the circumstances of phenomena, and to connect them by the natural relations of succession
and resemblance. [8, p. 27], quoted in [11, p. 220].

In contrast, from the Cog-Con epistemological framework’s perspective, ontol-
ogy and metaphysics are at the center stage of the scientific scenario, and play a
preeminent role in good epistemological analysis.

From the Cog-Con perspective, Metaphysics concerns causal explanations telling
why things are the way they do. These are the narratives and metaphors, often
intertwined with abstracts symbolic statements, we use to build our understanding,
to gain insight or intuition about objects in our world and the way they work. Hence,
good scientific ontologies, even if informally defined, are an indispensable tool
for metaphysical and theoretical reasoning, and both ontology and metaphysics are
necessary supports for the conception, development, implementation, and consistent
application of experimental procedures and operational means and methods. As such,
ontology and metaphysics are of paramount importance in scientific life, taking part
in all steps of the production diagram depicted at Fig. 5.1.

From the Cog-Con perspective, the clarity of understanding, insight, or intuition
provided to its end users by a good ontology and its associated metaphysical (causal)
explanations must be carefully and thoroughly considered. Such considerations may
even justify the nontrivial concomitant use of alternative but formally equivalent
ontologies and theoretical frameworks. Indeed, let us consider the case of two or more
of such formally equivalent frameworks like, for example, Newtonian, Lagrangean,
and Hamiltonian classical mechanics, or the standard and Feynman’s path integral
formulation of quantum mechanics. From the Cog-Con perspective, even if two such
frameworks are formally equivalent, their different ontological commitments and
characteristic causal relations are still very relevant in the active practice of science
and, therefore, from a Cog-Con perspective, equally important for epistemology.
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For a detailed discussion of the Cog-Con perspective, including similar ideas
of Max Born, and further contrasts with Positivism’s strict observation/ prediction/
verificationalist position, see ([32, Chap. 5], [7, 36, 37, 40]. Max Planck [21, pp. 171–
172] presents a comparable position:

Positivism lacks the driving force for serving as a leader on this road. True, it is able to
eliminate obstacles, but it cannot turn them into a productive factors. For its activity is
essentially critical, its glace is directed backward. But progress, advancement requires new
associations of ideas and new queries, not based on the results of measurements alone, but
going beyond them, and toward such things the fundamental attitude of Positivism is one of
aloofness.

5.7 Future Research Final Remarks

Self-Identities at Neurath’s Ship

As a wordy epistemological framework, Cog-Con should be useful for statical anal-
ysis of a scientific discipline, i.e., it should be a helpful device for making sense
of the daily activities of the system as it operates in a given status quo. However,
the Cog-Con framework also aims at dynamical analyses, aspiring to provide useful
tools for understanding science in its development and evolution. We believe that
Cog-Con can offer valuable insights at the never-ending processes of reconstruction
while staying afloat that characterizes Neurath’s Ship. In particular, we believe that
the Cog-Con approach can provide intuitive guidelines for engineering and using
computational tools for ontology alignment, see [38]. Synchronic and diachronic
ontology alignments, in turn, can help us to understand the underlying continuities
of systems in their development and evolution, i.e., can help us to understand the
safe-guarding of self-identities during the brave voyages of Neurath’s Ship.

Handling Sticky Things

Truth, meaning and belief are sticky concepts. They stick together.... Meaning and belief ...
can be separated, like Siamese twins, only by artificial means... But it is the remaining pair,
truth and belief, that seems to me to have got unobservedly stuck.

These are among the opening statements of On the very Idea of a Third Dogma,
Quine [25, p. 38]. The objective of the present article was to make a high contrast
and minimalist comparison between Cog-Con and Quine’s epistemological frame-
works. Future research should enrich this bare-bone and schematic comparison with
finer points and higher resolution details. Contrasting appropriate concepts of truth,
meaning, and belief in Cog-Con, Quine, and also Davidson’s epistemological frame-
works should be part of this effort. Sticky as they are, a comparative study of these
three concepts will eventually involve a related triad of sticky things, namely, the con-
cepts of objectivity, subjectivity and inter-subjectivity. Moreover, this line of research
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requires discussion of the roles played in naturalized epistemologies by Ontology
and Metaphysics in greater depth than we could afford at the present chapter.

Handling Uncertainties in Circular Ontologies

A self-defined mission of CODATA, the International Committee on Data for Sci-
ence and Technology, is to periodically provide the scientific and technological
communities with a self-consistent set of internationally recommended values of the
basic constants and conversion factors of physics and chemistry based on all of
the relevant data available at a given point in time. For more on the importance and
meaning of universal constants, these immutable building blocks blocks of the edifice
of theoretical physics, see [21, pp. 170–172].

Many international laboratories are involved in this on-going effort to obtain ever
more precise values for universal constants, using a variety of alternative experimen-
tal methods. However, each value obtained for one of these fundamental constants is
a (nonlinear) function of the value of several others constants. Such a project creates
a large database where entities are circularly defined, a situation that can be handled
using methods based on Aczel’s hypersets and its derivatives. Moreover, the reliabil-
ity of each one of these experiments, the quality and conditions of its implementation,
and a variety of other influencing factors must also be accounted for. This creates a
second-order effect of circular propagation of uncertainties.

A simple approach to quantify uncertainties about universal constants could be
based on the (convergent, circular) propagation of variances and covariances, the
second-order statistical moments. Borges and Stern [6] and Stern [31] suggest
possible ways to handle empirical hypotheses and to treat more complex relations.

We are interested in extensions of already existing computational tools, like
Pakkan and Akman [18] and Iordanov [13], aiming at the easy handling of sets
of circular uncertainties. Such computational tools could, in turn, be used in the
effort of evaluating scientific ontologies and constructing or justifying synchronic
and diachronic ontology alignments, see [38].
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Chapter 6
A Maximum Entropy Approach to Learn
Bayesian Networks from Incomplete Data

Giorgio Corani and Cassio P. de Campos

Abstract This chapter addresses the problem of estimating the parameters of a
Bayesian network from incomplete data. This is a hard problem, which for compu-
tational reasons cannot be effectively tackled by a full Bayesian approach. The work
around is to search for the estimate with maximum posterior probability. This is usu-
ally done by selecting the highest posterior probability estimate among those found
by multiple runs of Expectation-Maximization with distinct starting points. How-
ever, many local maxima characterize the posterior probability function, and several
of them have similar high probability. We argue that high probability is necessary
but not sufficient in order to obtain good estimates. We present an approach based on
maximum entropy to address this problem and describe a simple and effective way
to implement it. Experiments show that our approach produces significantly better
estimates than the most commonly used method.

6.1 Introduction

Bayesian networks (BN) are well-established probabilistic graphical models that can
represent joint probability distributions over a large number of random variables in
a compact and efficient manner by exploiting their conditional independences, en-
coded through a directed acyclic graph. Inferring BNs from data sets with missing
values is a very challenging problem even if the graph is given [10]. This chapter
focuses; on inferring the parameters of a BN with known graph from incomplete data
samples, under the assumption that missingness satisfies MAR (missing-at-random).
The missing data make the log-likelihood function nonconcave and multimodal; the
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most common approach to estimate the parameters is based on the Expectation-
Maximization (EM) algorithm [8, 14]. In this case, EM can be used to search for
estimates that maximize the posterior probability of the data (rather than the like-
lihood [17, Sect. 1.6], as it was originally designed [8]). Maximizing the posterior
probability rather than the likelihood is recommended, as it generates BN parameter
estimates which are less prone to overfitting [13, 14].

With abuse of notation, in the following, we refer to the posterior probability of the
data as the MAP score. Maximizing the posterior probability of the data is by far the
most used idea to infer BN parameters, even if it does not offer the same advantages
of a full Bayesian estimation. For instance, because it does not integrate over the
posterior probability, it cannot average over the uncertainty about the parameter
estimates. On the other hand, estimation can be performed by fast algorithms, such
as EM, while the computational cost of the full Bayesian approach to infer BN
parameters is simply prohibitive, especially in domains with many variables. EM
almost always converges to a local maximum of the MAP score, so multiple starts
from different initialization points are adopted with the aim of avoiding bad local
maxima, and eventually the estimate corresponding to the highest MAP score is
selected.

One could expect an improvement in the estimation of the parameters by using
an algorithm that always obtains the global maximum solution of the MAP score
instead of a local one, something that cannot be guaranteed with EM. To check
this conjecture, we implement an optimization framework which is ensured to find,
at least in small-sized problems, the global maximum score. For large domains,
such task is computationally intractable, as the problem is known to be NP-hard.
However, we show empirically that the global solver produces worse parameter
estimates than EM itself does, despite finding estimates with higher MAP scores.
The global maximum of the MAP score seems, thus to be subject to some type of
overfitting, highlighting severe limitations in the correlation between MAP score and
the quality of the parameter estimates. In turn, this opens a question about whether
selecting the estimate with highest MAP score is the best approach. Different EM
runs typically achieve very close values of the MAP score, and yet return largely
different parameter estimates [13, Chap. 20]. Selecting the parameter estimate which
maximizes the MAP score is not a robust choice, since the difference in score among
competing estimates can be very thin. We note that approaches such as the Bayesian
Information Criterion (BIC) do not constitute a solution to this problem: since all the
competing estimates refer to the same graph, the BIC (and other similar approaches)
would simply select the estimate with highest MAP score.

In view of such considerations, we propose the following idea to estimate BN
parameters: One should select the least informative estimate, namely the maximum
entropy one, among those which have a high MAP score. The maximum entropy
criterion can be stated as: “when we make inferences on incomplete information, we
should draw them from that probability distribution that has the maximum entropy
permitted by the information which we do have”[12]. Thus, our criterion is applied
in two steps: (i) computation of the highest MAP score and (ii) selection of the
maximum entropy estimate, among those with high MAP score. We implement our
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criterion on top of both, our new global solver and a multi-start EM procedure. The
idea of using entropy to estimate parameters of BNs from incomplete samples has
been previously advocated [4–6, 11, 22], yet our approach and those considerably
differ: either they work with continuous variables and very few parameters, or they
employ other inference approaches, such as the imprecise Dirichlet model [21], to
later use entropy as criterion. We deal with discrete variables with BNs of a great
numbers of parameters, and interpret the entropy criterion in a softer manner (as
explained later on). Entropy methods have also been applied before for dealing with
the uncertainty about the missingness mechanism, where the nature of the censoring
data is unknown [2, 19] (we instead assume MAR).

This chapter is divided as follows. Section 6.2 presents the estimation problem and
the methods to tackle it. Expectation-Maximization (EM) (Sect. 6.2.1) and nonlinear
formulation (Sect. 6.2.2) are described, which are then compared in Sect. 6.2.3. The
entropy-based idea is presented in Sect. 6.2.4. Section 6.3 presents experiments
comparing the methods. Finally, Sect. 6.4 presents our concluding remarks.

6.2 Methods

We adopt Bayesian networks as framework for our study. Therefore, we assume
that the reader is familiar with their basic concepts [13]. A Bayesian network (BN)
is a triple (G, X , P), where G is a directed acyclic graph with nodes associated to
random variables X = {X1, . . . ,Xn} over discrete domains {ΩX1 , . . . ,ΩXn

} and P
is a collection of probability values p(xj |πj ) with

∑
xj∈ΩXj

p(xj |πj ) = 1, where

xj ∈ ΩXj
is a category or state of Xj and πj ∈ ×X∈Πj

ΩX a (joint) state for
the parents Πj of Xj in G. In a BN, every variable is conditionally independent
of its nondescendants given its parents, according to G. Given its independence
assumptions, the joint probability distribution represented by a BN is obtained by
p(x) = ∏

j p(xj |πj ), where x ∈ ΩX and all xj ,πj (for every j ) agree with x.
Nodes of the graph and their associated random variables are interchanged.
The graph G and the variables X (and their domains) are assumed to be known;

θv|w is used to denote an estimate for p(v|w) (with v ∈ ΩV, w ∈ Ωw, V,W ⊆ X ).
We denote as yi the i-th incomplete instance and by Yi ⊆ X the set of observed

variables of the i.i.d. sampled instance i. Given the incomplete training data y =
(y1, . . . , yN ) with N instances such that each yi ∈ ΩYi , we denote by Nu the number
of instances of y that are consistent with the state configuration u ∈ Ω U, where
U ⊆ X . Parameters are estimated by maximizing the posterior probability given y:

θ̂ = argmax
θ

Sθ (y) = argmax
θ

(
N∑
i=1

log θyi + α(θ )

)
, (6.1)

where α represents the prior:

α(θ ) = log
n∏

j=1

∏
xj

∏
πj

θ
αxj ,πj
xj |πj , and αxj ,πj = ESS

|ΩXj
| · |ΩΠj

| ,
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where ESS stands for equivalent sample size, which we set to one, as usually done
in the literature [13]. The argument y of Sθ is omitted from now on (S means score).

In the experiments, in order to evaluate the quality of estimates, we measure the
Kullback–Leibler (KL) divergence between the joint distribution represented by the
true BN and the estimated BN (which we name joint metric); moreover, we also use
the joint marginal distribution of all leaf nodes (named reasoning metric). The latter
measures how close a reasoning about those leaf variables with the estimated model
is to that of the true model

KLP(Z)(θ ) =
∑
z∈ΩZ

p(z) log

(
p(z)

θz

)
,

where Z are the leaves and p(z) = ∑
x∈ΩX\Z

p(x, z) (and respectively for θz). This
metric requires marginalizing out all nonleaf variables, so it involves all variables in
the computation. Because of that, local errors in the estimates can compensate each
other, and tend to smooth the differences among methods.

6.2.1 Expectation-Maximization

For a complete data set (that is, Yi = X for all i), we have a concave function on θ :

Sθ =
n∑

j=1

∑
xj

∑
πj

N ′
xj ,πj log θxj |πj ,

where N ′
xj ,πj = Nxj ,πj + αxj ,πj , and the estimate θ̂xj |πj = N ′

xj ,πj /(
∑

xj
N ′

xj πj )
achieves highest MAP score. In the case of incomplete data, we have

Sθ =
N∑
i=1

log
∑

zi

n∏
j=1

θxij |πi
j
+ α(θ ), (6.2)

where x = (yi , zi) = (xi1, . . . , xin) represents a joint state for all the variables in
instance i. No closed-form solution is known, and one has to directly optimize
maxθ Sθ , subject to

∀j∀πj :
∑
xj

θxj |πj = 1, ∀j∀xj∀πj : θxj |πj ≥ 0. (6.3)

The most common approach to optimize this function is to use the EM method,
which completes the data with the expected counts for each missing variable given the
observed variables, that is, variablesZi

j are completed by “weights” θ̂ k
Zj |yi for each i, j

of a missing value, where θ̂ k represents the current estimate at iteration k. This idea
is equivalent to weighting the chance of having Zi

j = zj by the (current) distribution
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Fig. 6.1 Network BN1, used in the description of the algorithm and later in the experiments; nodes
affected by the missingness process have a grey background

of Zj given yi (this is known as the E-step, and requires computations over the BN

instantiated with P = θ̂ k to obtain the estimated probability of missing values).
Using these weights together with the actual counts from the data, the sufficient
statistics values Nk

xj ,πj are computed for every xj ,πj , and the next (updated) estimate

θ̂ k+1 is obtained as if the data were complete: θ̂ k+1
xj |πj = N ′k

xj ,πj /(
∑

xj
N ′k

xj πj
), where

N ′k
xj ,πj = Nk

xj ,πj + αxj ,πj (this is the M-step). As in the first step there is no current

estimate θ̂0, an initial guess has to be used. Using the score itself to test convergence,
this procedure achieves a saddle point of Eq. 6.1, which is usually a local optimum of
the problem, and may vary according to the initial guess θ̂0. Hence, it is common to
execute multiple runs of EM with distinct initial guesses and then to take the estimate
with highest score among them.

6.2.2 Nonlinear Solver

In order to understand whether the good/bad quality of estimates is not simply a
product of EM pitfalls to properly optimize Eq. 6.1, we build a systematic way to
translate the parameter estimation into a compact nonlinear optimization problem,
which is later (globally) solved with an optimization suite. The idea of directly
optimizing the score function is not new (see e.g., [17]). Nevertheless, we are not
aware of a method that translates the original score function into a simple formulation
using symbolic variable elimination.

The main issue regards the internal summations of Eq. (6.2), because there is
an exponential number of terms. We process them using a symbolic version of a
variable elimination procedure as in [3], but the elimination method is run with target
θyi . Instead of numerical computations, it generates the polynomial constraints that
precisely describe θyi in terms of (the still unknown) local conditional probability
values of the specification of the BN. Because these values are to be found, they
become the variables to be optimized in the polynomials. To clarify the method,
we take the example of Fig. 6.1, where E,U might be missing, while the others
are always observed. In this example, we need to write the constraints that describe
θai ,bi ,t i , because these are instances in the data with missing ui and ei . The score

function is: θ̂ = argmaxθmaxss, subject to Eqs. 6.3 and

s ≤ α(θ ) +
∑
i∈NM

log θai ,bi ,t i +
∑

i∈N¬M

log θai ,bi ,t i ,ei ,ui , (6.4)
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where NM , N¬M are index sets of the instances with and without missing values,
respectively. Note that an extra optimization variable s was introduced to make the
objective function become a constraint (for ease of expose). All θv|w (for each possible
argument v,w) and s are unknowns to be optimized by the solver. The summation in
Eq. 6.4 can be shortened by grouping together elements related to the same states,
and variables with no missing value can still be factorized out, obtaining,

s ≤α(θ ) +
∑
a

Na log θa +
∑
b

Nb log θb +
∑
i∈NM

log θti |ai ,bi

+
∑
a,u

N¬M
a,u log θu|a +

∑
b,e

N¬M
b,e log θe|b +

∑
e,t ,u

N¬M
e,t ,u log θt |e,u. (6.5)

This equation is automatically built by the symbolic variable elimination proce-
dure. As one can see, in this particular example the marginal distributions p(A) and
p(B) can be estimated by the standard closed-form solution, as they are roots of
the network and (in this example) their corresponding data are always complete.
However, this is not true for every term in the equation. For instance, the summa-
tion

∑
i∈NM log θti |ai ,bi , where the sum runs over the categories ai , bi , t i , comes in

Eq. 6.5 and involves elements that are not direct parts of the network specification. It
is exactly the job of the symbolic variable elimination to obtain the extra constraints

θti |ai ,e =
∑

u

θu|ai · θti |u,e , θti |ai ,bi =
∑
e

θe|bi · θti |ai ,e. (6.6)

These equations tie together the auxiliary optimization unknowns (such as θti |ai ,e
and θti |ai ,bi ) and the actual parameter estimates of interest, which are a part of the
specification of the network (such as θu|ai , θti |u,e, θe|bi ). We emphasize that these
derivations are not done by hand (with the user interaction), but instead they are
automatically processed by the symbolic variable elimination procedure. The left-
hand side of Eq. 6.6 comes from the symbolic (variable) elimination of u, while the
right-hand side comes from the symbolic elimination of e. Together, they create a
mathematical correspondence between θti |ai ,bi and actual network parameters. Af-
ter the symbolic preprocessing, it is up to the polynomial programming solver to
optimize the nonlinear problem. We have implemented an adapted version of the
reformulation-linearization technique [20], which is a global solver for the problem.
The idea of their method is to relax the optimization problem into a linear pro-
gramming that (somewhat tightly) outer-approximates the original problem. This is
integrated into a branch-and-bound search that cuts the parameter space into smaller
pieces until the relaxed problems are globally feasible. The reason for choosing such
method is the simplicity of the relaxations that are solved at each step.

To make a parallel, the EM algorithm would have to compute p(E,U |ai , bi , t i)
(with P = θ̂ k) for each instance i in the data set, in order to obtain the sufficient
statistics of iteration k. Each such computation is in fact a procedure of similar
complexity to the one we just did. The main difference between the methods is that
we do not work with numbers but with a symbolic version of the computation. This
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Fig. 6.2 Scatter plot of KL-divergences in the joint metric over data sets produced by BN1 (detailed
in the experiments section). Points above the diagonal show a worse estimate for the global solver,
compared to EM-MAP

might incur some overhead, however, we need to perform the symbolic computation
only once, while EM has to perform the (numerical) computations in every of its
iterations. The translation method that creates all the constraints has shown to be
slower than one but faster than just a few iterations of EM. As EM usually has
to run many iterations until convergence, the translation does not introduce great
complexity to the overall computation.

6.2.3 Global Solver vs. EM-MAP

We define as an EM-MAP, the approach which performs multiple runs of EM using
different initialization points, eventually selecting the estimate corresponding to the
highest MAP score.As explained in Sect. 6.2.2, we implemented a global solver based
on nonlinear programming. In our experiments, the global solver achieved slightly
higher MAP scores than EM-MAP, yielding however worse parameter estimates
than EM-MAP. This phenomenon can be seen from Fig. 6.2, where points above the
diagonal indicate better estimate for EM-MAP (using the joint metric as criterion)
and points below the diagonal indicate better estimate for the global solver. Similar
results were found in many experiments (not shown) comparing the global solver vs.
EM-MAP, which suggests that selecting the estimate with the highest MAP score
has drawbacks, being for instance subject to overfitting.
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6.2.4 Discriminating High-Score Estimates by Entropy

It is often the case that many distinct estimates have very similar score, and simply
selecting the one with the highest one might be an over-simplified decision. There
are many estimates that lie within a tiny distance from the global maximum and
can be as good as or better than the global one. In order to overcome the drawback
just described, we propose the following criterion: to pick the parameter estimate
with maximum entropy, among those which have a high MAP score. To identify the
estimates with high MAP score we adopt a criterion similar to the Bayes factor. When
discriminating among two competing models m1 and m2 on the basis of the data y,
the evidence in favor of m1 can be considered substantial only if the Bayes factor
P (y|m1)/P (y|m2) is at least some threshold, for instance 2 or 3 [9], where P (y|m)
represents the marginal likelihood given m: P (y|m) = ∫

P (y|m, θ )p(θ )dθ . Because
of the challenges that come with the missing data, we adopt a ratio of MAP scores (a
full Bayesian approach would integrate over the parameters, but such computation
would be intractable). We assume that if the ratio of the MAP scores among two
competing parameter estimates is less than 2, there is no substantial evidence for
preferring one over the other. In fact, we found our result to be robust by varying the
threshold on the Bayes factor around 2. To choose among the competing estimates
with high MAP score (whose MAP score is at least a half of the maximum MAP
score known for the data set under consideration), we use the maximum entropy, thus
choosing the least informative estimate given the available information [12]. This
approach differs from standard maximum entropy inferences previously reported
[11, 22] since we first check for high score estimates, and then maximize entropy
among them. It can be formally written as:

θ̂ = argmax
θ

n∑
j=1

∑
πj

∑
xj

θxj |πj log θxj |πj subject to Sθ + c ≥ s∗ , (6.7)

where the function to be maximized is the local entropy of a Bayesian network [16],
s∗ = maxθSθ is the highest MAP score for the problem (which we compute before
running this optimization), and c is the logarithm of the ratio of the MAP scores.

The optimization of Eq. 6.7 maximizes entropy, being however constrained to
ensure that the MAP score Sθ is high. In fact, we found our result to be robust on the
threshold c when letting it vary between 2 and 3.

If it is to use the previously mentioned global solver, the optimization is tackled in
two steps: first by globally optimizing the MAP score as already described, and then
by solving Eq. 6.7. The quality of the estimates obtained in this case dramatically
improves, as can be seen from Fig. 6.3. As the problem is NP-hard, we cannot expect
this solver to obtain a global optimal solution in all problem instances. Hence, we
adapted our idea to also work within the EM. In this case, we select, among the various
estimates generated by the multi-start EM, the maximum entropy estimate among
those which have a high MAP score. The high MAP score is checked by computing
the ratio of the MAP score with respect to the highest MAP score obtained in the
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Fig. 6.3 Scatter plot of KL-divergences in the joint metric over data sets produced by BN1 (detailed
in the experiments section). Points below the diagonal show a better estimate for the global solver
coupled with the entropy criterion compared to EM-MAP

different EM runs (thus, the computation of the highest score is only done in an
approximate fashion). We call the resulting approach EM-entropy. This differs from
the maximum entropy approach described before, because we focus only on the many
estimates generated by the EM runs. The great benefit is that the implementation
becomes straightforward: only a few changes on top of an already running EM
suffice. The drawback of EM-entropy is that the true maximum entropy estimate
might well be a nonoptimum estimate in terms of score. Thus, even if we increase
the number of EM runs, the empirical entropy is still confined to saddle points of the
score function, and the resulting estimate may differ. Nevertheless, the experiments
will later show that the EM-entropy also produces significantly better estimates than
MAP. An insight of the reason for which EM-entropy outperforms EM-MAP is given
by Fig. 6.4, which shows an experiment where higher MAP scores do not necessarily
imply a better estimate; instead, when comparing estimates that already have high
MAP score (the right-most points in Fig. 6.4), entropy is more discriminative than
the MAP score itself and has also a stronger correlation with the Kullback-Leibler
(KL) divergence.

In any BN with more than a couple of variables, the number of parameters to
estimate becomes quickly large and there is only a very small (or no) region of
the parameter space with estimates that achieve the very same global maximum
value. However, a feasibility region defined by a small percentage away from the
maximum score is enough to produce a whole region of estimates, indicating that
the region of high score estimates is almost (but not exactly) flat. This is expected in
a high-dimensional parameter space of BNs.
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Fig. 6.4 Relation between KL divergence, entropy and score; darker points represent lower KL
divergence between true and estimated joint distributions. The figure refers to one thousand EM
runs performed on an incomplete training set of 200 samples

6.3 Experiments

We perform an empirical study using different BN graphs, sample sizes N and
missingness process mp. The experiments were run using the open-source Bayesian
Network Toolbox (BNT) [18] for MATLAB.

A triple 〈BN graph,N ,mp〉 identifies a setting; for each setting, we perform
300 experiments, each defined as follows: (a) instantiation of the reference BN ;
(b) sampling of N complete instances from the reference BN; (c) application of
the missingness process; (d) execution of EM from 30 different initializations; (e)
execution of our solvers and estimation procedure using the different methods. We
evaluate the quality of the estimates through the joint metric and the reasoning met-
ric already introduced. We analyze the significance of the differences through the
nonparametric Friedman test with significance level of 1 %. By a posthoc procedure
applied on the statistic of the test, we generate a rank of methods for each setting
and each metric.

The first set of experiments regards the BN graph of Fig. 6.1 (named BN1), which
has been used in previous sections to illustrate the methods. Variables A (binary) and
B (ternary) have uniform distributions and are always observed; variables U , E, and
T are binary (assuming states true and false); the value of T is defined by the logical
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relation T = E ∧ U . Variable T is always observed, while U and E are affected by
the missingness process: in particular, both U and E are observed if and only if T is
true. Therefore, E and U are either both observed and positive, or nonobserved. The
missingness process is MAR [13, Sect. 20.1.2] because given T (always observed)
the probability ofU andE to be missing does not depend on their actual values; E and
U are missing in about 85 % of the sampled instances. We assume the conditional
probabilities of T to be known, thus focusing on the difficulty of estimating the
probabilities related to variables U and E. For both 〈BN1, 100, MAR〉 and 〈BN1,
200, MAR〉 and for both the joint and the reasoning metric, the Friedman test returned
the following rank: 1st—entropy, 2nd)EM-entropy, 3rd—EM-MAP. The boxplots in
the first row of Fig. 6.3 show that the entropy-based methods largely improve over
EM-MAP; interestingly, the simple EM-entropy already delivers much of the gain
achieved by the more sophisticated entropy method which relies on globally optimal
solvers.

In a second set of experiments we use the graphA → B → C, which we call BN2.
We consider two different configurations of number of states for each node, 5-3-5
(meaningA,C with 5 states andB with 3) and 8-4-8 (A,C with 8 states andB with 4).
In both cases, we makeB randomly missing in 85 % of the instances. Each experiment
now includes an additional step, namely the generation of random parameters of the
reference BN. From the viewpoint of how realistic is this experiment, one may see
BN2 as a subnetwork (possibly repeated many times) within a much larger BN. For
instance, if we see A as the joint parent set of B, and C as the joint children of B,
this experiment regards the very same challenges of estimating a node’s parameters
(in this case B) with missing values in a BN of irrespective number of variables.
This graph also captures the BN that could be used for clustering with EM [7].
Despite the simple graph of this BN, the estimation task requires to estimate from
incomplete samples a nonnegligible number of parameters, referring to nodes B and
C, respectively, 2 ·5+4 ·3 = 22 and 8 ·3+7 ·4 = 52, for each used configuration. To
these numbers, one should add the marginals of A, which are however inferred from
complete samples and whose estimate is thus identical for all methods. We adopted
N=300 for the 5-3-5 configuration and N = 500 for the 8-4-8 configuration. In
both settings and the two metrics, we obtained the same rank: 1st—entropy, 2nd—
EM-entropy, 3rd—EM-MAP. It is worth noting again that the simple EM-entropy
improves over EM-MAP. The boxplots are shown in the second row of Fig. 6.3.

To further compare the behavior of EM-entropy and EM-MAP, we run experi-
ments using well-known BNs: i) the Asia network (8 binary variables, 2 leaves) [15],
ii) the Alarm network (37 variables with 2 to 4 states each, and 8 leaves) [1] and iii)
BNs with randomly generated graphs with 20 variables. In each experiment, we ran-
domly regenerated the parameters of the reference networks. In the case of randomly
generated BN graphs, the experimental procedure also includes the generation of the
random graph, which is accomplished before drawing the parameters. Given two
variables Xi and Xj , an arc from Xi to Xj is randomly included with probability
1/3 if i < j (no arc is included if j ≥ i, which ensures that the graph is acyclic and
has no loops). Furthermore, the maximum number of parents of each variable is set
to 4 and the number of states per variable is randomly selected from 2 to 4. After
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Fig. 6.5 Boxplot of KL-divergences for the joint metric over 300 runs of the experiment with
BN1 and BN2 (the scale changes between top and bottom graphs)

Table 6.1 Relative medians of KL divergence, i.e., medians of entropy are presented (experiment-
wise) divided by the median of MAP. Smaller numbers indicate better performance; in particular,
values smaller than 1 indicate a smaller median than MAP

n = 100 n = 200

Net q = 30 % 60 % 30 % 60 %

Asia Joint 0.96 0.90 0.96 0.91

Asia Reasoning 0.92 0.86 0.99 0.89

Alarm Joint 0.93 0.88 0.93 0.89

Alarm Reasoning 0.95 0.94 0.97 0.96

Random20 Joint 0.94 0.89 0.92 0.89

Random20 Reasoning 0.92 0.88 0.97 0.92

that, the experiments follow the same workflow as before. We consider a MCAR1

process, which makes each single value missing with probability q; we use q equals
to 30 and 60 %; we moreover consider sample sizes N of 100 and 200.

In all these experiments, EM-entropy performs significantly better than EM-MAP,
with respect to both the joint and the reasoning metric. The quantitative difference of

1 MCAR (or missing completely at random) indicates that the probability of each value being
missing does not depend on the value itself, neither on the value of other variables.
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performance can be seen in Table 6.1, which reports the relative medians of metrics,
namely the medians of EM-entropy in a certain task, divided by the median of EM-
MAP in the same task. The improvement of the median over EM-MAP ranges from
1 to 14 %; most importantly, it is consistent, occurring in all settings. As a final
remark, the difference in performance increases when the estimation task is more
challenging, typically when the percentage of missing data increases.

6.4 Conclusions

The most common approach to estimate the parameters of a Bayesian network in
presence of incomplete data is to search for estimates with maximum posterior prob-
ability (MAP). MAP estimation is no harder than maximum likelihood estimation,
over which it should be preferred because it yields estimates that are more resilient
to overfitting. MAP estimation is much faster than full Bayesian estimation, but does
not offer the same advantages of the latter. Many local maxima are usually present
and several of them present high posterior probability. Selecting the one which max-
imizes it is not robust, since the difference among these competing estimates is
generally very thin.

We presented an approach to select the least informative estimate, namely the
maximum entropy one, among those which have a high posterior probability; our
empirical analyses indicate that this approach consistently improves the quality of
results. The approach has been implemented with a global solver developed by us
and within EM, obtaining in both cases a significant improvement when compared
to MAP. In particular, the EM-entropy method for inferring Bayesian networks can
be promptly implemented on top of any existing EM implementation for that task.
As a future work, we plan to apply these ideas in more general settings of param-
eter estimation problems from incomplete samples, not just restricted to Bayesian
networks.

Acknowledgements The research in this paper has been partially supported by the Swiss NSF
grant no. 200021_146606/1.
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Chapter 7
Bayesian Inference in Cumulative Distribution
Fields

Ricardo Silva

Abstract One approach for constructing copula functions is by multiplication. Given
that products of cumulative distribution functions (CDFs) are also CDFs, an adjust-
ment to this multiplication will result in a copula model, as discussed by Liebscher
(J Mult Analysis, 2008). Parameterizing models via products of CDFs has some
advantages, both from the copula perspective (e.g. it is well-defined for any dimen-
sionality) and from general multivariate analysis (e.g. it provides models where small
dimensional marginal distributions can be easily read-off from the parameters). Inde-
pendently, Huang and Frey (J Mach Learn Res, 2011) showed the connection between
certain sparse graphical models and products of CDFs, as well as message-passing
(dynamic programming) schemes for computing the likelihood function of such
models. Such schemes allow models to be estimated with likelihood-based methods.
We discuss and demonstrate MCMC approaches for estimating such models in a
Bayesian context, their application in copula modeling, and how message-passing
can be strongly simplified. Importantly, our view of message-passing opens up pos-
sibilities to scaling up such methods, given that even dynamic programming is not a
scalable solution for calculating likelihood functions in many models.

7.1 Introduction

Copula functions are cumulative distribution functions (CDFs) in the unit cube [0, 1]p

with uniform marginals. Copulas allow for the construction of multivariate distri-
butions with arbitrary marginals—a result directly related to the fact that F (X) is
uniformly distributed in [0, 1], if X is a continuous random variable with CDF F (.).
The space of models includes semiparametric models, where infinite-dimensional
objects are used to represent the univariate marginals of the joint distribution, while a
convenient parametric family provides a way to represent the dependence structure.
Copulas also facilitate the study of measures of dependence that are invariant with
respect to large classes of transformations of the variables, and the design of joint
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distributions where the degree of dependence among variables changes at extreme
values of the sample space. For a more detailed overview of copulas and its uses,
please refer to [6, 11, 19].

A multivariate copula can in theory be derived from any joint distribution with
continuous marginals: if F (X1, . . . ,Xp) is a joint CDF and Fi(.) is the respective
marginal CDF of Xi , then F (F−1

1 (.), . . . ,F−1
p (.)) is a copula. A well-known re-

sult from copula theory, Sklar’s theorem [19], provides the general relationship. In
practice, this requires being able to compute F−1

i (.), which in many cases is not a
tractable problem. Specialized constructions exist, particularly for recipes which use
small dimensional copulas as building blocks. See [2, 12] for examples.

In this chapter, we provide algorithms for performing Bayesian inference using
the product of copulas framework of Liebscher [14]. Constructing copulas by multi-
plying functions of small dimensional copulas is a conceptually simple construction,
and does not require the definition of a hierarchy among observed variables as in
[2] nor restricts the possible structure of the multiplication operation, as done by
[12] for the space of copula densities that must obey the combinatorial structure
of a tree. Our contribution is computational: since a product of copulas is also a
CDF, we need to be able to calculate the likelihood function if Bayesian inference
is to take place1. The structure of our contribution is as follows: (i) we simplify the
results of [10], by reducing them to standard message passing algorithms as found
in the literature of graphical models [3] (Sect. 7.3); (ii) for intractable likelihood
problems, an alternative latent variable representation for the likelihood function is
introduced, following in spirit the approach of [25] for solving doubly-intractable
Bayesian inference problems by auxiliary variable sampling (Sect. 7.4).

We start with Sect. 7.2, where we discuss with some more detail the product of
copulas representation. Some illustrative experiments are described in Sect.7.5. We
emphasize that our focus in this short chapter is computational, and we will not
provide detailed applications of such models. Some applications can be found in [9].

7.2 Cumulative Distribution Fields

Consider a set of random variables {U1, . . . ,Up}, each having a marginal density in
[0, 1]. Realizations of this distribution are represented as {u1, . . . , up}. Consider the
problem of defining a copula function for this set. The product of two or more CDFs is
a CDF, but the product of two or more copulas is in general not a copula—marginals
are not necessarily uniform after multiplication. In [14], different constructions based
on products of copulas are defined so that the final result is also a copula. In particular,

1 Pseudo-marginal approaches [1], which use estimates of the likelihood function, are discussed
briefly in the last section.
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for the rest of this chapter we will adopt the construction

C(u1, . . . , up) ≡
K∏
j=1

Cj (u
a1j
1 , . . . , u

apj
p ) (7.1)

where ai1 + · · · + aiK = 1, aij ≥ 0 for all 1 ≤ i ≤ p, 1 ≤ j ≤ K , with each
Cj (·, . . . , ·) being a copula function.

Independently, Huang and Frey [8, 9] derived a product of CDFs model from the
point of view of graphical models, where independence constraints arise due to the
absence of some arguments in the factors (corresponding in (7.1) to setting some
exponents aij to zero). Independence constraints from such models include those
arising from models of marginal independence [4, 5].
Example 7.1 We first adopt the graphical notation of [4] to describe the factor
structure of the cumulative distribution network (CDN) models of Huang and Frey,
where a bidirected edge Um ↔ Un is included if Um and Un appear together as
arguments to any factor in the joint CDF product representation. For instance, for the
model C(u1, u2, u3) ≡ C1(u1, u1/2

2 )C2(u1/2
2 , u3) we have the corresponding network

U1 ↔ U2 ↔ U3

First, we can verify this is a copula function by calculating the univariate marginals.
Marginalization is a computationally trivial operation in CDFs: since C(u1, u2, u3)
means the probabilityP (U1 ≤ u1,U2, ≤ u2,U3 ≤ u3), one can find the marginal CDF
of U1 by evaluating C(u1, ∞, ∞). One can then verify that P (Ui ≤ ui) = ui , i =
{1, 2, 3}, which is the CDF of an uniform random variable given that ui ∈ [0, 1]. One
can also verify thatU1 andU3 are marginally independent (by evaluatingC(u1, ∞, u3)
and checking it factorizes), but that in general U1 and U3 are not conditionally
independent given U2. �

See [4, 5, 9] for an in-depth discussion of the independence properties of such
models, and [14] for a discussion of the copula dependence properties. Such copula
models can also be defined conditionally. For a (non-Gaussian) multiple regression
model of outcome vector Y on covariate vector X, a possible parameterization is
to define the density of p(yi | x) and the joint copula C(U1, . . . ,Up) where Ui ≡
P (Yi ≤ yi | x). Copula parameters can also be functions of X.

Bayesian inference can be performed to jointly infer the posterior distribution of
marginal and copula parameters for a given dataset. For simplicity of exposition,
from now on we will assume our data is continuous and follows univariate marginal
distributions in the unit cube. We then proceed to infer posteriors over copula param-
eters only2. We will also assume that for regression models the copula parameters do
not depend on the covariate vector x. The terms “CDN” and “cumulative distribution

2 In practice, this could be achieved by fitting marginal models F̂i (·) separately, and transforming the
data using plug-in estimates as if they were the true marginals. This framework is not uncommon
in frequentist estimation of copulas for continuous data, popularized as “inference function for
margins”, IFM [11].
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fields” will be used interchangeably, with the former emphasizing the independence
properties that arise from the factorization of the CDF.

7.3 A Dynamic Programming Approach for Aiding Markov
Chain Monte Carlo (MCMC)

Given the parameter vector θ of a copula function and data D ≡ {U(1), . . . , U(N )},
we will describe Metropolis–Hastings approaches for generating samples from the
posterior distribution p(θ | D). The immediate difficulty here is calculating the
likelihood function, since (7.1) is a CDF function. Without further information about
the structure of a CDF, the computation of the corresponding probability density
function (PDF) has a cost that is exponential in the dimensionality p of the problem.
The idea of a CDN is to be able to provide a computationally efficient way of
performing this operation if the factorization of the CDF has a special structure.
Example 7.2 Consider a “chain-structured” copula function given by
C(u1, . . . , up) ≡ C1(u1, u1/2

2 )C2(u1/2
2 , u1/2

3 ) . . . Cp−1(u1/2
p−1, up). We can obtain

the density function c(u1, . . . , up) as

c(u1, . . . , up) =
[
∂2C1(u1, u1/2

2 )

∂u1∂u2

][
∂p−2C2(u1/2

2 , u1/2
3 ) . . . Cp−1(u1/2

p−1, up)

∂u3 . . . ∂up

]
+

[
∂C1(u1, u1/2

2 )

∂u1

][
∂p−1C2(u1/2

2 , u1/2
3 ) . . . Cp−1(u1/2

p−1, up)

∂u2 . . . ∂up

]

≡ ∂2C1(u1, u1/2
2 )

∂u1∂u2
× m2→1(u2) + ∂C1(u1, u1/2

2 )

∂u1
× m2→1(ū2)

Here, m2→1 ≡ [m2→1(u2) m2→1(ū2)]T is a two-dimensional vector corresponding to
the factors in the above derivation, known in the graphical modelling literature as a
message [3]. Due to the chain structure of the factorization, computing this vector is
a recursive procedure. For instance,

m2→1(u2) =
[
∂C2(u1/2

2 , u1/2
3 )

∂u3

][
∂p−3C3(u1/2

3 , u1/2
4 ) . . . Cp−1(u1/2

p−1, up)

∂u4 . . . ∂up

]
+

[
C2(u1/2

2 , u1/2
3 )
] [∂p−2C3(u1/2

3 , u1/2
4 ) . . . Cp−1(u1/2

p−1, up)

∂u3 . . . ∂up

]

≡ ∂C2(u1/2
2 , u1/2

3 )

∂u3
× m3→2(u3) + C2(u1/2

2 , u1/2
3 ) × m3→2(ū3)

implying that computing the two-dimensional vector m2→1 corresponds to a sum-
mation of two terms, once we have precomputed m3→2. This recurrence relationship
corresponds to a O(p) dynamic programming algorithm. �
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The idea illustrated by the above example generalizes to trees and junction trees.
The generalization is implemented as a message passing algorithm by [8, 10] named
the derivative-sum-product algorithm. Although [8] represents CDNs using factor
graphs [13], neither the usual independence model associate with factor graphs
holds in this case (instead the model is equivalent to other already existing nota-
tions, as the bidirected graphs used in [4]), nor the derivative-sum-product algorithm
corresponds to the standard sum-product algorithms used to perform marginaliza-
tion operations in factor graph models. Hence, as stated, the derivative-sum-product
algorithm requires new software, and new ways of understanding approximations
when the graph corresponding to the factorization has a high treewidth, making
junction tree inference intractable [3]. In particular, in the latter case Bayesian infer-
ence is doubly-intractable (following the terminology introduced by [17]) since the
likelihood function cannot be computed.

Neither the task of writing new software nor deriving new approximations are
easy, with the full junction tree algorithm of [10] being considerably complex3. In
the rest of this Section, we show a simple recipe on how to reduce the problem of
calculating the PDF of a CDN to the standard sum-product problem.

Let (7.1) be our model. Let z be a p-dimensional vector of integers, each zi ∈
{1, 2, ...,K}. Let Z be the pK space of all possible assigments of z. Finally, let I (.)
be the indicator function, where I (x) = 1 if x is a true statement, and zero otherwise.

The product rule states that

∂pC(u1, . . . , up)

∂u1 . . . ∂up
=
∑
z∈Z

K∏
j=1

φj (u, z) (7.2)

where

φj (u, z) ≡ ∂
∑p

i I (zi=j )Cj (u
a1j
1 , . . . , u

apj
p )∏

i s.t. zi=j ∂ui

To clarify, the set i s.t. zi = j are the indices of the set of variables z which are
assigned the value of j within the particular term in the summation.

From this, we interpret the function

pc(u, z) ≡
K∏
j=1

φj (u, z) (7.3)

as a joint density/mass function over the space [0, 1]p × {1, 2, . . . ,K}p for a set
of random variables U ∪ Z. This interpretation is warranted by the fact that pc(.)
is nonnegative and integrates to 1. For the structured case, where only a subset of

3 Please notice that [10] also presents a way of calculating the gradient of the likelihood function
within the message passing algorithm, and as such has also its own advantages for tasks such as
maximum likelihood estimation or gradient-based sampling. We do not cover gradient computation
in this chapter.
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Fig. 7.1 In a and b, a simple chain and tree models represented both as bidirected graphs. In c and
d, our corresponding extended factor graph representations with auxiliary variables Z

{U1, . . . ,Up} are arguments to any particular copula factor Cj (.), the corresponding
sampling space of zi is Zi ⊆ {1, 2, . . . ,K}, the indices of the factors which are
functions of Ui . This follows from the fact that for a variable y unrelated to x we
have ∂f (x)/∂y = 0, and as such for zi = j we have φj (u, z) = pc(u, z) = 0 if
Cj (.) does not vary with ui . From this, we also generalize the definition of Z to
Z1 × · · · × Zp.

The formulation (7.3) has direct implications to the simplification of the derivative-
sum-product algorithm. We can now cast (7.2) as the marginalization of (7.3) with
respect to Z, and use standard message-passing algorithms. The independence struc-
ture now follows the semantics of an undirected Markov network [3] rather than the
bidirected graphical model of [4, 5]. In Figure 7.1 we show some examples using
both representations, where the Markov network independence model is represented
as a factor graph. The likelihood function can then be computed by this formulation
of the problem using black-box message passing software for junction trees.

Now that we have the tools to compute the likelihood function, Bayesian inference
can be carried. Assume we have for each φj (.) a set of parameters {θj , aj }, of which
we want to compute the posterior distribution given some data D using a MCMC
method of choice. Notice that, after marginalizing Z and assuming the corresponding
graph is connected, all parameters are mutually dependent in the posterior since (7.2)
does not factorize in general. This mirrors the behaviour of MCMC algorithms for the
Gaussian model of marginal independence as described by [24]. Unlike the Gaussian
model, there are no hard constraints on the parameters across different factors. Unlike
the Gaussian model, however, factorizations with high treewidth cannot be tractably
treated.
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7.4 Auxiliary Variable Approaches for Bayesian Inference

For problems with intractable likelihoods, one possibility is to represent it as the
marginal of a latent variable model, and then sample jointly latent variables and
the parameters of interest. Such auxiliary variables may in some contexts help with
the mixing of MCMC algorithms, although we do not expect this to happen in our
context, where conditional distributions will prove to be quite complex. In [24], we
showed that even for small dimensional Gaussian models, the introduction of latent
variables makes mixing much worse. It may nevertheless be an idea that helps to
reduce the complexity of the likelihood calculation up to a practical point.

One straightforward exploration of the auxiliary variable approach is given by
(7.3): just include in our procedure the sampling of the discrete latent vector Z(d) for
each data point d. The data-augmented likelihood is tractable and, moreover, a Gibbs
sampler that samples each Zi conditioned on the remaining indicators only needs
to recompute the factors where variable Ui is present. The idea is straightforward
to implement, but practitioners should be warned that Gibbs sampling in discrete
graphical models also has mixing issues, sometime severely. A possibility to miti-
gate this problem is to “break” only a few of the factors by analytically summing over
some, but not all, of the auxiliary Z variables in a way that the resulting summation
is equivalent to dynamic programming in a tractable subgraph of the original graph.
Only a subset will be sampled. This can be done in a way analogous to the classic
cutset conditioning approach for inference in Markov random fields [20]. In effect,
any machinery used to sample from discrete Markov random fields can be imported
to the task of sampling Z. Since the method in Section 7.3 is basically the result of
marginalizing Z analytically, we describe the previous method as a “collapsed” sam-
pler, and the method where Z is sampled as a “discrete latent variable” formulation
of an auxiliary variable sampler.

This nomenclature also helps to distinguish those two methods for yet another third
approach. This third approach is inspired by an interpretation of the independence
structure of bidirected graph models as given via a directed acyclic graph (DAG)
model with latent variables. In particular, consider the following DAG G ′ constructed
from a bidirected graph G: (i) add all variables of G as observed variables to G ′;
(ii) for each clique Si in G, add at least on hidden variable to G ′ and make these
variables a parent of all variables in Si . If hidden variables assigned to different
cliques are independent, it follows that the independence constraints among the
observed variables of G and G ′ [21] are the same, as defined by standard graphical
separation criteria4. See Figure 7.2 for examples.

The same idea can be carried over to CDNs. Assume for now that each CDF factor
has a known representation given by

Pj (U1 ≤ u
a1j
1 , . . . ,Up ≤ u

apj
p ) =

∫ {
p∏
i=1

Pij (Ui ≤ u
aij
i | hj )

}
phj

(hj ) dhj

4 Known as Global Markov conditions, as described by e.g. [21].
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Fig. 7.2 The independence constraints implied by a among variablesU1, U2 andU3 are also implied
by b) and c according to standard graphical separation criteria (the Global Markov properties
described in, e.g. [21])

and that Pij is not included in the product if Ui is not in factor j . Assume further that
the joint distribution of H ≡ ∪jHj factorizes as

pH(h) ≡
K∏
j=1

phj
(hj )

It follows that the resulting PDF implied by the product of CDFs {Cj (.)} will have
a distribution Markov with respect to a (latent) DAG model over {U, H}, since

∂pP (U ≤ u | h)pH(h)

∂u1 . . . ∂up
= pH(h)

p∏
i=1

∂{∏j∈Par(i) Pij (Ui ≤ u
aij
i | hj )}

∂ui

≡ pH(h)
p∏
i=1

pi(ui | hPar(i))

(7.4)

where Par(i) are the “parents” of Ui : the subset of {1, 2, ...,K} corresponding to the
factors where Ui appears. The interpretation of pi(.) as a density function follows
from the fact that again

∏
j∈Par(i) Pij (Ui ≤ u

aij
i | hj ) is a product of CDFs and, hence,

a CDF itself.
MCMC inference can then be carried out over the joint parameter and H space.

Notice that even if all latent variables are marginally independent, conditioning on
U will create dependencies5, and as such mixing can also be problematic. However,
particularly for dense problems where the number of factors is considerably smaller
than the number of variables, sampling in the H space can potentially sound more
attractive than sampling in the alternative Z space.

One important special case are products of Archimedean copulas. An
Archimedean copula can be interpreted as the marginal of a latent variable model with
a single latent variable, and exchangeable over the observations. A detailed account

5 As a matter of fact, with one latent variable per factor, the resulting structure is a Markov network
where the edge Hj1 − Hj2 appears only if factors j1 and j2 have at least one common argument.



7 Bayesian Inference in Cumulative Distribution Fields 91

of Archimedean copulas is given by textbooks such as [11, 19], and their relation
to exchangeable latent variable models in [7, 15]. Here we provide as an example a
latent variable description of the Clayton copula, a popular copula in domains such
as finance for allowing stronger dependencies at the lower quantiles of the sample
space compared to the overall space.
Example 3 A set of random variables {U1, . . . ,Up} follows a Clayton distribution
with a scalar parameter θ when sampled according to the following generative model
[7, 15]:

1. Sample random variable H from a Gamma (1/θ , 1) distribution
2. Sample p independent and identically distributed (iid) variables {X1, . . . ,Xp}

from an uniform (0, 1)
3. Set Ui = (1 − log (Xi)/H )−1/θ �

This implies that, by using Clayton factors Cj ( · ), each associated with respective
parameter θj and (single) gamma-distributed latent variable Hj , we obtain

Pij (Ui ≤ u
aij
i | hj ) = exp (− hj (u

−θj aij
i − 1))

By multiplying over all parents of Ui and differentiating with respect to ui , we get:

pi(ui | hPar(i)) =
⎡
⎣ ∏

j∈Par(i)

exp (− hj (u
−θj aij
i − 1))

⎤
⎦
⎡
⎣ ∑

j∈Par(i)

θjaijhju
−θj aij−1
i

⎤
⎦

(7.5)

A MCMC method can then be used to sample jointly {{aij }, {θj }, {H(1), . . . ,
H(d)}} given observed data with a sample size of d. We do not consider estimating
the shape of the factorization (i.e. the respective graphical model structure learning
task) as done in [23].

7.5 Illustration

We discuss two examples to show the possibilities and difficulties of performing
MCMC inference in dense and sparse cumulative distribution fields. For simplicity
we treat the exponentiation parameters aij as constants by setting them to be uniform
for each variable (i.e. ifUi appears in k factors, aij = 1/k for all of the corresponding
factors). Also, we treat marginal parameters as known in this Bayesian inference
exercise by first fitting them separately and using the estimates to generate uniform
(0, 1) variables.

The first one is a simple example in financial time series, where we have 5 years
of daily data for 46 stocks from the S&P500 index, a total of 1257 data points. We fit
a simple first-order linear autoregression model for each log-return Yit of stock i at
time t , conditioned on all 46 stocks at time t − 1. Using the least-squares estimator,
we obtain the residuals and use the marginal empirical CDF to transform the residual
data into approximately uniform Ui variables.



92 R. Silva

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

10
Financial data experiment

MCMC iterations

P
ar

am
et

er
s

Fig. 7.3 MCMC traces of the 10 parameters for the 46 log-returns data. Convergence is slow,
although each step is relatively cheap

The stocks are partitioned into 4 clusters according to the main category of busi-
ness of the respective companies, with cluster sizes varying from 6 to 15. We define
a CDF field using 10 factors: one for each cluster, and one for each pair of clusters
using a Clayton copula for each factor. This is not a sparse model6 in terms of inde-
pendences among the observed {U1, . . . ,U46}. However, in the corresponding latent
DAG model there are only 10 latent variables with each observation Ui having only
two parents.

We used a Metropolis–Hastings method where each θi is sampled in turn con-
ditioning on all other parameters using slice sampling [18]. Latent variables are
sampled one by one using a simple random walk proposal. A gamma (2, 2) prior
is assigned to each copula parameter independently. Figure 7.3 illustrates the trace
obtained by initializing all parameters to 1. Although each iteration is relatively
cheap, convergence is substantially slow, suggesting that latent variables and param-
eters have a strong dependence in the posterior. As is, the approach does not look
particularly practical. Better proposals than random walks are necessary, with slice
sampling each latent variable being far too expensive and not really addressing the
posterior dependence between latent variables and parameters.

6 Even though it is still very restricted, since Clayton copulas have single parameters. A plot of the
residuals strongly suggests that a t-copula would be a more appropriate choice, but our goal here is
just to illustrate the algorithm.
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Our second experiment is a simple illustration of the proposed methods for a
sparse model. Sparse models can be particularly useful to model residual dependence
structure, as in the structural equation examples of [23]. Here we use synthetic data
on a simple chainU1 ↔ · · · ↔ U5 using all three approaches: one where we collapse
the latent variables and perform MCMC moves using only the observed likelihood
calculated by dynamic programming; another where we sample the four continuous
latent variables explicitly (the “continuous latent” approach); and the third, where
we simply treat our differential indicators as discrete latent variables (the “discrete
latent” approach). Clayton copulas with gamma (2, 2) priors were again used, and
exponents aij were once again fixed uniformly. As before, slice sampling was used
for the parameters, but not for the continuous latent variables.

Figure 7.4 summarizes the result of a synthetic study with a random choice of
parameter values and a chain of five variables (a total of 4 parameters). For the col-
lapsed and discrete latent methods, we ran the chain for 1000 iterations, while we ran
the continuous latent method for 10,000 iterations with no sign of convergence. The
continuous latent method had a computational cost of about three to four times less
than the other two methods. Surprisingly, the collapsed and discrete latent methods
terminated in roughly the same amount of wallclock time, but in general we expect
the collapsed sampler to be considerably more expensive. The effective sample size
for the collapsed method along the four parameters was (1000, 891, 1000, 903) and
for the discrete latent case we obtained (243, 151, 201, 359).

7.6 Discussion

Cumulative distribution fields provide another construction for copula functions.
They are particularly suitable for sparse models where many marginal independences
are expected, or for conditional models (as in [23]) where residual association after
accounting for major factors is again sparsely located. We did not, however, consider
the problem of identifying which sparse structures should be used, and focused
instead on computing the posterior distribution of the parameters for a fixed structure.

The failure of the continuous latent representation as auxiliary variables in a
MCMC sampler was unexpected. We conjecture that more sophisticated proposals
than our plain random walk proposals should make a substantial difference. However,
the main advantage of the continuous latent representation is for problems with large
factors and a small number of factors compared to the number of variables. In such a
situation perhaps the product of CDFs formulation should not be used anyway, and
practitioners should resort to it for sparse problems. In this case, both the collapsed
and the discrete latent representations seem to offer a considerable advantage over
models with explicit latent variable representations (at least computationally), a result
that was already observed for a similar class of independence models in the more
specific case of Gaussian distributions [24].

An approach not explored here was the pseudo-marginal method [1], were an in
place of the intractable likelihood function we use a positive unbiased estimator. In
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Fig. 7.4 Sampling performance for the synthetic case study using the three different methods

principle, the latent variable formulations allow for that. However, in a preliminary
experiment where we used the very naive uniform distribution as an importance
distribution for the discrete variables Z, in a 10-dimensional chain problem with 100
data points, the method failed spectacularly. That is, the chain hardly ever moved.
Far more sophisticated importance distributions will be necessary here.

Expectation-propagation (EP) [16] approaches can in principle be developed as
alternatives. A particular interesting feature of this problem is that marginal CDFs
can be read off easily, and as such energy functions for generalized EP can be derived
in terms of actual marginals of the model.

For problems with discrete variables, the approach can be used almost as is by
introducing another set of latent variables, similarly to what is done in probit models.
In the case where dynamic programming by itself is possible, a modification of (7.1)
using differences instead of differentiation leads to a similar discrete latent variable
formulation (see the Appendix of [22]) without the need of any further set of latent
variables. However, the corresponding function is not a joint distribution over Z ∪ U
anymore, since differences can generate negative numbers.

Some characterization of the representational power of products of copulas was
provided by [14], but more work can be done and we also conjecture that the point
of view provided by the continuous latent variable representation described here
can aid in understanding the constraints entailed by the cumulative distribution field
construction.
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Chapter 8
MCMC-Driven Adaptive Multiple Importance
Sampling

Luca Martino, Víctor Elvira, David Luengo and Jukka Corander

Abstract Monte Carlo (MC) methods are widely used for statistical inference and
stochastic optimization. A well-known class of MC methods is composed of impor-
tance sampling (IS) and its adaptive extensions (such as adaptive multiple IS and
population MC). In this work, we introduce an iterated batch importance sampler
using a population of proposal densities, which are adapted according to a Markov
Chain Monte Carlo (MCMC) technique over the population of location parame-
ters. The novel algorithm provides a global estimation of the variables of interest
iteratively, using all the generated samples weighted according to the so-called de-
terministic mixture scheme. Compared with a traditional multiple IS scheme with
the same number of samples, the performance is substantially improved at the ex-
pense of a slight increase in the computational cost due to the additional MCMC
steps. Moreover, the dependence on the choice of the cloud of proposals is sensibly
reduced, since the proposal density in the MCMC method can be adapted in order to
optimize the performance. Numerical results show the advantages of the proposed
sampling scheme in terms of mean absolute error.

8.1 Introduction

Monte Carlo methods are widely used in different fields [4, 15]. Importance sampling
(IS) [9, 12] is a well-known Monte Carlo (MC) methodology to compute efficiently
integrals involving a complicated multidimensional target probability density func-
tion (pdf), π (x) with x ∈ R

n. Moreover, it is often used in order to calculate the
normalizing constant of π (x) (also called partition function) [12], useful in several
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applications [13], like model selection. The IS technique draws samples from a sim-
ple proposal pdf, q( x), assigning weights to them according to the ratio between the
target and the proposal, i.e., w(x) = π (x)

q(x) . However, although the validity of this ap-
proach is guaranteed under mild assumptions, the variance of the estimator depends
critically on the discrepancy between the shape of the proposal and the target. For
this reason, Markov Chain Monte Carlo (MCMC) methods are usually preferred for
large dimensional applications [1, 5, 7, 10]. Nevertheless, MCMC algorithms also
present several issues; the diagnostic of the convergence is often difficult, and it is
not straightforward to estimate the partition function given the generated samples.

In order to solve these issues, several works are devoted to the design of adaptive
IS (AIS) schemes [12], where the proposal density is updated by learning from all
the previously generated samples. The population Monte Carlo (PMC) [2] and the
adaptive multiple importance sampling (AMIS) [3] methods are two general schemes
that combine the proposal adaptation idea with the cooperative use of a population of
different proposal pdfs. In PMC, a cloud of particles is propagated and then replicated
or “killed” by resampling steps. In AMIS, a single proposal is updated online by
taking into account the information provided by the previous weighted samples, as
in a standard adaptive IS. Since the proposal is changed, this results in a sequence of
proposals.All the samples generated by this sequence of pdfs are adequately weighted
and used to build a global estimator. Moreover, the single proposal, adapted online,
can be a mixture of proposals itself, but the adaptation procedure becomes much
more complicated in this case, involving clustering techniques for instance.

This work is an attempt to mix together the IS and MCMC approaches, while
preserving the advantages of both. Thus, we introduce a novel population scheme,
Markov adaptive multiple importance sampling (MAMIS), which has features and
behavior in between AMIS and PMC. MAMIS draws samples from different pro-
posal densities at each iteration, weighting these samples according to the so-called
deterministic mixture approach proposed in [11, 14] for a fixed (i.e., nonadaptive)
setting. At each iteration, the MAMIS algorithm computes iteratively a global IS
estimate, taking into account all the generated samples up to that point (similarly to
AMIS). The main difference with respect to the existingAMIS and PMC schemes lies
in the more streamlined adaptation procedure of MAMIS. MAMIS starts with a cloud
of N proposals initialized randomly or according to the prior information available.
The algorithm is then divided into groups of Ta iterations (so-called epochs), where
the proposals are kept fixed and Ta samples are drawn from each one. At the end of
every epoch, T iterations of an MCMC technique are applied to update the location
parameters of the proposal pdfs. In this work, we use the Sample Metropolis-Hastings
algorithm (SMH) [8, Chap. 6] to improve the positions of the proposals. Moreover,
unlike PMC, the novel technique does not require resampling steps to prevent the de-
generacy of the mixture, thus avoiding the loss of diversity in the population, which
is a common problem for sampling-importance-resampling type algorithms.

The new algorithm increases the robustness with respect to the choice of the
proposal parameters, and the adaptation is also simpler than in other adaptive IS
methods. One reason for this is that the scale parameters of the proposals are not
adapted; as an efficient strategy, we suggest using different (fixed) scale parameters
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for the N pdfs in the IS scheme, and adapting the variance of the proposal used in the
SMH algorithm. However, even if the proposal of SMH is not properly chosen, after
several iterations the cloud of the location parameters will be distributed according
to the target distribution, due to the application of a (valid) MCMC technique. In this
sense, MAMIS is also easier to analyze from a theoretical point of view than AMIS
(see discussion in [3]).

8.2 Problem Statement

In many applications, we are interested in inferring a variable of interest given a set of
observations or measurements. Let us consider the variable of interest, x ∈ X ⊆ R

n,
and let y ∈ R

d be the observed data. The posterior pdf is then

p(x|y) = �(y|x)g(x)

Z(y)
∝ �(y|x)g(x), (8.1)

where �(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the model
evidence or partition function (useful in model selection).

In general, Z(y) is unknown, so we consider the corresponding (usually
unnormalized) target pdf,

π (x) = �(y|x)g(x). (8.2)

Our goal is computing efficiently some moment of x, i.e., an integral measure with
respect to the target pdf,

I = 1

Z

∫
X
f (x)π (x)dx, (8.3)

where

Z =
∫

X
π (x)dx. (8.4)

Since both π (x) and Z depend on the observations y, the notation π (x|y) and Z(y)
would be more precise. However, as the observations are fixed, in the sequel we
remove the dependence on y to simplify the notation.

8.3 Markov Adaptive Multiple Importance Sampling (MAMIS)

The MAMIS algorithm estimates Z and I by drawing samples from a population of
proposals whose location parameters are adapted following an MCMC technique.
For the sake of simplicity, we only consider a population of Gaussian proposals with
fixed covariance matrices and we adapt only the means. However, the underlying
idea is more general; many kinds of proposals could be used, including mixtures of
different types of proposals.
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8.3.1 Overview of the MAMIS Algorithm

1. Initialization: Set t = 1, m = 0, Î0 = 0 and L0 = 0. Choose N normalized
Gaussian proposal pdfs,

q
(0)
i (x) = N (x; μ(0)

i , Ci), i = 1, . . . ,N ,

with mean vectors μ
(0)
i and covariance matrices Ci (i = 1, . . . ,N ).

Let T be the total number of iterations. Select the number of iterations per epoch,
Ta ≥ 1, and the total number of iterations, T = MTa , with M ≤ T ∈ Z

+
denoting the number of adaptation epochs.

2. IS steps:
a. Draw zi ∼ q

(m)
i (x) for i = 1, . . . ,N .

b. Compute the importance weights,

wi = π (zi)
1
N

∑N
j=1 q

(m)
j (zi)

, i = 1, . . . ,N , (8.5)

and normalize them,

w̄i = wi

S
, (8.6)

where S = ∑N
j=1 wj .

3. Iterative IS estimation: Calculate the “current” estimate of I ,

Ĵt =
N∑
i=1

w̄if (zi), (8.7)

and update the global estimate, using the recursive formula

Ît = 1

Lt−1 + S

(
Lt−1Ît−1 + SĴt

)
, (8.8)

where Lt = Lt−1 + S.
Note that Ẑt = 1

Nt
Lt .

4. MCMC adaptation: If t = kTa (k = 1, 2, . . . ,M), then perform T iterations of
an MCMC technique over the current population of means,

P (m) = {μ(m)
1 , ..., μ(m)

N },
to obtain a new population,

P (m+1) = {μ(m+1)
1 , ..., μ(m+1)

N },

and set q(m+1)
i = N (x; μ(m+1)

i , Ci).
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5. Stopping rule: If t < T , set t = t + 1 and repeat from step 2. Otherwise, end.
This is the simplest possibility, but more complex rules can be easily designed.

6. Outputs: Return the estimate of the desired integral,

ÎT ≈ I = 1

Z

∫
X
f (x)π (x)dx, (8.9)

as well as the normalizing constant of the target pdf,

ẐT ≈ Z =
∫

X
π (x)dx. (8.10)

The final locations of the Gaussians (i.e., their means, μ
(M)
i for i = 1, . . . ,N )

could also be used to estimate the locations of the modes of π (x) (e.g., to perform
maximum a posteriori estimation).

8.3.2 Basic Features and Important Remarks

Note that the MAMIS algorithm is basically an iterated batch importance sampler
where, at some transition points (i.e., t = mTa), the cloud of means are moved
following an MCMC technique. Let us also remark that the algorithm works on
two different time scales, t and m. At the transition iterations between two epochs
(t = mTa with m = 1, . . . ,M), the parameters of the proposals, μ(m)

i for 1 ≤ i ≤ N ,
are updated. Moreover, note that:

1. All the different proposal pdfs should be normalized to provide a correct IS
estimation.

2. At each iteration (t = 1, . . . , T = MTa), MAMIS computes the “current” esti-
mate of the desired integral, Ĵt , and updates recursively the global estimates of
the desired integral and the normalizing constant, Ît and Ẑt respectively.

3. The “current” estimate Ĵt is obtained using the deterministic mixture approach
proposed in [11, 14] for a fixed (i.e., nonadaptive) setting. This strategy yields
more robust IS estimators.

4. The global estimators, ÎT and ẐT , are iteratively obtained by an importance
sampling approach using NT total samples drawn (in general) from NT different
proposals: N initial proposals chosen by the user, andN (T −1) proposals adapted
by the algorithm.

5. Different stopping rules can be applied to ensure that the global estimators produce
the desired degree of accuracy, in terms of Monte Carlo variability. For instance,
one possibility is taking into account the variation of the estimate over time. In
this case, the algorithm could be stopped at any iteration t∗ < T .
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Note that in the previous description the index t could be removed. Indeed, within an
epoch the proposals do not change, so we could draw Ta i.i.d. samples directly from
each proposal and then adapt the proposals using these samples. However, we prefer
to maintain the previous description to emphasize the fact that the accuracy of the
estimator can be tested at each iteration t , and that the algorithm could be stopped
at any time.

8.4 Adaptation via MCMC

In this work, we propose to adapt the location parameters of the proposal pdfs apply-
ing a suitable MCMC technique over the cloud of means μi . A possible technique
is the SMH algorithm [8, Chap. 6]; at the transition iterations between two epochs
(t = mTa with m = 1, . . . ,M), we apply T iterations of the SMH algorithm, in
order to improve the positions of the means and, as a consequence, to perform the
adaptation in the MAMIS algorithm. Consider a generalized target pdf, extended in
this way,

πg(μ1, . . . , μN ) ∝
N∏
i=1

π (μi),

where each marginal π (μi), i = 1, ...,N , coincides with the true target pdf (μi ∈
X ⊆ R

n). At the τ -iteration, we consider the population of samples

Pτ = {μ1,τ , ..., μN ,τ }.
At each iteration, the underlying idea of SMH is to replace one “bad” sample in
the population with a better one, according to certain suitable probabilities. The
algorithm is designed so that, after a burn-in period τb, the elements in Pτ ′ (τ ′ > τb)
are distributed according to πg(μ1,τ ′ , . . . , μN ,τ ′ ), i.e., μi,τ ′ are i.i.d. samples from
π (x). For τ = 1, ..., T , the SMH algorithm consists of the following steps:

1. Draw μ0,τ ∼ ϕ(μ), where ϕ is another proposal density, chosen by the user,
which could indeed be selected or adapted using the information obtained in the
previous steps of MAMIS.

2. Choose a “bad” sample μk,τ from the population (i.e., k ∈ {1, ...,N}), according

to a probability proportional to ϕ(μk,τ )
π (μk,τ ) , which corresponds to the inverse of the

importance sampling weights.
3. Accept the new population

Pτ+1 = {μ1,τ+1 = μ1,τ , ..., μk,τ+1 = μ0,τ , ...., μN ,τ+1 = μN ,τ },
with probability

α(μ1,τ , ..., μN ,τ , μ0,τ ) =
∑N

i=1
ϕ(μi,τ )
π (μi,τ )∑N

i=0
ϕ(μi,τ )
π (μi,τ ) − min

0≤i≤N

ϕ(μi,τ )
π (μi,τ )

. (8.11)
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Otherwise, set Pτ+1 = Pτ .
4. If τ < T , set τ = τ + 1 and repeat from step 1.

Observe that the difference between Pτ and Pτ+1 is at most one sample. Note also
that 0 ≤ α(μ1,τ , ..., μN ,τ , μ0,τ ) ≤ 1. Indeed, α depends on the proposed new point
μ0,τ and the entire population μi,τ (i = 1, . . . ,N ), but does not care about which
mean μk,τ has been selected for a possible replacement.

An advantage of the SMH technique is that, when the chain has converged, the
N samples in the population are independently distributed according to the target.
The ergodicity can be proved using the detailed balance condition and considering
the extended target pdf [8]. Moreover, for N = 1, it is possible to show that SMH
becomes the standard MH method with an independent proposal pdf.

It is important to note that the positions of the Gaussians will hardly ever change
when the parameters of the SMH proposal are not properly chosen, since the new
points will never be accepted. Thus, the performance is never worsened with respect
to the standard (fixed) multiple IS framework. Moreover, no diversity in the cloud
is lost. In the worst case, we simply waste computational power by performing the
MCMC operations. Another interesting point is that only one new importance weight
needs to be evaluated at each iteration, since the rest of weights have already been
computed in the previous steps (with the exception of the initial iteration, where all the
weights need to be computed). Finally, note that the parameters of the proposal ϕ(μ)
for the SMH algorithm could be also adapted using one of the many strategies already
proposed in the literature [6, 10]. Moreover, in our framework, the adaptation can be
improved by using the estimators Ît built by MAMIS to update the parameters of the
proposal (not just using on-line the samples generated by the MCMC technique).

8.5 Numerical Simulations

8.5.1 Mixture of Gaussians

First of all, we consider a bivariate multimodal target pdf, which is itself a mixture
of 5 Gaussians, i.e.,

π (x) = 1

5

5∑
i=1

N (x; νi , Σ i), x ∈ R
2, (8.12)

with means ν1 = [−10, −10]&, ν2 = [0, 16]&, ν3 = [13, 8]&, ν4 = [−9, 7]&,
ν5 = [14, −14]&, and covariance matrices Σ1 = [2, 0.6; 0.6, 1], Σ2 =
[2, −0.4; −0.4, 2], Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5], and Σ5 =
[2, −0.1; −0.1, 2].

MAMIS Algorithm We apply MAMIS with N = 100 Gaussian proposals to es-
timate the mean (true value [1.6, 1.4]&) and normalizing constant (true value 1) of
the target. We choose deliberately a “bad” initialization of the initial means to test
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Fig. 8.1 a Contour plot of the targetπ (x), the initial μ(0)
i (green squares) and the final μ(T )

i (magenta
circles) locations of the means of the proposals qi for a single run of MAMIS withλ = 10 (N = 100,
T = 2000). b Evolution of the estimation of the mean (first comp.) as a function of t = 0, . . . , 500
in one run of MAMIS (with λ = 10 and σ = 2). The dashed line depicts the true value (1.6)

the robustness of the algorithm and its ability to improve the corresponding static
(i.e., nonadaptive) IS approach. Specifically, the initial means are selected uniformly
within a square, i.e., μ

(0)
i ∼ U([−4, 4] × [−4, 4]) for i = 1, . . . ,N . A single re-

alization of μ
(0)
i is depicted by the squares in Fig. 8.1a. We recall that we consider

proposals

q
(m)
i (x) = N (x; μ(m)

i , Ci), i = 1, . . . ,N , m = 0, . . . ,M. (8.13)

In this example, we use identical isotropic covariance matrices, Ci = σ 2I2 with
I2 denoting the 2 × 2 identity matrix, for every proposal. We test different values
of σ ∈ {0.5, 1, 2, 10, 70}, to gauge the performance of MAMIS. Moreover, we also
consider a Gaussian pdf

ϕ(x) = N (x; [0, 0]&, Λ), (8.14)

with Λ = λ2I2 and λ ∈ {5, 10, 70}, as the proposal for the SMH algorithm. We set
T = 2000 and Ta ∈ {2, 20, 100}, i.e., M = T

Ta
∈ {20, 100, 1000}.

We also consider M = 1 (i.e., T = Ta), which corresponds to a standard IS
technique with multiple proposals and no adaptation. To maintain a constant com-
putational cost in each simulation, we fix T = Ta = T

M
(the number of iterations of

SMH, at the end of each epoch), i.e., the total number of iterations of SMH in the
entire MAMIS method is alway MT = T .

All the results are averaged over 3000 independent experiments. Table 8.1 shows
the mean absolute error (MAE) in the estimation of the first component of the mean;
MAMIS always outperforms the nonadaptive standard IS procedure, with the only
exception of σ = 10, where MAMIS has a negligibly larger error. The MAE in
the estimation of the normalizing constant is shown in Table 8.2; in this case, the
improvement provided by MAMIS is even more evident. In both cases, the best
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Table 8.1 Mean absolute error (MAE) in the estimation of the mean (first component) of the mixture
of Gaussians target, using the MAMIS algorithm (N = 100)

Std of
ϕ(μ)

Epochs Std of qi (x)

σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70

Standard
multiple
IS

M = 1 (Ta = T ) 5.3566 6.8373 8.3148 0.3926 0.0886 0.3376

M = 20 (Ta = 100) 4.1945 2.4787 0.9055 0.2356 0.1051 0.3349

λ = 5 M = 100 (Ta = 20) 4.2037 2.5032 0.8844 0.2372 0.1043 0.3380

M = 1000 (Ta = 2) 4.2532 2.4526 0.8429 0.2315 0.1052 0.3376

M = 20 (Ta = 100) 0.5775 0.1767 0.1666 0.1052 0.0924 0.3502

λ = 10 M = 100 (Ta = 20) 0.5839 0.2370 0.1245 0.0751 0.0917 0.3367

M = 1000 (Ta = 2) 0.5755 0.2224 0.1062 0.0698 0.0932 0.3371

M = 20 (Ta = 100) 3.1817 1.6067 0.6966 0.1441 0.0926 0.3384

λ = 70 M = 100 (Ta = 20) 3.0451 1.5679 0.6577 0.1372 0.0917 0.3354

M = 1000 (Ta = 2) 3.1425 1.5550 0.6266 0.1303 0.0892 0.3381

Table 8.2 Mean absolute error (MAE) in the estimation of the normalizing constant of the mixture
of Gaussians target, using the MAMIS algorithm (N = 100)

Std of
ϕ(μ)

Epochs Std of qi (x)

σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70

Standard
multiple
IS

M = 1 (Ta = T ) 266637.6 345.3 3.2584 0.0322 0.0084 0.0322

M = 20 (Ta = 100) 0.8426 0.3166 0.0967 0.0193 0.0090 0.0321

λ = 5 M = 100 (Ta = 20) 0.8027 0.2827 0.0801 0.0191 0.0091 0.0313

M = 1000 (Ta = 2) 0.7825 0.2756 0.0740 0.0187 0.0087 0.0324

M = 20 (Ta = 100) 0.1252 0.0609 0.0453 0.0089 0.0086 0.0324

λ = 10 M = 100 (Ta = 20) 0.1005 0.0360 0.0163 0.0067 0.0083 0.0321

M = 1000 (Ta = 2) 0.0965 0.0309 0.0114 0.0063 0.0082 0.0321

M = 20 (Ta = 100) 1.9450 0.4147 0.1116 0.0130 0.0082 0.0321

λ = 70 M = 100 (Ta = 20) 1.8540 0.3881 0.0958 0.0120 0.0083 0.0320

M = 1000 (Ta = 2) 1.7933 0.3802 0.0899 0.0120 0.0083 0.0316
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results for each column are shown in bold-face. Note also that the MAE in both cases
seems to be almost independent from the value of M (i.e., the number of epochs).

Figure 8.1a also depicts the final locations of the means, μ
(T )
i , in one run (with

λ = 10 and M = 20 epochs) using circles. Figure 8.1b illustrates the estimation of
the mean (first component) as function of the iterations t , in a specific run of MAMIS
(with λ = 10 and σ = 2). We also compare the performance of MAMIS with a PMC
scheme described below.

Population Monte Carlo Scheme In this example, we also apply the mixture PMC
scheme proposed in [2], with the same initialization used above for MAMIS. More
precisely, we consider a population of samples

{x(t)
1 , . . . , x(t)

N },
at the t-th iteration, and propagate them using random walks

x(t+1)
i = x(t)

i + εt , i = 1, . . . ,N ,

where εt ∼ N (x; [0, 0]&, Φ), with Φ = φI2 and φ ∈ {2, 5, 10, 20, 70}.
At each iteration, the resampling step is performed according to the normalized

importance weights. The cumulative mean of the cloud {x(t)
i }N ,T

i=1,t=1, as well as the
cumulative estimate of the normalizing constant, are computed until T = 2000. We
have not been able to apply the adaptive strategy suggested in [2] in order to select
suitable scale parameters, within a population of prechosen values, since it has been
difficult to select these values adequately. More specifically, we have not been able
to find a set of parameters for this approach that provides reasonable results. It is
important to note that the parameter φ in PMC plays the role of both λ and σ in
MAMIS: it is at the same time a perturbation parameter (like λ in MAMIS) and an
IS parameter (like σ in MAMIS).

The corresponding results for the PMC scheme are shown in Table 8.3 for different
values of N . We can observe that MAMIS obtains, in general, better results and
appears more robust with respect to the variations of the parameters. Indeed, to
attain the same performance as MAMIS, PMC needs more computational effort.1

1 A fair comparison of the computational cost of MAMIS and PMC deserves a further discussion.
On the one hand, in MAMIS we use NT samples for the estimation and (setting T = Ta , as in this
example) we also perform T iterations of the SMH technique, which requires drawing T proposed
samples, T samples from multinomial pdfs, and T uniform random variables (RVs; thus, we generate
3T additional RVs with respect to a simple iterative IS scheme). Moreover, the target needs to be
evaluated at T new points. On the other hand, in PMC we use NT samples in the estimation and we
also need to draw NT samples from multinomial densities (resampling steps), thus requiring NT
additional RVs with respect to a simple iterative IS scheme.
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Table 8.3 Mean absolute
error (MAE) in the estimation
of the mean of the mixture of
Gaussians target (first
component) and the
normalizing constant, using
the PMC algorithm [2] (with
T = 2000)

Standard PMC-MAE (mean, first comp.)

N φ = 2 φ = 5 φ = 10 φ = 20 φ = 70

100 6.2113 1.3365 0.1891 0.6359 1.5374

500 5.4231 1.9937 0.0921 0.1437 0.9275

2000 4.9097 1.9079 0.0600 0.0433 0.3211

Standard PMC-MAE (normalizing const.)

N φ = 2 φ = 5 φ = 10 φ = 20 φ = 70

100 3.7526 0.6034 0.0308 0.0129 0.0320

500 3.5593 0.4624 0.0137 0.0057 0.0145

2000 3.3276 0.3943 0.0069 0.0028 0.0071

8.5.2 Banana-Shaped Target Density

We also test MAMIS with another kind of target pdf, the well-known “banana-
shaped” benchmark distribution [6], which can be expressed mathematically as

π (x1, x2) ∝ exp

(
− 1

2η2
1

(4 − Bx1 − x2
2 )2 − x2

1

2η2
2

− x2
2

2η2
3

)
,

with B = 10, η1 = 4, η2 = 5, and η3 = 5.
We consider again Gaussian proposals, q

(m)
i (x) = N (x; μ(m)

i , σ 2I2) with x =
[x1, x2]&, i = 1, . . . ,N and m = 1, . . . ,M , for the multiple IS and a Gaussian
proposal, ϕ(x) = N (x; [0, 0]&, λ2I2), for the SMH algorithm. We choose again
deliberately an “inadequate” initialization, μ(0)

i ∼ U([ − 6, −5] × [ − 6, −5]). We
use different scale parameters, σ ∈ {0.1, 0.5, 1, 5, 10} and λ ∈ {5, 70}, and also set
N = 100, T = 2000 and Ta = 10, i.e., M = T

Ta
= 200. In order to maintain the

computational cost constant in each simulation, we set T = Ta = T
M

. We again
consider M = 1 (i.e., T = Ta), which corresponds to a standard IS technique with
multiple proposals and no adaptation.

Table 8.4 shows the MAE in the estimation of the first component of the mean
of the target (true value ≈ −0.4845). The true value has been computed (in an
approximate way) with a standard deterministic numerical method (using a thin grid
in the parameter space). The results are averaged over 3000 independent experiments.
Table 8.4 also contains the MAE of the PMC scheme, described previously, for
different values of the parameters N and φ. As in the previous example, it seems that
PMC needs more computational effort to obtain the same performance as MAMIS.
Figure 8.2 shows the initial and final locations of the means, i.e., μ

(0)
i and μ

(T )
i , in a

specific run with λ ∈ {5, 10}.
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Table 8.4 Mean absolute error (MAE) in the estimation of the mean of the banana-shaped target
(first component), using the MAMIS algorithm (N = 100, T = 2000) and PMC (with different
values of N and T = 2000)

Std of ϕ(μ) Epochs Std of qi (x)

σ = 0.1 σ = 0.5 σ = 1 σ = 5 σ = 10

Standard multiple IS Ta = T 4.3873 3.3111 1.6394 0.0111 0.0111

λ = 5 Ta = 10 0.1498 0.0207 0.0080 0.0101 0.0101

λ = 70 Ta = 10 2.0725 1.1833 0.4709 0.0112 0.0112

Standard PMC [2]

N φ = 0.5 φ = 1 φ = 2 φ = 5 φ = 10 φ = 20 φ = 70

100 0.5924 0.4195 0.1804 0.0416 0.2923 1.6628 14.1891

500 0.5782 0.3862 0.1386 0.0070 0.0346 0.2008 3.9331

2000 0.5630 0.3594 0.1061 0.0021 0.0079 0.0343 0.9240
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Fig. 8.2 Contour plot of the target π (x), the initial μ
(0)
i (green squares) and the final μ

(T )
i (magenta

circles) locations of the means of the proposals qi for a single run of MAMIS (N = 100, T = 2000);
(a) with λ = 5; (b) with λ = 10. With λ = 5, the number of Gaussians qi which change their
location is larger than with λ = 10

8.6 Conclusions

We have introduced a novel algorithm, MAMIS, which applies the iterative impor-
tance sampling (IS) approach using a population of adaptive proposal pdfs. The
location parameters of the proposals are adapted according to an MCMC technique.

Although the MAMIS scheme is more general, here we have focused on a specific
implementation with a cloud of Gaussian proposal pdfs, adapting their means. Our
experiments have shown that MAMIS reduces the dependence on the choice of the
different parameters of the proposals.

Indeed, the proposed adaptation procedure improves the results with respect to the
corresponding standard nonadaptive IS method, regardless of the variances chosen
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initially. We have also compared with respect to a population Monte Carlo (PMC)
scheme. MAMIS seems to be more flexible and more robust with respect to the
choice of the initial conditions.

In MAMIS, the adaptation does not use resampling procedures, so no diversity in
the population is lost (as it happens in PMC). The scale parameters of the proposals,
which is crucial for the good performance of an IS algorithm, are not adapted in the
multiple IS scheme. In this way, we avoid losing diversity in the population of scale
parameters (if different variances are used, as suggested in the black-box implemen-
tation), thus maintaining simultaneously explorative and local search behaviors at
each iteration (corresponding to large and small variances, respectively).

Acknowledgements This work has been supported by the Spanish government’s projects
COMONSENS (CSD2008-00010), ALCIT (TEC2012-38800-C03-01), DISSECT (TEC2012-
38058-C03-01), OTOSiS (TEC2013-41718-R), and COMPREHENSION (TEC2012-38883-
C02-01), as well as by the ERC grant 239784 and AoF grant 251170.

References

1. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.: An introduction to MCMC for machine
learning. Mach. Learn. 50, 5–43 (2003)

2. Cappé, O., Guillin, A., Marin, J.M., Robert, C.P.: Population Monte Carlo. J. Comput. Graph.
Stat. 13(4), 907–929 (2004)

3. Cornuet, J.M., Marin, J.M., Mira, A., Robert, C.P.: Adaptive multiple importance sampling.
Scand. J. Stat. 39(4), 798–812 (2012)

4. Doucet, A., Wang, X.: Monte Carlo methods for signal processing. IEEE Signal Process. Mag.
22(6), 152–170 (2005)

5. Fitzgerald, W.J.: Markov chain Monte Carlo methods with applications to signal processing.
Signal Process. 81(1), 3–18 (2001)

6. Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli. 7(2),
223–242 (2001)
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Chapter 9
Bayes Factors for Comparison of Restricted
Simple Linear Regression Coefficients

Viviana Giampaoli, Carlos A. B. Pereira, Heleno Bolfarine and Julio M. Singer

Abstract This work compares two simple linear regression slopes that are restricted
to an order constraint and to a proper subset of parameter space. Two approaches
based on Bayes factors are discussed. The motivation is a practical example designed
to evaluate dental plaque reduction. The results indicate that the approach that takes
into account the restricted parameter space is more informative than the one with
unrestricted parameter space since it allows to obtain more evidence against the null
hypothesis.

9.1 Introduction

Classical statistical inference under constrained parametric spaces has been ad-
dressed by many authors, among which we mention [25] and [5]. The problem
of comparing means of Gaussian distributions with restricted parameter space was
considered in [16]. Giampaoli and Singer [17] worked in the same problem under a
Bayesian approach, where the restricted parameter space can be handled with less
effort. Here, we extend the results to compare slopes that belong to the interval [0,1].
The motivation is a study involving two types of toothbrush with respect to their ef-
ficacy in removing dental plaque. The data, listed in Table 9.1, correspond to dental
plaque indices measured on 16 preschool children before and after toothbrushing.
Eight children used tootbrush A and another eight children used toothbrush B.
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Table 9.1 Dental plaque
index

Toothbrush A Toothbrush B

Before
toothbrushing

After
toothbrushing

Before
toothbrushing

After
toothbrushing

0.62 0.57 0.45 0.40

0.70 0.64 1.15 0.65

0.90 0.80 1.27 1.22

0.95 0.92 0.87 0.80

1.20 1.17 0.82 0.77

0.10 0.10 0.97 0.95

0.57 0.55 0.50 0.47

1.35 1.32 0.73 0.35

Similar pretreatment/posttreatment data was analyzed in [29] with the following
model:

y = Xβ + ε. (9.1)

y =
⎛
⎝y1

y2

⎞
⎠ , y1 =

⎛
⎜⎜⎜⎝
y11

...

y1n1

⎞
⎟⎟⎟⎠ , y2 =

⎛
⎜⎜⎜⎝
y21

...

y2n2

⎞
⎟⎟⎟⎠ ,

X =
⎛
⎝x1 0

0 x2

⎞
⎠ , x1 =

⎛
⎜⎜⎜⎝
x11

...

x1n1

⎞
⎟⎟⎟⎠ , x2 =

⎛
⎜⎜⎜⎝
x21

...

x2n2

⎞
⎟⎟⎟⎠ ,

β =
⎛
⎝β1

β2

⎞
⎠ , ε =

⎛
⎝ε1

ε2

⎞
⎠ , ε1 =

⎛
⎜⎜⎜⎝
ε11

...

ε1n1

⎞
⎟⎟⎟⎠ andε2 =

⎛
⎜⎜⎜⎝
ε21

...

ε2n2

⎞
⎟⎟⎟⎠ ,

where n1 (n2) is the sample size for treatment A (B), y1i (y2i ) is the posttreatment
measurement of the ith individual submitted to treatment A (B), x1i (x2i ) is the
pretreatment measurement on the ith individual submitted to treatmentA (B), β1 (β2)

is the slope parameter (a dental plaque reduction index) for treatment A (B) and
ε1i (ε2i ) is the measurement on the ith individual submitted to treatment A (B). The
standard assumption that the random error is normally distributed with null mean
vector and covariance matrix σ 2Ik , σ 2 being a positive scalar and Ik denoting an
identity matrix of the order k = (n1 + n2) × (n1 + n2) is also considered here.
Another assumption is that βi ∈ [0, 1], i = 1, 2, since one should expect that the
dental plaque index decreases after toothbrusing.
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The objective of the study may be assessed via a test of

H1 : β1 = β2 = β, (9.2)

versus

H2 : β1 > β2, (9.3)

under the restriction that 0 ≤ βi ≤ 1.
Aoki et al. ([3] and [4]) consider a Bayesian analysis of repeated pretest/posttest

data under null intercept errors-in-variables regression models. The proposed
Bayesian approach accommodates the correlated measurements and incorporates
the restriction that the slopes must lie in the [0,1] interval. Barros et al. [6] used Wald
type statistics (see, for example, [28]) for testing (9.2) versus (9.3) under measure-
ment error models, also incorporating the additional assumption that the slopes lie in
a bounded interval. The present chapter discusses an alternative approach also using
Bayes factors. In this direction, we note that testing the hypotheses (9.2) versus (9.3)
is equivalent to comparing the following two models:

M = 1 : yik = βxik + εik, εik
IID∼ N

(
0, σ 2

)
, (9.4)

M = 2 : yik = βixik + εik, εik
IID∼ N

(
0, σ 2

)
, (9.5)

i = 1, 2, k = 1, . . . ni , with σ 2 > 0, where σ 2 is a nuisance parameter for the testing
problem andM is an integer-valued parameter indexing the models, such thatM = 1
corresponds to H1 and M = 2 corresponds to H2.

This chapter is organized as follows: in Sect 9.2 we discuss the computation of
Bayes factors. In Sect 9.3 we analyze the data in Table 9.1. Finally, in Sect 9.4 we
present a brief discussion.

9.2 The Bayes Factor

The Bayes factor is the ratio of predictive densities derived from the two models and
may be used for deciding in favor or against each hypothesis. It is defined by

B21 = p(y|M = 2)

p(y|M = 1)
= p(M = 2|y)

p(M = 1|y)

π1

π2
. (9.6)

where p(y|M = j ) and p(M = j |y), j = 1, 2 denote the predictive (or marginal)
density and the posterior probability of model Mj , respectively. π1 = p(M = 1)
is the prior model probability for M1 and π2 = p(M = 2) = 1 − π1 is the prior
model probability for M2. Kass and Raftery [20] discuss the use of these factors
for hypothesis testing and suggest a rule for deciding for one of the two alternative
models.
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Although the Bayes factors constitutes an important tool for statistical analysis, its
use is not free of controversy. First, it may be severely affected by small variations in
the choice of the prior distribution. Also, it lacks interpretation when improper prior
distributions are used, as pointed by O’Hagan [24]. Variations commonly employed
for model comparison include pseudo-Bayes factors as advocated by Gelfand and
Dey [13], posterior Bayes factors, as suggested by Aitkin [1] or criteria that min-
imize some posterior loss functions as proposed by Gelfand and Ghosh [14]. The
intrinsic Bayes factor suggested by Berger and Pericchi [7], with motivations given
by Berger and Pericchi [8], Moreno and Liseo [21], Berger and Pericchi [9], and
the fractional Bayes factors, discussed by O’Hagan [24] and De Santis [12] are pos-
sible alternatives. As suggested by Moreno et al. [22], these techniques, however,
use training samples and are unstable when the sample size is small as in the exam-
ple described previously. The reader is referred to [18] or [23] for a recent review
on this topic. Robert and Marin [27] present a detailed analysis of the difficulties
associated to some Markov Chain Monte Carlo (MCMC) based techniques. These
authors compare such alternatives with the one proposed by Carlin and Chib [11]. We
consider two different techniques to obtain the posterior probability associated with
each model, namely, p(M = j |y), j = 1, 2. The first, proposed by Irony and Pereira
[19], provides an analytic expression for the Bayes factor obtained by a direct com-
putation of the posterior distribution; it accommodates any proper prior distribution
and does not require Gibbs sampling, since usual methods of numerical integration
may be employed. The second, proposed by Carlin and Chib [11], is based on the
Gibbs sampler and on MCMC methods for the computations. It requires either the
use of conjugate prior distributions or the existence of conditional complete poste-
rior densities. Unfortunately, a direct comparison of the results obtained by the two
techniques is quite complicated, since the first technique relies on prior distributions
specified for the entire parameter space, while the second requires different prior
distributions under the null and the alternative hypotheses.

9.2.1 Computation of Bayes Factor via Predictive Distributions

Note that the null (9.2) and the alternative (9.3) hypotheses may be written as

Hj : β ∈ Ωj , j = 1, 2, (9.7)

with

Ω1 = {β = (β1,β2) : β1 = β2, 0 ≤ βi ≤ 1, i = 1, 2} ,

Ω2 = {β = (β1,β2) : β1 > β2, 0 ≤ βi ≤ 1, i = 1, 2} .
The prior density for β under Hj : j = 1, 2, is defined as

g(β|M = j ) = gj (β)∫
Ωj

gj (β)dβ
, (9.8)
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where g is a convenient prior density function and gj denotes the function g restricted
to the set Ωj , i.e., the function with domain Ωj such that gj (β) = g(β) if β ∈
Ωj . Note that the integral

∫
Ωj

gjdΩj represents the volume under the prior density
function g(β) in Ωj .When the integral is null, as in the case where the dimension of
Ωj is less than the dimension of the parameter space, we consider the corresponding
line integral. Naturally, the prior density (9.8) is well defined if 0 <

∫
Ωj

gdΩj < ∞.

Under (9.7), the predictive densities are

p(y|M = j ) =
∫
Ωj

gj (β)l(y|β)dβ∫
Ωj

gj (β)dβ
, (9.9)

where l(y|β) is the likelihood function, so that the posterior probabilities p(M =
j |y), j = 1, 2, may be obtained from

p(M = j |y) = πjp(y|M = j )

π1p(y|M = 1) + π2p(y|M = 2)
.

9.2.2 Computation of Bayes Factors via MCMC Methods

We now describe an alternative way of computing p(M = j |y), j = 1, 2, via the
MCMC algorithm proposed by Carlin and Chib [11]. Essentially, they consider M
as a component of the random vector υ = (β, (β1,β2),M). Hence, it can be sampled
via Gibbs methods. After convergence, estimates of p (M = j |y), j = 1, 2, may be
obtained as the ratios between the number of iterations for whichM = j and the total
number of iterations. Direct sampling of the marginal distributions themselves or of
the joint distribution p (υ, y) is complicated, but sampling the full conditional poste-
rior distributions p (β|(β1,β2),M , y) , p ((β1,β2)|β,M , y) , and p (M|β, (β1,β2), y)
is straightforward using the Gibbs sampler. To satisfy the MCMC convergence con-
ditions, we need to specify a full probability model. For such purposes we assume
that β and (β1,β2) are independent given the model indicator M and that the prior
distributions p (β|M = j) and p ((β1,β2)|M = j) , j = 1, 2 are proper. Thus,

p ((β,β1,β2)|M = j) = p (β|M = j )p(β1,β2|M = j) . (9.10)

We also assume that y is independent of (β1,β2) given M = 1 and of β, given
M = 2.We complete the Bayesian model specification by choosing proper “pseudo-
prior” distributions p (β|M = 2) and p (β1,β2|M = 1). Because of the conditional
independence assumptions, these “pseudoprior” distributions do not interfere with
the marginal densities and so their form is irrelevant. The joint distribution of y and
(β, (β1,β2)) given M = j is

p (y,β, (β1,β2)|M = j) = f (y|β, (β1,β2),M = j) p (β, (β1,β2)|M = j) ,

where f (y|β, (β1,β2),M = j) is a density function corresponding to f (y|β,M =
1) π1 for j = 1, and f (y|(β1,β2),M = 2) π2 for j = 2 . To implement the Gibbs
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sampler we need the full conditional distributions of β and (β1,β2) as well as that of
M . Observe that

p (β|(β1,β2),M , y) ∝
⎧⎨
⎩
f (y|β,M = 1) p (β|M = 1) , ifM = 1,

p (β|M = 2) , ifM = 2
(9.11)

and

p ((β1,β2)|β,M , y) ∝
⎧⎨
⎩
f (y|(β1,β2),M = 2) p ((β1,β2)|M = 2) , ifM = 2,

p ((β1,β2)|M = 1) , ifM = 1.

(9.12)

When M = 1, the required conditional distribution for β (9.11) is generated from
model 1; otherwise, when M = 2, the distribution is generated from the correspond-
ing “pseudoprior” distribution. Similarly, when M = 1, the required conditional
distribution for (β1,β2) (9.12) is generated from the corresponding “pseudoprior”
distribution; otherwise, the required distribution is generated from model M = 2:

p (M = 1|β, (β1,β2), y) = f (y|β,M = 1)) p (β, (β1,β2)|M = 1) π1∑2
k=1 p (y,β, (β1,β2),M = k)

(9.13)

and

p (M = 2|β, (β1,β2), y) = f (y|(β1,β2),M = 2) p (β, (β1,β2)|M = 2) π2∑2
k=1 p (y,β, (β1,β2),M = k)

.

(9.14)

Samples of the posterior distribution p (β, (β1,β2),M|y) may be obtained by
sampling the full conditional distributions (9.11)–(9.12) and (9.13)–(9.14), via a
Gibbs algorithm. In each iteration, l = 1, . . . ,N , a sample of size one,
(β(l), (β1,β2)(l),M (l)), is obtained. The ratio

p̂(M = j |y) = number of M (l) = j in the N iterations

N
, j = 1, 2,

provides a simple estimate of p(M = j |y) that may be used to compute the Bayes
factor from (9.6).

Although the form of the “pseudoprior” distributions is theoretically arbitrary, it
is convenient to have them close to the conditional densities p (β|(β1,β2),M , y) and
p ((β1,β2)|β,M , y) so that plausible values are generated, even when the assumed
model is false. Carlin and Chib [11] recommend separate runs for each model, i.e.,
considering π1 = 1 and π2 = 0, and an approximation of the resulting posterior dis-
tribution by a “pseudoprior” distribution for the parameter β under model M = 2.
Subsequently, considering π2 = 0 and π1 = 1, an approximation of the result-
ing posterior distribution may also be taken as a “pseudoprior” distribution for the
parameters (β1,β2) under model M = 1.
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9.3 Analysis of the Dental Plaque Index Data

9.3.1 Analysis via Predictive Distributions

The likelihood function under the model M = 2 is

l (β1,β2) = 1

σn1+n2
exp

[
− 1

2σ 2

(
n1∑
k=1

(y1k − β1x1k)
2 +

n2∑
k=1

(y2k − β2x2k)
2 )

)]
,

(9.15)

which can be rewritten as

l (β1,β2) = τ (n1+n2)/2

2π
exp

[
−τ

2

(
2∑

i=1

(
si1 − βisi2 + β2

i si3
))]

τ = σ−2, si1 =
ni∑
k=1

y2
ik , si2 =

ni∑
k=1

2yikxik , si3 =
ni∑
k=1

x2
ik (9.16)

for i = 1, 2.
Initially, we assumed Beta prior distributions for β1 and β2; observe that these

are not conjugate distributions for the problem under consideration. The density
functions are

g (βi) = 1

B (ai , bi)
β
ai−1
i (1 − βi)

bi−1 ,

where B (ai , bi) is the Beta function with parameters ai , bi , i = 1, 2. The joint prior
density can be written as

g (β1,β2) = C

2∏
i=1

β
ai−1
i (1 − βi)

bi−1 ,

with C = [B (a1, b1) B (a2, b2)]
−1.

The denominator of the ratio defining p(y|M = 1) in (9.9) is

∫
g (β,β) dΩ1 = C

∫ 1

0
β(a1+a2−1)−1 (1 − β)(b1+b2−1)−1 dβ

= CB (a1 + a2 − 1, b1 + b2 − 1) ,

with Ω1 = {β : 0 ≤ β ≤ 1}. The corresponding numerator is
∫

g (β,β) l (β,β) dΩ1
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= Γ

(
n1 + n2

2
+ ν2

)
C

ν
ν1
2

2πΓ (ν1)

∫ 1

0

βA−1 (1 − β)B−1

(
1
2 s (β,β) + ν2

) n1+n2
2 +ν2

dβ,

with A = (a1 + a2 − 1) , B = (b1 + b2 − 1), s (β1,β2) =(∑2
i=1

(
si1 − βisi2 + β2

i si3
))

, in with si1, si2, and si3 defined in (9.16).

The denominator of (9.9) is∫
g (β1,β2) dΩ2

= C

∫ 1

0
β
a1−1
1 (1 − β1)

b1−1

(∫ β1

0
β
a2−1
2 (1 − β2)

b2−1 dβ2

)
dβ1

and the corresponding numerator is∫
g (β1,β2) l (β1,β2) dΩ2

= Γ

(
n1 + n2

2
+ ν2

)
C

ν
ν1
2

2πΓ (ν1)∫ 1

0
β
a1−1
1 (1 − β1)

b1−1
∫ β1

0
β
a2−1
2 (1 − β2)

b2−1 dβ2(
1
2 s (β1,β2) + ν2

) n1+n2
2 +ν2

dβ1.

If we consider the uniform prior distribution on [0,1], i.e., taking a1 = b1 = 1,
and a2 = b2 = 1 and the distribution of τ with hyperparameters equal to their least
squares estimators [v1 = 1 and v2 = 0.0169], we obtain B21 = 0 suggesting that the
null hypotheses should not be rejected.

We assume now that β1 and β2 have prior truncated Gaussian distributions with
parameters (ξ1, γ1) and (ξ2, γ2), respectively, i.e, with density functions given by

g∗ (βi) = 1

Φ
(
(1 − ξi)

√
γi
)− Φ

(−ξi
√
γi
)

√
γi√
2π

exp

(−γi

2
(βi − ξi)

2

)
,

for i = 1, 2. Let

J (ξi , γi) =
1√
2π

[
exp

(
(−γi/2) ξ 2

i

)− exp
(
(−γi/2) (1 − ξi)

2
)]

Φ
(
(1 − ξi)

√
γi
)− Φ

(−ξi
√
γi
) ; then

it follows that the corresponding joint prior density is given by

g∗ (β1,β2) = C1

2∏
i=1

√
γi√
2π

exp

(−γi

2
(βi − ξi)

2

)
,

where C1 =
[∏2

i=1 Φ
(
(1 − ξi)

√
γi
)− Φ

(−ξi
√
γi
)]−1

. The denominator of the

ratio that defines p(y|M = 1) is∫
g∗ (β,β) dΩ1
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= C1

√
γ1γ2

2π

∫ 1

0
exp

(
−
(γ1

2
(β − ξ1)

2 + γ2

2
(β − ξ2)

2
))

dβ

and the corresponding numerator is
∫

g (β,β) l (β,β) dΩ1

= Γ

(
n1 + n2

2
+ ν2

)
ν
ν1
2

2πΓ (ν1)
C1

√
γ1γ2

2π
∫ 1

0

exp
(− ( γ1

2 (β − ξ1)
2 + γ2

2 (β − ξ2)
2
))

(
1
2 s (β,β) + ν2

) n1+n2
2 +ν2

dβ.

The denominator of the ratio that defines p(y|M = 2) is

∫
g∗ (β1,β2) dΩ2 = C1

√
γ1γ2

2π

×
∫ 1

0
exp

(−γ1

2
(β1 − ξ1)

2

)(∫ β1

0
exp

(−γ2

2
(β2 − ξ2)

2

)
dβ2

)
dβ1,

while the corresponding numerator is
∫

g∗ (β1,β2) l (β1,β2) dΩ2

= Γ

(
n1 + n2

2
+ ν2

)
ν
ν1
2

2πΓ (ν1)
C1

√
γ1γ2

2π

∫ 1

0
exp

(−γ1

2
(β1 − ξ1)

2

)⎛
⎝
∫ β1

0

exp
(−γ2

2 (β2 − ξ2)
2
)

(
1
2 s (β1,β2) + ν2

) n1+n2
2 +ν2

dβ2

⎞
⎠ dβ1.

To analyze the sensitivity of the Bayes factor, we fixed E (βi) = β̂i , and the
Bayes factor was obtained for different values for the hyperparameters of the prior
distribution of τ , namely of v1 and v2, so that E (τ) = v1/v2 = 59.17 with precision
(V ar (τ ))−1 = (

v1/v2
2

)−1
. Considering ξi , and γi , for i = 1, 2, equal to their least

squares estimators, i.e., ξ1 = 0.114, γ1 = 337.933, ξ2 = 0.116, and γ2 = 349.484,
the results obtained are presented in the Table 9.2.

In all cases, the Bayes factor provides evidence for the rejection of the null hy-
pothesis and it seems to be sensitive to the choice of the hyperparameters of the prior
distribution of τ . There is an indication that the Bayes factor decreases as the pre-
cision increases. We repeated the computations under unrestricted parameter space
with the same choice for the hyperparameter values. The corresponding results are
indicated in parentheses in Table 9.2. Note that the restricted model provides stronger
evidence against the null hypothesis.
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Table 9.2 Bayes factors
computed using Irony and
Pereira’s proposal and in
parenthesis the Bayes factor
computed on the unrestricted
parameter space

v1 v2
(
v1/v2

2

)−1
B21

1 0.0169 0.0003 2.26 (0.51)

10 0.1690 0.0030 2.20 (0.62)

100 1.6900 0.0286 1.87 (0.86)

1000 16.900 0.2856 1.47 (0.95)

Table 9.3 Least squares
estimates of the parameters in
models (9.4) and (9.5)

Model Parameter Mean Standard deviation

1 β 0.8915 0.0387

2 β1 0.9548 0.0517

β2 0.8292 0.0512

9.3.2 Analysis via MCMC Methods

In this section, we compute the Bayes factor for the dental plaque index data using the
MCMC approach. The likelihood function under model M = 1 is similar to (9.15)
with β1 and β2 substituted by β. We consider normal prior distributions for the
regression parameters with the restriction 0 ≤ β ≤ 1 for M = 1, and 0 ≤ βi ≤ 1,
i = 1, 2, and β1 > β2 for M = 2. Initially, we use the least squares estimators
presented in Table 9.3 as the values for the hyperparameters and we consider the
same informative and non-informative prior distributions for τ used in the analysis
under the Irony and Pereira approach.

Although both the likelihood and the chosen prior distributions are standard in
Bayesian analyses, it is not simple to obtain expressions for the posterior distributions
required to compute the Bayes factor. This difficulty is related to the restriction on
the parameter space. We used the BUGS (Bayesian Inference using Gibbs Sampling)
(version 0.6) software developed by Thomas et al. [30] for such purposes.

Running each model separately, we obtained estimates of the posterior means
and standard deviations, which we used as values for the hyperparameters of the
“pseudoprior” distributions.

We used the methods proposed by Geweke [15] as convergence diagnostics. They
are available in CODA (Convergence Diagnosis and Output Analysis Software for
Gibbs sampling) that serves as an output processor for BUGS. To compute the Bayes
factors, we considered a BUGS run of 1000 burn-in iterations and 10,000 updating
iterations. These results are presented in Table 9.4.

In all cases, the Bayes factor favors the alternative hypothesis. We recall here
that in the Irony and Pereira’s method, the prior under the null hypothesis is a direct
consequence of the prior for the parameter (restricted) space. Thus, we only need to
choose the prior on the complete parameter space. This sensitivity characteristic of
the Bayes factor computed under Irony and Pereira’s proposal, displayed in Table 9.2,
is not observed when computing the Bayes factor with the methodology proposed
in [11], (see Table 9.4). We computed the corresponding Bayes factor under the
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Table 9.4 Bayes factors
computed using Carlin and
Chib’s proposal

Parameters Precision Bayes factor

v1 v2
(
v1/v2

2

)−1
B21

1 0.0169 0.0003 2.86

10 0.1690 0.0030 2.97

100 1.6900 0.0286 2.97

1000 16.9000 0.2856 2.92

unrestricted parameter space, obtainingB21 = 3.24; this value is greater than the one
computed under the restricted parameter space (B21 = 2.86). Thus, the incorporation
of restrictions on the parameters increases the evidence against the null hypothesis.

9.4 Discussion

We considered two different approach based on Bayes factors for comparing
restricted regression coefficients in normal regression models.

The two approaches differ in the computation of the posterior probabilitiesp(M =
j |y), j = 1, 2. Irony and Pereira [19] directly use the predictive density (9.9) while
Carlin and Chib [11] use a Gibbs sampling of the full conditional distributions.
The prior opinion on the full parameter space is expressed in a certain way via the
construction of the “pseudoprior” distributions when working under the approach in
[11], and may not be implemented for some distributions. For example, the Beta prior
distributions cannot be used because the corresponding full conditional distribution
in this case is not acceptable. The methodology proposed by Irony and Pereira [19],
on the other hand, could be inappropriate for the comparison of non-nested models,
but although it requires a smaller number of hyperparameters.

In view of the differences in formulation, a direct comparison of the methodologies
proposed by Irony and Pereira [19] and Carlin and Chib [11] is not simple. However,
under the restricted parameter model both approaches highlight evidence against the
null hypothesis.

Bayes factors allow objective conclusions, i.e., for the most appropriate prior
distribution they are not sensitive to the selection of hyperparameters.

Clearly other alternatives could be considered for this type of problem. In particu-
lar we can mention the following methods: (i) the Bayesian reference criterion (BRC)
as suggested in [10], (ii) the posterior likelihood ratio presented in [2], and (iii) the
deviance information criterion (DIC) proposed in [26]. Finally, we believe that the
approaches considered in this chapter can be extended to more general models as,
for example, the one considered in [3].
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Chapter 10
A Spanning Tree Hierarchical Model for Land
Cover Classification

Hunter Glanz and Luis Carvalho

Abstract Image segmentation persists as a major statistical problem, with the vol-
ume and complexity of data expanding alongside new technologies. Land cover
classification, one of the largest problems in Remote Sensing, provides an impor-
tant example of image segmentation whose needs transcend the choice of a particular
classification method. That is, the challenges associated with land cover classification
pervade the analysis process from data pre–processing to estimation of a final land
cover map. Multispectral, multitemporal data with inherent spatial relationships have
hardly received adequate treatment due to the large size of the data and the presence
of missing values. In this chapter we propose a novel, concerted application of meth-
ods which provide a unified way to estimate model parameters, impute missing data,
reduce dimensionality, and classify land cover. This comprehensive analysis adopts
a Bayesian approach which incorporates prior subject matter knowledge to improve
the interpretability, efficiency, and versatility of land cover classification. We explore
a parsimonious parametric model whose structure allows for a natural application of
principal component analysis to the isolate important spectral characteristics while
preserving temporal information. Moreover, it allows us to impute missing data and
estimate parameters via expectation-maximization. We employ a spanning tree ap-
proximation to a lattice Potts model prior to incorporating spatial relationships in a
judicious way and more efficiently access the posterior distribution of the pixel labels.
We achieve exact inference of the labels via the centroid estimator. We demonstrate
this series of analysis on a set of MODIS data centered on Montreal, Canada.

10.1 Introduction

The role of humans as members of many of Earth’s ecosystems and contributors
to many others has become less difficult to study in recent decades. Multitemporal,
remotely sensed data of the entire Earth has become ubiquitous and with certain

H. Glanz (�)
California Polytechnic State University San Luis Obispo, CA 93407 USA
e-mail: hglanz@calpoly.edu

L. Carvalho
Boston University, Boston, MA 02215, USA
e-mail: lecarval@bu.edu

© Springer International Publishing Switzerland 2015 125
A. Polpo et al. (eds.), Interdisciplinary Bayesian Statistics,
Springer Proceedings in Mathematics & Statistics 118, DOI 10.1007/978-3-319-12454-4_10



126 H. Glanz and L. Carvalho

technological advances during the 1990s continental and global scale land cover was
mapped for the first time using remotely sensed data [5, 11].

To continue informing Earth system models [2, 7, 17] and providing Earth
scientists with an accurate picture of global land cover, methods for land cover
classification need to adapt to and mirror the sophistication of remote sensing data
and technology.

In Statistics, land cover classification attracts a great deal of attention. Despite be-
ing a classic problem, classification here involves three significant challenges: large
data, spatio-temporal structure, and missing data. The MODIS (Moderate Resolu-
tion Imaging Spectroradiometer) instrument images the entire surface of the Earth
every 1–2 days [8]. The data of interest involve multispectral observations at each of
roughly 1.8 billion one km2 pixels for around 11 years. Because these data consist of
two distinct dimensions, spectral and temporal, models that can exploit this structure
will yield increased interpretability and potentially simpler estimation procedures.
Additionally, spatial information should capitalize on data in nearby pixels to pro-
duce more accurate classifications. Clouds, snow, and other disruptive phenomena
prevent clean, high quality images of the Earth’s surface. As a result, missing values
exist throughout the data. To overcome these challenges and successfully classify
land cover, we employ a series of tools which provide physically satisfying and
interpretable results with an eye toward computational efficiency.

We begin by proposing a model for the data which takes advantage of spectral and
temporal structure present. Because seasonal variation is a first-order property that
helps to distinguish many land cover classes, multitemporal information provides
critical information that our model isolates. We use an expectation-maximization
(EM) procedure [6] to estimate the parameters of this model in the presence of
missing data. With temporal information established, we reduce the dimensionality
of the data by applying a principal component analysis to the spectral variation.
Missing data is then imputed using another EM procedure. Because we pursue a
Bayesian approach, we specify a prior on the lattice of pixels to incorporate spatial
information. To make posterior inference computationally tractable, we use a third
EM procedure to identify an optimal spanning tree approximation to the lattice. With
this tree in hand, we proceed to estimate the pixel labels using the centroid estimator
[3], which better suits this type of high-dimensional discrete inference.

10.2 Likelihood Model and Data Compression

The practical problem of interest here involves labeling an image domain pixel-
wise with a given set S of discrete labels representing land cover classes. One such
example is the International Geosphere–Biosphere Programme which consists of 17
land cover classes [8]. The data consists of multivariate observations at each pixel in
the image. In general, let P be a set of pixels in the image L of size n = p × q and
S = {1, . . . ,C} a set of C labels.

The classification problem consists of assigning a label from the set S to each
node in the set of nodes P .
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Our application of interest favors the following matrix normal likelihood, since
our main motivation is to isolate the two natural dimensions of the data, spectral and
temporal. The spectral-temporal series Xv at pixel v given its land cover class, θv, is:

Xv | θv = c
ind∼Matrix-N (μc,Σc,Σs), (10.1)

where Σs and Σc correspond to separable pieces of variation in the data; in our case
spectral and temporal variation, respectively. In (10.1), Xv and μc are B × T , Σs

is B × B, and Σc is T × T for each land cover class c. This matrix normal model
isolates the two natural dimensions of the data into an equivalent multivariate normal
likelihood of the following form [19]:

vec(Xv) | θv = c
ind∼N (vec(μc),Σs ⊗ Σc). (10.2)

To handle identifiability issues in (10.2) we impose Σs11 = 1. In our application
we begin with data from 7 spectral bands collected by MODIS at 46 time points within
a single calendar year. Our first step toward compressing the data involves reducing
this time series from 46 to 28 time points. This middle 60 % of the year corresponds
to spectrally more distinguishable data and physically more vegetated land cover in
the region we conduct our simulation study. Hence, for (10.1) and (10.2), B = 7 and
T = 28.

We follow an empirical Bayes approach and use training data, independent of the
image of interest, to estimate the parameters in (10.2) prior to the label assignment
procedure. To formally estimate the parameters of (10.2) in the presence of missing
data we exploit an expectation-maximization procedure derived in [9]. The procedure
described here produces accurate estimates while achieving good separability among
land cover classes.

10.2.1 Missing Data Imputation and PCA

To alleviate a portion of the computational burden associated with classifying pixels
while accounting for missing data, we propose a pre-processing step to impute miss-
ing values. We assume that data are missing at random. Using the estimates for the
parameters in (10.2), we derive a second expectation-maximization procedure for
estimating the missing values in each pixel independent of the neighboring pixels.
Treating the pixel label θv for pixel v as latent with a prior multinomial distribution,

θv
ind∼MN (exp (h)), we compute an update for the missing data Zv and iterate until

convergence:

Z(t+1)
v =

[∑
l

Pr (θv = l |Yv,Z(t)
v )(Σ−1

l )zz

]−1

[∑
l

Pr (θv = l |Yv,Z(t)
v )(Σ−1

l )zz
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Fig. 10.1 Training data transformed into the space of the first two principal components

The update in (10.3) contains the conditional means given Yv, but weighted by
the concentration submatrices and the posteriors Pr (θv = l |Yv,Z(t)

v ). With the ob-
servation at each pixel completed with this imputation, we now address the size of
the data.

We ultimately seek labels for pixels across the globe, roughly 1.8 billion pixels.
While subsets of interest could be analyzed independently, the size of the data re-
mains cumbersome. Experts in the field attest to the correlation between spectral
bands and the consequent redundancy of information among them [4]. To isolate
the most useful information present in the data in a lower dimensional space we use
principal components analysis (PCA) [12]. Because spectral variation transcends the
differences between land-cover classes (our C labels), we target only Σ̂s with PCA.
Previous empirical work [10] indicates that a vast majority of the spectral variation
in the data is captured by the first three principal components (PCs). In fact, not only
was approximately 91% of the spectral variation present in the first three PCs, but
also the first three components corresponded to the well known Tasseled-Cap Trans-
formation [13]. So, for the remainder of this chapter we denote by Xv, the original
data transformed into the space of the first three principal components. In a similar
manner, the parameters μc and Σs will denote transformed parameters (i.e., B = 3
instead of B = 7).
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10.3 Prior Model and Land Cover Classification

We denote a complete set of labels for the pixels in the image by θ . Whereas, in
Sect. 10.2.1 our prior on the land cover classes for the entire image amounted to
Pr (θ ) = ∏

v Pr (θv) = exp{∑v h&e(θv)}, we wish to extend this in a way that
incorporates spatial information. A Markov random field (MRF) accommodates this
interest and so we employ a Potts model [16] prior on θ ,

Pr (θ ) ∝ exp

⎧⎨
⎩
∑
v∈P

h&e(θv) + η
∑

(u,v)∈L
e(θu)&Je(θv)

⎫⎬
⎭ , (10.4)

where the image, L, consists of a two-dimensional lattice on the grid of pixels.
In (10.4), h characterizes the global distribution of labels and J describes the re-
lationship between neighboring pixels. More specifically, Jr ,s corresponds to an
empirical estimate of the log joint probability of observing labels r and s in adjacent
pixels. In an empirical Bayes approach, we obtain the values of h and J from train-
ing data or previous land cover products similar to, but independent of, the image of
interest. Hyperprior η controls the strength of the spatial influence of neighboring
pixels. For a thorough investigation of the use of MRFs to classify remote sensing
images, we refer the reader to [14] and the references therein.

10.3.1 Posterior Inference

Traditional posterior inference via maximum a posteriori (MAP) estimation neces-
sitates the computation of the label configuration which maximizes

Pr (θ |X) = exp

⎧⎨
⎩
∑

v

l(Xv | θv) +
∑
v∈P

h&e(θv) + η
∑

(u,v)∈L
e(θu)&Je(θv)

⎫⎬
⎭ /ZL(X),

(10.5)

where l is the log-likelihood specified by (10.2). As we will see in Sect. 10.3.2, we
will need the posterior marginal probabilities which means we need to compute

ZL(X) =
∑
θ∈Sn

exp

⎧⎨
⎩
∑

v

l(Xv | θv) +
∑
v∈P

h&e(θv) + η
∑

(u,v)∈L
e(θu)&Je(θv)

⎫⎬
⎭ . (10.6)

Because of the high connectivity of the two-dimensional lattice, the computation
of (10.6) is intractable. A popular method in this framework, Iterative Conditional
Modes (ICM) [1] maximizes a joint probability and thus does not encounter the
difficulty that the lattice presents. However, the value reached by ICM does not
necessarily correspond to even the optimal, MAP estimate using (10.5).
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Though we conduct our inference using an estimator different from the MAP
(the centroid estimator), the ICM solution remains suboptimal. Other variational
approaches might attempt to approximate the distribution on the lattice (10.4), with
a distribution that eliminates the computational intractability of computing (10.6). In
a vein similar to this, we pursue a graph approximation to the lattice, which retains
the most important features of the lattice structure while being simpler to compute
on.

To compute (10.6) and continue with posterior inference, we approximate the two-
dimensional lattice with a spanning tree. Minimally connected, this spanning tree
approximation allows for more efficient computations. This tree needs to retain the
most important spatial information in order to ensure the quality of the approximation
as well as preserve the purpose of the hierarchical graphical model.

By approximating the lattice with a spanning tree we introduce an additional layer
to the model, yielding

Pr (θ ,X) ∝
∑

T ∈τ (L)

Pr (X | θ , T ) Pr (θ | T ) Pr (T ), (10.7)

where we assume Pr (T ) ∝ 1 and τ (L) corresponds to the space of all spanning trees
on L. Despite the approximation of L with T in (10.4), the sum over T in (10.7)
presents a new computationally intractable piece of the model. To circumvent this,
we propose the following approximation:

Pr (θ ,X) ≈ Pr (θ ,X | T ∗) = Pr (X | θ , T ∗) Pr (θ | T ∗). (10.8)

Here, T ∗ represents a spanning tree optimized to capture the most important
spatial relationships in the lattice. To accomplish this, we treat the vertex labels as
latent and identify T ∗ via an EM procedure that iterates

T (t+1) = arg max
T ∈τ (L)

Eθ |X,T (t) [ log Pr (θ ,X, T )]

= arg max
T ∈τ (L)

Eθ |X,T (t)

⎡
⎣ ∑

(u,v)∈T
e(θu)&Je(θv)

⎤
⎦ (10.9)

= arg max
T ∈τ (L)

∑
(u,v)∈T

Eθu ,θv |X,T (t) [e(θu)&Je(θv)].

Thus, to obtain T (t+1), we just need to assign the conditional posterior mean of
e(θu)&Je(θv) as a weight to each edge (u, v) ∈ L and then find the corresponding
maximum weighted spanning tree [15]. In this way, we maximize the similarity, as
measured by the entries of J, of neighboring pixels. Figure 10.2 gives an example
result of applying this tree approximation procedure to a toy map.
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Fig. 10.2 Example result of approximating tree, T ∗. Opacity of pixels in left plot indicate strength
of the posterior of the true class. Darkness of edges in the left plot indicate the strength of edge
weights as shown in 10.9. Final solution is in the right plot

10.3.2 Centroid Estimation

The ubiquitous maximum a posteriori estimation assigns to the set of pixels the
following:

θ̂MAP = arg min
θ̃∈Θ

Eθ |X[I (θ̃ �= θ )] = arg max
θ̃∈Θ

Pr (θ̃ |X). (10.10)

In a high-dimensional situation such as this, however, the MAP estimator can
myopically find a solution that does not represent the posterior space well. Therefore,
we assign a label to each pixel in the image via the centroid estimator [3]:

θ̂C = arg min
θ̃∈Θ

Eθ |X[H (θ̃ , θ )] = arg max
θ̃∈Θ

∑
v

Pr (θ̃v = θv |X). (10.11)

Here, H (·, ·) represents the Hamming loss. Use of this loss function means assign-
ing labels not with the full posterior joint, but with the posterior marginal distribution
at each pixel. Not only does this better represent the posterior space, but computation
of the centroid is made easy by our use of T ∗. Message-passing algorithms allow
for quick calculation of the posterior marginal distribution at each pixel. Our cen-
troid estimator assigns the label to pixel v which maximizes the posterior marginal
distribution at pixel v.

10.4 Case Study Results

To develop and test our methodology we used Nadir BRDF-adjusted surface re-
flectance (NBAR) data from MODIS [18]. Specifically, we extracted NBAR data
for land cover training sites that are used to produce the MODIS Land Cover Type
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Fig. 10.3 Land cover map of a 500 pixel square region surrounding Montreal, Canada. Top-left,
η = 1; top-right, η = 2; bottom-left, η = 5; bottom-right, η = 10

product [8]. These sites are produced by manual interpretation of high resolution
imagery and provide exemplars of land cover classes that are used in a supervised
classification of global land cover at 500-m spatial resolution. For this analysis we
used a subset of the MODIS Land Cover Training site database that includes 204 sites
located in the conterminous United States (extending from MODIS tile v04h08 in
the northwest to MODIS tile v05h11 in the southeast). These sites encompass 2692
MODIS pixels and all major biomes and land cover types in the lower 48 United
States. The data we use here include data from 28 8-day periods in 2005 for MODIS
bands 1–7 (i.e., 196 total features). Though the International Geosphere–Biosphere
Programme (IGBP) classification scheme contains 17 classes, our training data set
consists of only 12. Nevertheless, we proceed with parameter estimation, missing
value imputation, and classification.

Figure 10.3 maps the land cover results from our analysis pipeline applied to a
500 pixel × 500 pixel region surrounding Montreal, Canada. By varying the value
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of η in the Potts prior models, we can strengthen or weaken the importance of
spatial homogeneity. From the top-left to the bottom-right, the coarseness of the
result increases as we increase the value of η from 1 to 10. Note that we lose some
potentially important portions of the land cover product by making it more difficult to
classify adjacent pixels as two very different classes. For example, some red (urban)
patches have disappeared from η = 1 to η = 10. The visual quality of the maps in
Fig. 10.3 signifies both the success of this method and its versatility. We accurately
capture the agricultural swath extending through Montreal as well as the particular
types of forest bordering it. Increasing the emphasis on the spatial relationships
successfully preserved this overall pattern.

10.5 Conclusion

In this article we present a suite of tools that address the land cover classification prob-
lem from start to finish. Modern remote sensing instruments collect multispectral,
multitemporal data which necessitate an approach that models this specific structure
in a natural way. The choice of a matrix normal likelihood provides increased inter-
pretability while also lending itself to isolated dimension reduction. We estimate the
parameters of this likelihood via an expectation-maximization procedure in order to
take missing data into account. By only targeting the spectral variation with principal
components analysis we retain critical, class-specific temporal information. In order
to continue with land cover classification we impute missing data with another EM
procedure. Many traditional land cover classification methods assign labels to pixels
independent of the information present in surrounding pixels. Because we wish to
incorporate information about spatial relationships, we specify a Potts prior on the
lattice of pixels. The connectedness of the lattice makes inference via the posterior
computationally intractable, and so we approximate the lattice with a representative
spanning tree determined with another EM algorithm. The centroid estimator better
characterizes the posterior space, which means we assign the labels that maximize
the posterior marginal distributions.

We apply the proposed methods to a small area surrounding Montreal, Canada
and achieve satisfying results. Future work will include formal calibration of the
hyperparameter η. Also, a slight striping pattern can be seen in parts of Fig. 10.3
which may be related to the spanning tree used to derive inference. Consideration
needs to be given to how to overcome these potential artifacts of the model.
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Chapter 11
Nonparametric Bayesian Regression Under
Combinations of Local Shape Constraints

Khader Khadraoui

Abstract A nonparametric Bayesian method for regression under combinations of
local shape constraints is proposed. The shape constraints considered include mono-
tonicity, concavity (or convexity), unimodality, and in particular, combinations of
several types of range-restricted constraints. By using a B-spline basis, the support
of the prior distribution is included in the set of piecewise polynomial functions.
The first novelty is that, thanks to the local support property of B-splines, many
combinations of constraints can easily be considered by identifying B-splines whose
support intersects with each constrained region. Shape constraints are included in the
coefficients prior using a truncated Gaussian distribution. However, the prior density
is only known up to the normalizing constant, which does change with the dimension
of coefficients. The second novelty is that we propose to simulate from the posterior
distribution by using a reversible jump MCMC slice sampler, for selecting the num-
ber and the position of the knots, coupled to a simulated annealing step to project
the coefficients on the constrained space. This method is valid for any combination
of local shape constraints and particular attention is paid to the construction of a
trans-dimensional MCMC scheme.

11.1 Introduction

Estimation of a regression function under combinations of local shape and smooth-
ness constraints is of considerable interest in many applications. Typical examples
include, among others, the dose–response curves in medicine, actuarial graduation,
construction of the utility function, production functions in industry, etc. The func-
tion that provides the best prediction of a dependent variable y conditionally to an
independent variable x is the conditional expectation E(y|x) = f (x). This function
is called regression function and the estimation of f from n independent copies of
(x, y) is a problem in statistical inference. We consider the case where (x, y) ∈ R×R.
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To study the constrained regression, frequentist and Bayesian approaches are pro-
posed in the literature. Obviously, these approaches have focused on a single shape
constraint on an interval determined by the domain of the independent variable. In
the frequentist case, there is a rich literature based essentially on kernel methods
and regression splines or smoothing splines, which we shall only touch briefly here
[16, 17, 18, 21, 25, 27]. For instance, in the context of works based on spline,
regression under monotonicity constraint has been studied by Mammen et al. [16]
and Ramsey [21]. Mammen et al. [16] used a discretization with smoothing and
isotonizing constraints at each stage for estimating a monotone regression function.
Mammen and Thomas-Agnan [15] proposed a method based on smoothing splines
by first calculating the smoothing spline without constraints and second by project-
ing the spline in the constrained space using a Sobolev norm. A more general work
studying inference under constraints of convexity and monotone in the regression
spline was proposed by Meyer [17]. For a description of the most common nonpara-
metric methods under shape constraints, refer [4]. In the Bayesian case, the literature
is less explored, relatively recent, and mainly concerns isotonic regression. Both pa-
per of Gelfand and Kuo [7] and Ramgopal et al. [20] proposed a Bayesian method
for constrained estimation of dose–response curves. Lavine and Mockus [14] used a
Dirichlet prior in a nonparametric Bayesian estimation of isotonic regression func-
tion. Their method works only for estimation problems under monotone constraints
and cannot be used directly under the presence of flat regions in the dose–response
curve. To solve the problem of flat regions, Holmes and Heard [11] proposed a
Bayesian approach for isotonic regression using a piecewise constant function with
unknown positions and number of knots. Another different approach was proposed
by Neelon and Dunson [19] giving an approximation of the regression function by a
piecewise linear function along with a correlation between the slopes that have been
implemented through the prior distribution. This prior charges the zero slope which
allows the method to effectively detect flat regions in the curve. Gunn and Dunson
[10] used a Bayesian hierarchical model for modeling unimodal curves. Recently,
Shively and Sager [22] proposed two efficient approaches for smooth and monotone
regression function: the first is based on the characterization of smooth monotone
functions proposed by Ramsay [21] and the second is based on regression splines
generated by a truncated polynomial basis. Shively et al. [23] actually generalized
the methods from Shively and Sager [22], extending them to situations other than
monotone regression that can be summarized by linear constraints (or almost linear
constraints) on higher order derivatives (concavity, unimodality, etc).

In this framework, we consider constrained function estimation using free-knot
B-spline model. This model is originally proposed by Denison et al. [5] for uncon-
strained nonparametric Bayesian regression. An interesting feature of using free-knot
is that the data are allowed to determine the number and position of knots. The nov-
elty of our work is that constraints include combinations of several types of local
shape restrictions, constraints on the value of the regression function and also con-
straints can be range-restricted. It is worth noting that combinations of constraints
has never been considered in the literature, except in [1] by using a polynomial plus
an integrated Brownian motion, though it seems of practical interest and realistic.
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Generally, shape constraints will be conveniently expressed as (pseudo)-differential
inequalities of the regression function f , assuming for the moment that f is suf-
ficiently smooth by controlling the degree of B-spline basis. Important examples
are Df ≷ 0 to check monotonicity or unimodality properties as well as D2f ≷ 0
for convexity or concavity. We use the reversible jump Markov chain Monte Carlo
(MCMC) technique [9] for selecting the number and the position of the knots. Recall
that the reversible jump Metropolis–Hastings scheme involves the computations of
the ratio of likelihoods and priors for two sets of parameters whose dimension may
differ. Contrary to the unconstrained case, our constraints on the coefficients induce
numerical difficulties in the computation of the prior ratio. Exactly, in this chapter,
constraints are included in the coefficients prior using a truncated Gaussian distri-
bution. Thus, the prior density is only known up to the normalizing constant which
does change with the dimension of coefficients. For this reason, we integrated out the
coefficients from the reversible jump MCMC chain and used a simulated annealing
step that ensures the projection of the coefficients on the constrained space. In this
spirit, the reversible jump MCMC slice sampler coupled to the simulated annealing
step perform well for any combination of shape constraints.

This chapter is organized as follows. In Sect. 11.2, we introduce the unconstrained
Bayesian inference. This can be viewed as an extension of Denison et al. [5] as
well as DiMatteo et al. [6] who treated the free-knot case. Section 11.3 outlines
the constrained inference for the nonparametric Bayesian regression. Section 11.4
presents a numerical experiment to show the sample properties of the constrained
estimator relative to the unconstrained one given in Sect. 11.2.

11.2 The Bayesian Model

In this section, we present the Bayesian model and its specifications. It is assumed that
data (xi , yi)ni=1 are independent such that y = (y1, . . . , yn)′ and x = (x1, . . . , xn)′.
Clearly, we consider the usual regression model:

yi |x1, . . . , xn ∼ p(yi |f (xi), σ ) i = 1, . . . , n, (11.1)

where p(yi |θ , σ ) is a normal distribution N (θ , σ 2), f is a real-valued unknown
function in [a, b] ⊂ R and σ is introduced as a dispersion parameter in the model.
To complete the model (11.1), we decompose the function f in a B-spline basis by
assuming that f belongs to a class of finite dimension functions. In particular, the
function f is modeled by a 4-order B-spline as the class of cubic splines is wide and
can be used to approximate any locally smooth function. Thus, for all x ∈ [a, b], we
have the linear combination:

f (x) =
κ+4∑
j=1

βjBj ,t(x), (11.2)

where β = (β1, . . . ,βκ+4)′ is the vector of regression coefficients and κ is the
dimension of interior knots and Bj ,t is a B-spline function. We denote the parameters
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space by� = ∪∞
κ=1({κ}×�κ ) where�κ is a subspace of the Euclidean space R

κ+4×
[a, b]κ × [0, ∞). Also, we denote by θ (κ) = (β1, . . . ,βκ+4, t1, . . . , tκ , σ 2)′ a generic
element of�κ . We shall now construct a probability measure on the parameters space
� by constructing a prior on the approximating set of regression functions. First, the
prior of k is assumed to be a truncated Poisson distribution (πκ (κ) ∼ P{E}(λ), λ > 0
and {E} is some discrete set). Next, inside each model κ , the prior for β ∈ R

κ+4 is
defined by a multivariate normal prior. Specifically, the prior of β is specified by the
g-prior of Zellner given by

πβ(β|t, κ , σ 2) ∼ Nκ+4
(
0, σ 2n(B

′
κ ,tBκ ,t)

−1
)
, (11.3)

where Bκ ,t denotes the B-spline basis. Furthermore, for knots position, we consider
the prior πt(t|κ) = κ!/(b − a)κ and for the variance, we adopt an inverse-gamma
distribution prior πσ 2 (σ 2) ∼ IG(τ1, τ2) where τ1, τ2 > 0. The prior (11.3) was
widely discussed in [12]. Concerning the prior (11.3), although arbitrary, such a
choice guarantees important properties; in particular, two close functions Bj ,t and
Bj ′,t correspond to two coefficients βj and βj ′ highly correlated. Note that if the
functions Bj ,t and Bj ′,t are near, then

rjj ′ =
∫

[a,b] Bj ,t(x)Bj ′,t(x)dx( ∫
[a,b] B

2
j ,t(x)dx

∫
[a,b] B

2
j ′,t(x)dx

)1/2 ≈ 1. (11.4)

It is easy to remark that the prior correlation between coefficients decreases with
rjj ′ . We can interpret the case rjj ′ = 0 as follow: B-spline functions Bj ,t,Bj ′,t are
orthogonal and coefficients βj ,βj ′ are independent. The priors considered are proper
as well. As argued by Denison et al. [5], we can develop Bayesian inference in the
same spirit as Green [9]. Concerning the Bayesian unconstrained regression with
free knots, we do not claim any originality but essentially follow the methodology
that was proposed in [6], in which a careful literature review has been given on the
subject. By integrating the variance and the coefficients out, we obtain the likelihood
L(y|κ , t). In the sequel, we put K = κ + 4 and V = n(B

′
κ ,tBκ ,t)−1. Then, for

β ∈ XK ⊂ R
K , we can write

L(y|κ , t) =
∫

XK

∫ ∞

0

[
(2πσ 2)−

n
2 exp

{− (y − Bκ ,tβ)′(y − Bκ ,tβ)

2σ 2

}
(2πσ 2)−

K
2 |V |−1/2

exp
{− β ′(V )−1β

(2σ 2)

} τ
τ1
2

Γ (τ1)
(σ 2)−(τ1+1) exp

{− τ2

σ 2

}]
dβdσ 2

=
τ
τ1
2 Γ (τ ∗

1 )(τ ∗
1 )K/2

∣∣ τ∗
2 V

∗
τ∗

1

∣∣1/2

(2π )
n
2 Γ (τ1)|V |1/2(τ ∗

2 )(2τ∗
1 +K)/2

, (11.5)

where Γ ( · ) denotes the Gamma function and:

m∗ = (V −1 + B
′
κ ,tBκ ,t)

−1(B
′
κ ,ty) = {

(n(B
′
κ ,tBκ ,t)

−1)−1 + B
′
κ ,tBκ ,t

}−1
(B

′
κ ,ty) = n

1 + n
β̂;
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V ∗ = (V −1 + B
′
κ ,tBκ ,t)

−1 = {
(n(B

′
κ ,tBκ ,t)

−1)−1 + B
′
κ ,tBκ ,t

}−1 = n

1 + n
(B

′
κ ,tBκ ,t)

−1;

(11.6)

τ ∗
1 = τ1 + n/2;

τ ∗
2 = τ2 + {y′y − (m∗)′(V ∗)−1m∗}/2.

Note that β̂ denotes the least squares estimator. We precise that we obtain (11.5)
and (11.7) thanks to the standard Bayesian calculation from conjugate priors and in
particular from the g-prior. Now, we put Pβ = (σ 2, t, κ , x, y) and Pσ 2 = (β, t, κ , x, y).
We obtain the full conditional posterior distributions

β|Pβ ∼ Nκ+4
( n

1 + n
β̂,

n

1 + n
σ 2(B ′

κ ,tBκ ,t)
−1
)
,

σ 2|Pσ 2 ∼ IG
(
τ ∗

1 + K/2, (β − m∗)
′ {V ∗}−1(β − m∗)/2 + τ ∗

2

)
, (11.7)

where τ ∗
1 , τ ∗

2 , m∗, and V ∗ are given by (11.7). Consequently, it is possible now to
simulate from the posterior distribution, thanks to a reversible jump Metropolis–
Hastings within Gibbs sampler algorithm. Precisely, from the likelihood (11.5) and
the full conditional distributions (11.2), κ and t will be computed by the posterior
mean from simulations using a reversible jump MCMC move and the coefficients β
and σ 2 will be sampled from (11.2) using a Gibbs sampler move. The computation of
the reversible jump MCMC scheme requires a likelihood ratio used in the acceptance-
rejection probability. Let (t, κ) denote a current state in the reversible jumps move
and (tc, κc) denote a candidate state. For example, there is a submove in the reversible
jump MCMC move that involves inserting one knot in the vector t. For this type of
transition from a current state (t, κ) to a candidate state (tc, κc = κ + 1), we obtain
the likelihood ratio by

L(y|tc, κc)

L(y|t, κ)
= (τ ∗

1 )1/2 (τ ∗
2 )(2τ∗

1 +K)/2

(τ ∗c
2 )(2τ∗

1 +K+1)/2

|V ∗c|1/2

|V ∗|1/2

|V |1/2

|V c|1/2
= (τ ∗

1 )1/2 (τ ∗
2 )(2τ∗

1 +K)/2

(τ ∗c
2 )(2τ∗

1 +K+1)/2
,

(11.8)

where τ ∗c
2 is obtained by replacing (tc, κc = κ + 1) in (11.7). We note the likelihood

ration simplification |V ∗c|1/2|V |1/2/|V ∗|1/2|V c|1/2 = 1, thanks to the use of the
g-prior (11.3).

11.3 Constrained Bayesian Inference

The free-knot unconstrained model discussed in Sect. 11.2 can be modified in a
straightforward way to allow for constrained regression model. The shape constraints
considered in this work will be derived by restricting the first and the second deriva-
tives of (11.2) to be positive respectively to obtain monotonicity and convexity. The
unimodality will be derived by restricting the first derivative of (11.2) to have exactly
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one root x∗ ∈ ]a, b[. Suppose that it is intended to control the shape of the unknown
function f , defined by (11.2), on an interval I = [a0, b0] ⊆ [a, b]. For all x ∈ [a, b],
denote by tjx the smallest knot greater than x. As known implicitly from the first use
of the sequence t, it will be convenient to assume that tj < tj+1 for all j , as it enables
us to write that tjx−1 < x ≤ tjx for all x ∈ [a, b]. Note that B(ja0 −k),t, . . . ,Bjb0 −1,t

are the B-splines with order k and whose support intersects with [a0, b0], that is
[tj , tj+k] ∩ [a0, b0] �= ∅ for j ∈ {(ja0 − k), . . . , jb0 − 1}. Thus, controlling the shape
of f on I is reduced to control the shape of the restriction

f|I (x) =
jb0 −1∑

j=(ja0 −k)

βjBj ,t(x), for all x ∈ I. (11.9)

By noting j0 = (ja0 − k) and from [3] (p. 117), it is known that the first derivative

of (11.9) is Df|I (x) = (k− 1)
∑jb0 −1

j=j0+1
βj−βj−1

(tj+k−1−tj )DBj ,t(x) and the second derivative

is D2f|I (x) = (k − 1)(k − 2)
∑jb0 −1

j=j0+2
βj−2βj−1+βj−2

(tj+k−2−tj )(tj+k−1−tj )D
2Bj ,t(x). Thus, thanks to

the positivity of B-spline functions, it is immediate that

(i) (f|I is monotone) If βj0 ≤ βj0+1 ≤ · · · ≤ βjb0 −1, then, for all x ∈ [a0, b0] and
k ≥ 2 we have Df|I (x) ≥ 0.

(ii) (f|I is unimodal concave) Let jb0 −1 ≥ 3. Ifβj0+1−βj0 > 0, βjb0 −1−βjb0 −2 < 0,
(βj+βj−2) ≤ 2βj−1 for j = j0+2, . . . , jb0−2, thenDf|I (a0) > 0,Df|I (b0) < 0
and D2f|I (x) ≤ 0 for all x ∈ [a0, b0] and k ≥ 3.

Then, it is clear that a natural way to impose local shape constraints on f is simply
by conditioning the prior distribution on some sets. For example, if it is intended to
impose a monotone shape constraint on the interval [a0, b0], we have the set

S = {fI |βj ∈ R,βj0 ≤ βj0+1 ≤ · · · ≤ βjb0 −1},
for unimodality concave restriction, we have the set

S = ∩jb0 −1
j=j0+2{fI |βj ∈ R,βj0 < βj0+1,βjb0 −2 > βjb0 −1,βj − 2βj−1 + βj−2 ≤ 0},

and for unimodality restriction, we have the set

S = ∪jb0 −2
�=j0+2{fI |βj ∈ R,

βj0 = βj0+1 < βj0+2 ≤ · · · ≤ β� ≥ β�+1 ≥ · · · ≥ βjb0 −2 > βjb0 −1}.
Clearly, it is also easy to impose a succession of increasing, decreasing, concave,
or convex parts and to locate the constraints at some parts of the x-axis. For rea-
sons of simplicity, we denote by S the set of vectors βS = (βS

j )Kj=1 such that
f fulfill the constraint S. The g-prior of the unconstrained coefficients defined in
Sect. 11.2 can be generalized in the following manner to handle any constraints:
πβS (βS |t, κ , σ 2) ∝ NK

(
0, σ 2n(B

′
κ ,tBκ ,t)−1

)
1βS∈S . Clearly, the prior density of βS is

simply proportional to the density of the unconditioned normal distribution (11.3)
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Fig. 11.1 Data (circle), true regression function (solid curve) and constrained estimate (- - -)

multiplied by the indicator function 1βS∈S . It is straightforward to check that the
full conditional posterior distribution of βS is NK

(
n

1+n
β̂, σ 2V ∗)1βS∈S , where the

matrix V ∗ is obtained from the unconditioned case. For clarity, let us discuss
the following example: f is monotone increasing function on [0.1, 0.35], con-
cave on [0.3, 0.7], equal to 2.25 in 0.8, and no constraint elsewhere. Then, the
monotone increasing constraint involves the B-splines Bj0.1−k,t, . . . ,Bj0.35−1,t whose
support intersects [0.1, 0.35], while the concavity constraint involves the B-splines
Bj0.3−k,t, . . . ,Bj0.7−1,t and the value constraint involves only the B-spline Bj0.8−1,t

(it is necessary to consider tj0.8 = · · · = tj0.8+k−1 = 0.8). Thus, the prior density
of coefficients is proportional to NK

(
0, σ 2V

)
1{βS∈S=S[0.1,0.35]∩S[0.3,0.7]∩S0.8}. By way of

example, we generate data according to model (11.1) with a true regression function
defined by f (x) = 15x2 sin (3.7x) + 2ψ0.3,0.1(x), n = 50, and σ = 1, where ψm,σ

denotes the normal density of the N (m, σ ) distribution (see Fig. 20.1). We assume
that it is known that f is unimodal on [0, 1] (first increasing and then decreasing),
concave on [0.55, 1], and twice differentiable.

For the constrained Bayesian inference, it is now difficult to construct a trans-
dimensional MCMC sampling scheme for the reason that simulations from the
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posterior by a reversible jump Metropolis–Hastings algorithm require the exact
knowledge of the prior density for βS . Thus, it is necessary to find the normaliz-
ing constant of the truncated g-prior πβS (βS |t, κ , σ 2). As we are unable to compute
this normalizing constant, we propose to use a simulated annealing step that ensures
the projection of the coefficients on the constrained space. In this spirit, the reversible
jump MCMC slice sampler coupled to the simulated annealing step perform well
for any combination of shape constraints. To construct the MCMC algorithm for the
free-knot model under combinations of shape restrictions, we use the unconstrained
coefficients β with prior (11.3) to obtain the constrained coefficients βS by project-
ing β in the constrained space S. By denoting ‖ · ‖2 the Euclidean norm, there is a
projection operator P such that Pβ = βS where

Pβ = arg min
β̃∈S

‖β̃Bκ ,t − βBκ ,t‖2
2 = arg min

β̃∈S
Q(β̃). (11.10)

Our main idea from the use of the projection (11.10) is to make inference indirectly on
βS using unconstrained coefficients β where for each vector β we compute βS = Pβ
by solving an optimization problem of the form (11.10) using a simulated annealing
step. The constraints can be enforcing, thanks to the proposal step of the simulated
annealing move. It is clear that the use of the projection allows to avoid the compu-
tation of the normalizing constant of the truncated g-prior. In the sequel, we denote
by β̂S = Pβ̂ and we aim to compute the likelihoods ratio LS(y|κc, tc)/LS(y|κ , t) in
the presence of constraints where

LS(y|κ , t) =
∫∫

LS(y|κ , t,βS , σ 2)πβS (βS |t, κ , σ 2)πσ 2 (σ 2)dβSdσ 2

=
∫∫

LS(y|κ , t, Pβ, σ 2)πβ(β|t, κ , σ 2)πσ 2 (σ 2)dβdσ 2, (11.11)

and LS(y|κ , t, Pβ, σ 2) is the constrained likelihood. Then, the constrained version
of the likelihood (11.11) will be used to build a reversible jumps simulation chain
with stationary distribution π (t, κ|y). Furthermore, by using Laplace’s method, we
approximate the integration (11.11) and we can show that the constrained likelihoods
ratio can be approximated with an error O(n−1/2). For example, let us consider one
transition in reversible jump simulations chain from a current state (κ , t) to a candidate
state (κc = κ + 1, tc), the constrained likelihoods ratio is approximated by

LS(y|κc, tc)
LS(y|κ , t)

( 1√
n

( (y − β̂SBκ ,t)′(y − β̂SBκ ,t)

(y − β̂ScBc
κ ,t)′(y − β̂ScBc

κ ,t)

)n/2
, (11.12)

where β̂Sc = Pβ̂c and β̂c = (Bc
t,k

′Bc
t,k)−1Bc

t,k
′y. The approximation (11.12) is ob-

tained with an errorO(n−1/2). The result (11.12) is true for all subsets S of constraints
that are considered in this chapter and it can be shown by application of Taylor’s
theorem and the method of Laplace (for more details we refer the reader to [26]).
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Fig. 11.2 The data: pH vs. time (mn) rescaled by a factor of 10−2. Unconstrained estimate see in
Sect. 11.2 (· · · ), constrained estimate calculated using all the data (- · -) and the local constrained
estimate (under local decreasing constraint on the interval [8.93, 20.8]) calculated after removing
erroneous measurements (- - -)

11.4 Numerical Experiment

This section outlines a numerical experiment through a real application to acidifi-
cation kinetics. The control of acidification is an important issue in cheese-making.
For instance, the influence of several environmental conditions on acidification ki-
netics has been studied in [13]. The acidification kinetics under N2H2 modality that
is presented in Fig. 11.2 consist of n = 1429 measures of pH recorded alternatively
at 1 and 2 min intervals. It is known, independently of the data, that the pH must
be a decreasing function of the time during the experiment. Some errors may occur
during the recording process because of the measuring device sensitivity to electrical
interference problems. This is the case of data shown in Fig. 11.2: the pH is not a de-
creasing function on the interval [8.93, 20.8]. It is of interest to estimate what would
be the true acidification curve if no measurement error had occurred. As shown in
Fig. 11.2, we give the unconstrained estimate (· · · ), constrained estimate calculated
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Fig. 11.3 Unconstrained estimate (- - -) seen in Sect. 11.2 calculated after removing erroneous
measurements (without data on the interval [8.93, 20.8]) and 95% credibility interval (· · · )

using all the dataset (- · -) and local constrained estimate (under local decreasing
constraint on the interval [8.93, 20.8]) calculated after removing erroneous measure-
ments (- - -). We can note that the constrained and the unconstrained estimates are
identical on the interval of the x-axis where the constraints are fulfilled by both the
constrained and the unconstrained estimates. We can also note that the constrained
estimate calculated using all the dataset (- · -) achieves a compromise between erro-
neous data and decreasing constraint. In Fig. 11.3, we give the unconstrained estimate
(- - -) seen in Sect. 11.2 calculated after removing erroneous measurements (without
data on the interval [8.93, 20.8]) and 95 % credibility interval (· · · ). It is clear that
unconstrained estimate present an imperfect behavior on the interval [8.93, 20.8].
Finally, we can note that the constrained estimate given in Fig. 11.4 is the most
convincing one: it is obtained by removing erroneous measurements and enforc-
ing a local decreasing constraint on [7.98, 20.8]. The only difference between the
constrained estimate given in Fig. 11.4 and the constrained estimate (- - -) given in
Fig. 11.2 lies in the choice of the position of the local shape constraint. To obtain the
estimates, we run the MCMC sampler for 100,000 iterations and retain every 10-th
point of the chains. From the 10,000 retained values of each parameter, we compute
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Fig. 11.4 The local constrained estimate (under local decreasing constraint on the interval
[7.98, 20.8]) calculated after removing erroneous measurements (- - -)

a 0.05-credible set for βl for every l ∈ {1, . . . ,K}. The computed 0.05-credible set
for σ 2 is [0.0206, 0.0239] and the posterior mean is 0.0222 (in the unconstrained
case) is [0.0157, 0.0179] and the posterior mean is 0.0168 (where a local decreasing
constraint is enforced on [8.93, 20.8]) and is [0.0154, 0.0176] and the posterior mean
is 0.0165 (where a local decreasing constraint is enforced on [7.98, 20.8]).

11.5 Discussion

In this chapter, the Bayesian framework enables to impose local shape constraints on
the regression function, thanks to the coefficients prior distribution. The local support
of B-splines is an interesting property as a lack of data (or a lack of prior information)
in a small region of the x-axis does not affect the inference on the whole definition
domain of the independent variable. The performance of the constrained estimate
compared to the unconstrained one is shown, thanks to a real numerical application.
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Computation of the constrained estimate and simulations from the posterior distri-
bution can be done with no additional difficulties and only requiring a coefficients
prior density known up to a normalizing constant. However, the reversible jump
MCMC move combined with a simulated annealing move allows only to search for a
single optimized solution of the constrained problem and does not provide to obtain
a credible set for the estimate. We expect that future work will address the problem
of the construction of constrained prior distribution with known normalizing con-
stant. Clearly, such a prior enables us to compute the prior ratio of the acceptance
probability in the reversible jump MCMC scheme without resorting to the simulated
annealing step. We also project in the future to detect automatically the interval of
erroneous measurements seen in the pH data application.
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Chapter 12
A Bayesian Approach to Predicting Football
Match Outcomes Considering Time Effect
Weight

Francisco Louzada, Adriano K. Suzuki, Luis E. B. Salasar, Anderson Ara
and José G. Leite

Abstract In this chapter we propose a simulation-based method for predicting foot-
ball match outcomes. We adopt a Bayesian perspective, modeling the number of
goals of two opposing teams as a Poisson distribution whose mean is proportional to
the relative technical level of opponents. Fédération Internationale de Football Asso-
ciation (FIFA) ratings were taken as the measure of technical level of teams saw well
as experts’ opinions on the scores of the matches were taken in account to construct
the prior distributions of the parameters. Tournament simulations were performed in
order to estimate probabilities of winning the tournament assuming different values
for the weight attached to the experts’ information and different choices for the se-
quence of weights attached to the previous observed matches. The methodology is
illustrated on the 2010 Football Word Cup.

12.1 Introduction

Predicting outcomes of football games has been the focus of research of several
researchers, mostly applied to championship leagues. For instance, Keller [8] has
fitted the Poisson distribution to the number of goals scored by England, Ireland,
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Scotland, and Wales in the British International Championship from 1883 to 1980.
Also, Lee [9] considers the Poisson distribution, but allows for the parameter to de-
pend on a general home-ground effect and individual offensive and defensive effects.
Moreover, Karlis [7] applied the Skellam’s distribution to model the goal difference
between home and away teams. The authors argue that this approach does not rely
neither on independence nor on the marginal Poisson distribution assumptions for
the number of goals scored by the teams. A Bayesian analysis for predicting match
outcomes for the English Premiere League (2006–2007 season) is carried out us-
ing a log-linear link function and noninformative prior distributions for the model
parameters.

Taking another approach, Brillinger [1] proposed to model directly the win, draw,
and loss probabilities by applying a trinomial regression model to the Brazilian 2006
Series A championship. By means of simulation, it is estimated for each team the
total points, the probability of winning the championship, and the probability of
ending the season in the top four places.

In spite of the vast literature directed to League Championship prediction, few
articles concern score predictions for the World Cup tournament (WCT) [5, 12,
13]. The WCT is organized by Fédération Internationale de Football Association
(FIFA, French for International Federation of Football Association), occuring every
4 years. Probably, the shortage of researches on the WCT is due to the limited
amount of valuable data related to international matches and also to the fact that few
competitions confronts teams from different continents.

A log-linear Poisson regression model which takes the FIFA ratings as covari-
ates is presented by Dyte and Clarke [5]. The authors present some results on the
predictive power of the model and also present simulation results to estimate proba-
bilities of winning the championship for the 1998 WCT. Volf [13], using a counting
processes approach, modeled the development of a match score as two interacting
time-dependent random point processes. The interaction between teams are modeled
via a semiparametric multiplicative regression model of intensity. The author has ap-
plied his model to the analysis of the performance of the eight teams that reached the
quarter-finals of the 2006 WCT. Suzuki et al. [12] proposed a Bayesian methodology
for predicting match outcomes using experts’ opinions and the FIFA ratings as prior
information. The method is applied to calculate the win, draw, and loss probabilities
for each match and also to estimate classification probabilities in group stage and
winning tournament chances for each team on the 2006 WCT.

In this chapter, we proposed a Bayesian method for predicting match outcomes
with use of the experts’ opinions and the FIFA ratings as prior information, but
differently from [12], for all 48 matches of the first phase (group stage in which
each team played three matches) the experts’ opinions were provided before the
beginning of 2010 WCT. The motivation for such purpose was the difficulty to get
the experts’opinions (four sportswriters contributed with their opinions) at the end of
each round of group stage. The drawback is that these matches were played within 15
days, mostly in different dates and times. For the second phase, the experts’ opinions
were provided before each round. Moreover, we incorporate a time-effect weights
for the matches, that is, we consider that outcomes of matches which were played
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first have less importance than the outcomes of more recent matches. An attractive
advantage of our approach is the possibility of calibrating the experts’ opinions as
well as the importance of previous match outcomes in the modeling, directing for
a control on the model prediction capability. Considering a grid of values for the
experts’ opinions weight a0 and for the last matches importance, the p′

i s values, we
can assess the impact of these weights on the model prediction capability.

We used the predictive distributions to perform a simulation based on 10, 000
runs of the whole competition, with the purpose of estimating various probability
measures of interest, such as the probability that a given team wins the tournament,
reaches the final, qualifies to the knockout stage and so on.

The chapter is outlined as follows. In Sect. 12.2, we present the probabilistic
model and expressions for priors and posterior distribution of parameters, as well
as for predictive distributions. In Sect. 12.3, we present the method used to esti-
mate the probabilities of winning the tournament. In Sect. 12.4, we give our final
considerations about the results and further work.

12.2 Probabilistic Model

In the current format, the WCT gathers 32 teams, where the host nation(s) has a
guaranteed place and the others are selected from a qualifying phase which occurs in
the 3-year period preceding the tournament. The tournament is composed by a group
stage followed by a knockout stage. In the group stage, the teams play against each
other within their group and the top two teams in each group advance to the next
stage. In the knockout stage, 16 teams play one-off matches in a single-elimination
system, with extra time of 30 min (divided in 2 halves of 15 min each) and penalty
shootouts used to decide the winners when necessary.

The probabilistic model is derived as follows. Consider a match between teams
A and B with respective FIFA ratings RA and RB . In the following we shall assume
that, given the parameters λA and λB , the number of goals XAB and XBA scored by
team A and B, respectively, are two independent random variables with

XAB | λA ∼ Poisson
(
λA

RA

RB

)
, (12.1)

XBA | λB ∼ Poisson
(
λB

RB

RA

)
. (12.2)

In this model, the ratings are used to quantify each team’s ability and the mean
number of goals A scores against B is directly proportional to team A’s rating and
inversely proportional to team B’s rating. IfA and B have the same ratings (RA = RB),
then the mean score for that match is (λA, λB). So, the parameterλA can be interpreted
as the mean number of goals team A scores against a team with the same ability and
an analogous interpretation applies to λB .

We first consider the prior distribution formulation. In order to formulate the prior
distribution, a number of experts provide their expected final scores for the incoming
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matches which we intend to predict. This kind of elicitation procedure is natural and
simple, since the model parameters are directly related to the number of goals and the
requested information is readily understandable by the respondents not requiring any
extra explanation. We have adopted multiple experts since we believe it aggregates
more information than using only one expert.

Assuming independent experts’opinions and following a Poisson distribution, we
shall obtain the prior distribution for the parameters using a procedure analogous to
the power prior method [2] with the historical data replaced by the experts’ expected
scores. The proposed elicitation process is based on the assumption that the experts
are able to provide plausible outcomes for the incoming matches that could be ob-
served but in fact were not. This elicitation process is in accordance with the Bayesian
paradigm for prior elicitation as discussed in [6] and [3] as we will see later in this
section. Moreover, although the independence assumption is taken mainly because
of mathematical simplicity, we can argue that, at least approximately, the indepen-
dence assumption holds in our case since the selected experts work at different media
and do not maintain any contact.

Suppose we intend to predict a match between teams A and B. Consider that s
experts provide their expected scores for m incoming matches of team A and B.
Denote by yi,j the j th expert’s expected number of goals scored by team A against
opponent OAi and by zi,j the expected number of goals scored by team B against
opponent OBi , i = 1, . . . ,m, j = 1, . . . , s.

In the following, we shall assume the probability density functions as the initial
information about the parameters given by

π0(λA) ∝ λ
δ0−1
A exp{−β0λA} and π0(λB) ∝ λ

δ0−1
B exp{−β0λB}, (12.3)

where δ0 > 0 andβ0 ≥ 0. Note that if δ0 = 1/2 andβ0 = 0 we have the Jeffreys’prior
for the Poisson model, if δ0 = 1 and β0 = 0 we have an uniform distribution over
the interval (0, ∞) and if δ0 > 0 and β0 > 0 we have a proper gamma distribution.
The first two cases are usual choices to represent noninformative distribution for the
parameter.

Updating this initial prior distribution with the experts’expected scores, we obtain
the power prior of λA

π (λA|D0) ∝ λ

a0

m∑
i=1

s∑
j=1

yi,j+δ0−1

A exp
{
−
(
a0s

m∑
i=1

RA

ROAi

+ β0

)
λA

}
, (12.4)

where 0 ≤ a0 ≤ 1 represents a “weight” given to experts’information and D0 denotes
all the experts’ expected scores. Thus, if 0 < a0 ≤ 1, the prior distribution of λA is

λA|D0 ∼ Gamma

⎛
⎝a0

m∑
i=1

s∑
j=1

yi,j + δ0, a0s

m∑
i=1

RA

ROAi

+ β0

⎞
⎠ ,

and if a0 = 0 the prior for λA is the initial Jeffreys’ prior (12.3) and corresponds
to disconsider all the experts’ information. In particular, if a0 = 1 the prior for λA
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equals to the posterior which would be obtained if all the expected scores were in
fact real data. Thus, the a0 parameter can be interpreted as a degree of confidence
in the experts’ information.

The elicitation of the prior distribution (12.4) can also be viewed in the light of
the Bayesian paradigm of elicitation [6], when we consider the likelihood for the
experts’ information

L′(λA|y1,1, . . . , ym,s) ∝
m∏
i=1

s∏
j=1

[
λ
yi,j
A exp

{
− λA

RA

ROAi

}]a0

(12.5)

and combine it with the initial noninformative prior distribution (12.3) by applying
the Bayes theorem. The likelihood (12.5) provide information for the parameter
through the experts’ information, which are treated like data, i.e, we assume them to
follow a Poisson distribution.

Analogously, the prior distribution of λB is

π (λB |D0) ∝ λ

a0

m∑
i=1

s∑
j=1

zi,j+δ0−1

B exp
{
−
(
a0s

m∑
i=1

RB

ROBi

+ β0

)
λB

}
. (12.6)

It is important to note that by the way the experts present their guesses there is
possibility of contradictory information. There is some literature on prior elicitation
of group opinions directed towards to remove such inconsistencies. According to
O’Hagan et al. [10], they range from informal methods, such as Delphi method [11],
which encourage the experts to discuss the issue in the hope of reaching consensus,
to formal ones, such as weighted averages, opinion polling, or logarithmic opinion
pools. For a review of methods of pooling expert opinions see [6].

Now the posterior and predictive distributions are presented. Our interest is to
predict the number of goals that team A scored against team B, using all the avail-
able information (hereafter denoted by D). This information is originated from two
sources: the experts’ expected score and the actual scores of matches already played.
So, we may be in two distinct situations: (i) we do have the experts’ information but
no matches have been played, and (ii) we have both the experts’ opinions and the
scores of played matches.

In situation (i), we only have the experts’ information. So, from the model (12.1)
and the prior distribution (12.4), it follows that the prior predictive distribution of
XAB is

XAB ∼ NB

⎛
⎜⎜⎝a0

m∑
i=1

s∑
j=1

yi,j + δ0,

a0s
m∑
i=1

RA

ROAi

+ β0

a0s
m∑
i=1

RA

ROAi

+ RA

RB
+ β0

⎞
⎟⎟⎠ , k = 0, 1, . . . ,

(12.7)

where NB(r , γ ) denotes the negative binomial distribution with probability function
given by
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f (k; r , γ ) = Γ (r + k)

k!Γ (r)
(1 − γ )kγ r , k = 0, 1, . . . ,

with parameters r > 0 and 0 < γ < 1.
Analogously, from model (12.2) and the prior distribution (12.6), it follows that

the prior predictive distribution of XBA is given by

XBA ∼ NB

⎛
⎜⎜⎝a0

m∑
i=1

s∑
j=1

zi,j + δ0,

a0s
m∑
i=1

RB

ROBi

+ β0

a0s
m∑
i=1

RB

ROBi

+ RB

RA
+ β0

⎞
⎟⎟⎠ , k = 0, 1, . . . .

(12.8)

In situation (ii), assume that teamA has played k matches, the first against teamC1,
the second against team C2, and so on until the kth match against team Ck . Suppose
also that, given λA, XA,C1 , . . . ,XA,Ck

are independent Poisson random variables
with parameters λA

RA

RC1
, . . . , λA

RA

RCk

. Hence, from model (12.1) it follows that the

weighted likelihood is given by

Lp(λA|D) =
k∏

i=1

P
[
XA,Ci

= xiA
]pi ∝ exp

{
−λA

k∑
i=1

pi

RA

RCi

}
λ

k∑
i=1

xiApi

A , (12.9)

where xiA are the number of goals scored by A against the ith opponent, i = 1, . . . , k,
and p = (p1, . . . ,pk), 0 < pi < 1, is the vector of fixed weights assigned to each
match in order to decrease the influence of past matches.

From the likelihood (12.9) and the prior distribution (12.4), it follows that the
posterior distribution of λA is

λA|D ∼ Gamma

⎛
⎝a0

m∑
i=1

s∑
j=1

yi,j +
k∑

l=1

plx
l
A + δ0,

k∑
l=1

pl

RA

RCl

+a0s

m∑
i=1

RA

ROAi

+β0

⎞
⎠,

(12.10)

which implies by the model (12.1) that the posterior predictive distribution of XAB

is

XAB |D ∼ NB

⎛
⎜⎜⎜⎝a0

m∑
i=1

s∑
j=1

yi,j +
k∑

l=1

plx
l
A+δ0,

k∑
l=1

pl
RA

RCl
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(12.11)

Analogously, the posterior distribution of λB is given by

λB |D ∼ Gamma
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(12.12)
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where xlB is the number of goals team B scores against the lth opponent, Dl , l =
1, . . . , k. Hence, from the model (12.2) and the posterior (12.12), it follows that the
posterior predictive distribution of XBA is

XBA|D ∼ NB

⎛
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+ β0

⎞
⎟⎟⎟⎠ .

(12.13)

At this point, it is important to note that matches taken to construct the prior
distribution are distinct from those considered to the likelihood function, that is, the
matches already played have their contribution (though their final scores) included
in the likelihood function but not in the prior.

12.3 Methods

In this section, we shall consider the competition divided into seven rounds, where
the first three rounds are in the group stage (first phase) and the last four in the
knockout stage (second phase). The four experts’ were asked for their expected final
scores for the matches in five distinct times: just before the beginning of tournament
and just before each of the four rounds in the knockout stage. At the beginning of
competition, experts provided their expected final scores for all matches in the group
stage at once, while in the knockout stage they provide their expected final scores
only for matches in the incoming round. To account for the mean experts’ opinion,
we have chosen a0 = 1/(3 ∗ 4) = 1/12 (for the group stage) and a0 = 1/4 (for
the knockout stage), in the sense that the posterior distribution of the parameter is
the same as that, which would be obtained if we took one observation equal to the
mean expected score from the sampling distribution. It is important to note that the
experts were selected from different sports media, in order to make their guesses as
independent as possible.

For the knockout stage, teams can play for additional 30 min if they remain level
after the 90 min regulation time and if the result persists the teams proceed to a
penalty shootout decision. For the extra time, we considered a Poisson distribu-
tion with parameter multiplied by one third to account for the shrinkage of time,
which is equivalent to 30 min of extra time. That is, one third of the overall match
time (90 min). For penalty shootout, we simulated a Bernoulli random variable
proportional to the ratio of parameter estimates (posterior means).

The exact calculation of probabilities is possible just for the case of a single match
prediction. We calculate the probabilities exactly from the predictive distributions.
The probabilities regarding qualifying chances, winning tournament chances
among others must be performed by simulation, since they may involves many
combinations of match results.
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Table 12.1 Relative differences (in %) of the De Finetti measure of our pool of experts fixing a0 at
0 and 0.25, relatively to a fictitious pool of perfect experts

Round 1st 2nd 3th 4th 5th 6th 7th

Pool of perfect experts 0.59 0.59 0.47 0.43 0.55 0.55 0.47

Pool of experts with a0 = 0.25 (in %) 10.67 7,69 34.29 9.22 16,43 8.49 3.41

Pool of experts with a0 = 0 (in %) 143.74 36.68 36.73 18.83 17.81 14.20 7,94

A method used to measure the goodness of a prediction is to calculate the De
Finetti distance [4] which is the square of the Euclidean distance between the point
corresponding to the outcome and the one corresponding to the prediction. It is useful
to consider the set of all possible forecasts given by the simplex set

S = {
(PW ,PD ,PL) ∈ [0, 1]3 : PW + PD + PL = 1

}
.

Observe that the vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) ofS represent the outcomes
win, draw, and loss, respectively. Thus, if a prediction is (0.2, 0.65, 0.15) and the
outcome is a draw (0, 1, 0), then the De Finetti distance is (0.2 − 0)2 + (0.65 − 1)2 +
(0.15 − 0)2 = 0.185. Also, we can associate to a set of predictions the average of
its De Finetti distances, known as the De Finetti measure. So, we shall consider the
best among some prediction methods the one with the least De Finetti measure.

To assess the impact of the experts’ information on the quality of the predictions,
Table 12.1 displays the relative differences (in %) of the De Finetti measure of our
pool of experts fixing a0 at 0 and 0.25, denoting respectively the total absence of
experts’opinion and the amount of experts’ information as considered in our method,
relatively to a fictitious pool of “perfect” experts, who always forecast the exact score
for each one of the matches, with a0 fixed 0.25.

At the initial rounds, the use of experts’ information greatly improves predic-
tion, with the De Finetti measure with a0 = 0.25 always closer to the results of
the “perfect” experts’ opinion. However, as observed data enters the model, with
the progress of the competition, the gain of using expert information is decreasing.
This feature is in fully agreement with our initial motivation to consider experts’
information in our modeling: filling the lack of information when there is shortage
of objective information (data) available. Note that De Finetti measure without con-
sidering the experts’ opinion (a0 = 0) in the first and second round is much larger
than such measure for an equiprobable predictor, which assigns equal probability to
all outcomes. This is another evidence in favor of the usefulness of our modeling.
Our model also joined a prediction model competition for the matches of the group
stage of the 2010 WCT organized by the Brazilian Society of Operational Research,
the World Cup 2010 Football Forecast Competition, reaching the first place. The
inclusion of subjective information into our modeling through expert’s opinions was
crucial for such achievement. For the knockout stage matches, experts’ information
did not improve prediction, which can be explained in part by the small difference
of skill level between teams and by the lack of confidence on Spain and Netherlands
teams who defeated the traditional teams of Germany and Brazil, respectively.
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12.3.1 Predictions for the Whole Tournament

We use the predictive distributions to perform a simulation of 10, 000 replications of
the whole competition. The purpose of this simulation is to estimate probabilities that
a given team wins the tournament. The probabilities are estimated by the percentage
of times the event

Considering only the four finalists (Spain, Netherlands, Germany, and Uruguay)
we obtained, just before each round of the knockout stage, the winning tournament
probabilities assuming different values for the a0 weight attached to the experts’
information and different choices for the sequence of pi’s weights attached to the
previous observed matches. Table 12.2 presents the obtained results for this simula-
tion study. Various different time weighting values were considered within the range
(0, 1), including someone that, from the practical point of view, may not make sense,
but allows us to realize the impact of the pi’s in the winning tournament probabili-
ties. From these results, we can observe that, for a fixed value of a0, different values
for the pi’s does not alter significantly the predictions, particularly in the advanced
stages of the championship. On the other hand, for fixed values of the pi’s, we see
a noticeable influence on predictions according to changes in the a0 value. For in-
stance, observe the probabilities for Netherlands and Germany in the semifinals, and
Netherlands and Spain in the quarterfinals.

12.4 Final Remarks

In this chapter, we propose a Bayesian simulation methodology for predicting match
outcomes of the 2010 Football World Cup, which makes use of the FIFA ratings and
experts’ opinions. FIFA ratings system are based on previous 4-year performance of
teams. The drawbacks of this ratings system is the great changes in the formation of
teams in such a large period of time and the small number of games played between
teams of different continent in comparison with those played by teams of the same
continent. Other measures of strength of teams should be considered further and com-
pared with the FIFA ratings. Moreover, the development of two ratings for teams, pos-
sibly via experts’information or even FIFA documentation, one for attack and another
for defense, could improve prediction since there are teams which have strong defense
but weak attack and vice versa. A simple possibility to incorporate those abilities
would be to add one parameter for each team directly on the Poisson model, as it was
made for instance in [13]. This major embedding can be seen as a direct generalization
of our modeling and should be considered in future research in the field.

The prior distributions are updated every round, providing flexibility to the mod-
eling, once the experts’ opinion are influenced by all previous events to the match.
The use of expert’s opinions may compensate, at least in part, for the lack of in-
formation of the factors which can influence a football match during a competition,
such as tactic disciplines, team psychological conditions, referee, player injured or
suspended, amongst others.
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The method may be used to calculate the win, draw, and loss probabilities at each
single match, as well as to simulate the whole competition in order to estimate, for
instance, probabilities of classification at group stage, of reaching the knockout stage
or the final match, and of winning the tournament.

Moreover, the method presents a high performance within a simulation structure
since known predictive distributions are obtained. This enables a rapid generation
of predictive distribution values and consequently the probabilities of interest are
obtained quickly.

Overall, the Bayesian simulation methodology with different weight values for
the played matches and different weight values for the expert’s opinions provides a
better idea on the impact of the latest matches and the different weights assigned to the
experts’ opinion on the estimated probabilities of interest, evidencing the advantage
of incorporating time-effect weights for the match results. In our analysis the weights
of the experts’ opinion are fixed and known. As further work it may be considered
one distinct value of a0 for each expert and round allowing changes of the values
over the rounds.

One interpretation that can be made is that, for a particular expert, if a0 increases
over the rounds, the confidence of the information given by this expert increases as
well.

Alternatively, if a0 decreases, that means the information provided by this expert
in previous rounds were not reliable. Furthermore, we can assume that a0 is a random
variable and use a full hierarchical structure specifying a parametric distribution for
the parameter a0, like a beta distribution, as suggested in [2].
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Chapter 13
Homogeneity Tests for 2 × 2 Contingency Tables

Natalia Oliveira, Marcio Diniz and Adriano Polpo

Abstract Using the likelihood ratio statistic, we develop a significance index, called
P-value, to test the hypothesis of homogeneity in 2 × 2 contingency tables. The P-
value does not depend on asymptotic distributions, and is based on the elimination of
the nuisance parameter. Therefore, we obtain the exact distribution of the likelihood
ratio statistic in a way that is, moreover, compatible with the likelihood principle.
For a better understanding of significance indices to test homogeneity, we perform
a study comparing the P-value with some indices (likelihood ratio test (LRT), chi-
square test) and with the full Bayesian significance test (FBST). This comparative
study shows an interesting relation between all the analyzed indices, Bayesian and
frequentist.

13.1 Introduction

Hypothesis testing is widely conducted in several fields of applied sciences. Among
the known procedures to test hypotheses, the p-value is one of the most used by all
kind of researchers. However, one can question if it is truly a good and reasonable in-
dex. The literature is rich [4, 5] in providing examples where the use of p-values leads
to harming consequences or where it is based on delicate assumptions. More specif-
ically, considering the homogeneity hypothesis in contingency tables, the evaluation
of p-values is based on asymptotic considerations. Is it a reliable approximation? Is it
possible to construct an exact p-value to test such hypothesis? Trying to answer these
questions, we develop an exact index, called P-value, for the likelihood ratio test
(LRT) and also evaluate the quality of indices based on asymptotic approximations
to test the homogeneity hypothesis in 2 × 2 contingency tables.
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Table 13.1 Contingency
table 2 × 2

C1 C2 Total

X x nx − x nx

Y y ny − y ny

After establishing the definition of P-value, our first concern was to assess if it
is a good alternative as an exact p-value for the LRT. This is done analyzing the
relationship between the P-value and the asymptotic p-value as the sample size
increases. Another way to evaluate that is to compare the P-value with the e-value,
the significance index that results from the the full Bayesian significance test (FBST)
suggested by Pereira and Stern [6] and revised by Pereira et al. [8].

Since Diniz et al. [3] showed an asymptotic relationship between the p-value
(for the LRT) and the e-value, it is expected that, as the sample size increases, the
relationship between P-value and e-value will become evident.

After evaluating, according to some criterion, the quality of P-value, we also
analyze asymptotic approximations, that is, we try to answer the question: Which are
the smaller sample sizes that make the exact indices closely related to the asymptotic
indices? The same analysis done to study the P-value is then conducted to evaluate
asymptotic approximations.

This chapter is organized as follows. The next section describes the homogeneity
test for 2 × 2 contingency tables. Then, we define the P-value and comment on
its computation for this specific test. Closing the section we review other proce-
dures to test hypotheses used by the frequentist (chi-square and asymptotic LRT)
and Bayesian (FBST) schools. Section 12.3 presents some comparisons among the
indices derived from these procedures considering some tables of fixed (sample) size.
We close with some comments and perspectives on future research.

13.2 Homogeneity Test for 2 × 2 Contingency Tables
and Significance Indices

In this section, we describe the homogeneity test for 2 × 2 contingency tables.
Consider an experiment whose outcome is classified according to two dimensions:
in one dimension it can assume categories X or Y and in the other it can assume
categories C1 or C2. In this case, the experiment can result in any one of the four
pairs: (X,C1), (X,C2), (Y ,C1), or (Y ,C2). After performing the experiment a given
number of times, one can display Table 13.1, where nx(ny) is the number of times
outcome X(Y ) was observed and, among those x(y) were of category C1.

There is more than one way to statistically model this table. In this work, we
assume that nx experiments of category X and ny of category Y are performed,
that is, the margins of the table are known or given in advance. In this context, the
simplest statistical model assumes that X follows a Binomial(nx , θx) distribution and
Y a Binomial(ny , θy) distribution.
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The homogeneity hypothesis for 2 × 2 tables considers that, in one dimension,
both categories are equal or homogeneous, that is,

H : θx = θy = θ. (13.1)

Following the notation used in Table 13.1 and under hypothesis (13.1), the
likelihood function is specified by

L(θ | x, y, nx , ny) = nx !ny !
x!y!(nx − x)!(ny − y)! θ

x+y(1 − θ )nx+ny−x−y , (13.2)

in which θ ∈ [0, 1].
Given that the LRT statistic will be used in the sequel, we derive it now. Being

X × Y the sample space, � the unrestricted parameter space and �H the parameter
space under (13.1), the LRT statistic for a given sample point (x, y) ∈ X × Y is

λ(x, y) = supθ∈�H
L(θ | x, y)

supθ∈�L(θ | x, y)
=

sup
θ∈�H

L(θx , θy | x, y, nx , ny)

sup
θ∈�

L(θx , θy | x, y, nx , ny)

=
( x+y

nx+ny
)x+y( nx+ny−x−y

nx+ny
)nx+ny−x−y

(
x
nx

)x (
nx−x

nx

)nx−x (
y

ny

)y (
ny−y

ny

)ny−y
. (13.3)

Now we proceed to the description of the indices used in this chapter, namely:
the P-value, the p-values derived from chi-square test and the asymptotic LRT and
the e-value derived from the FBST.

13.2.1 P-value

The ideas behind the P-value, as presented here, were first discussed by Pereria
and Wechsler [7]. We implement their ideas and compute the P-value based on
the predictive distribution of (X,Y )— the marginal distribution of (X,Y ) before the
observations were collected. Following this approach, it is possible to obtain the exact
distribution of the LRT statistic and to avoid the violation of the likelihood principle.

To compute this index, it is necessary to derive the sampling distribution of the
test statistic under H. Therefore, we want to find the distribution—that does not
depend on θ—of the contingency table under H. For this, we consider that θ is a
nuisance parameter and then integrate (13.2), the likelihood function under H, over
θ , to eliminate it, that is,

h(x, y) =
∫ 1

0
L(θ | x, y, nx , ny)dθ =

(
nx
x

)(
ny
y

)
(
nx+ny
x+y

) 1

(nx + ny + 1)
. (13.4)
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To have a probability distribution, we must find the normalization constant. The
distribution is thus defined by

Pr (X = x,Y = y | H) = h(x, y)
nx∑
i=0

ny∑
j=0

h(i, j )

. (13.5)

To calculate
∑nx

i=1

∑ny
j=1 h(i, j ), an algorithm is used to obtain h(i, j ) for all possible

tables with margins nx , ny and then we sum over all these values.
Note that Pr (X = x,Y = y | H) does not depend on θ . Therefore, the P-value is

obtained directly from this distribution, by

P-value = Pr (λ(X,Y ) ≤ λ(x, y) | H) =
∑∑

(i,j ): λ(X,Y )≤λ(x,y)

Pr (X = i,Y = j | H),

in which λ(x, y) is the observed test statistic, given by (13.3).
The next sections briefly describe some other tests and their respective significance

indices.

13.2.2 Chi-Square Test

This is the most used test for the homogeneity hypothesis in 2×2 contingency tables.
Let ni· be total of the ith line, n·j the total for the j th column, n the total of the

table, � the number of lines, and c the number of columns. The test statistic is given by

χ2
obs =

�∑
i=1

c∑
j=1

(Oij − Eij )2

Eij

,

where Oij is the observed count of the i, j th cell and Eij = ni·×n·j
n

is the expected
value of the same cell, under the null hypothesis. Assuming some regularity
conditions [9, Chap. 17], the statistic χ2

obs has asymptotic distribution given by
χ2

(c−1)×(�−1). Since we are considering the case c = � = 2, the asymptotic p-value
for this test is given by

p-value = Pr (χ2
1 ≤ χ2

obs).

13.2.3 Asymptotic LRT

Another important index to take into account is the LRT asymptotic p-value. This
index for an observed point x ∈ X is the probability, under H, of the event

Sx = {z ∈ X : λ(z) ≤ λ(x)}. (13.6)



13 Homogeneity Tests for 2 × 2 Contingency Tables 167

Considering the usual regularity conditions [2, 9, 10], −2 ln [λ(x)] follows,
asymptotically, a chi-square distribution with m−h degrees of freedom, where m is
the dimension of the parameter space andh is the dimension of the null hypothesis [1].

13.2.4 FBST

Let π (θ | x) be the posterior density or distribution function of θ given the observed
sample, x, and T (x) = {θ ∈ � : π (θ | x) ≥ supθ∈�H

π (θ | x)} called the tangent
set to the hypothesis. The evidence measure supporting the hypothesis θ ∈ �H is
defined as Ev(�H , x) = 1 − Pr (θ ∈ T (x) | x), and called e-value.

Considering the notation established in Sect. 13.2, we first derive the posterior
distribution of (θx , θy).As prior for such vector, we consider a product of the uniforms,
the joint posterior being given by

θx , θy | x, y, nx , ny ∼ Beta(x + 1, nx − x + 1)Beta(y + 1, ny − y + 1). (13.7)

To compute supθx ,θy∈H π (θx , θy | x, y, nx , ny), we should maximize

π (θ | x, y, nx , ny) =
(
nx

x

)(
ny

y

)
(nx + 1)(ny + 1)θx+y(1 − θ )nx+ny−x−y ,

with respect to θ . Therefore,

sup
θ∈(0,1)

π (θ | x, y, nx , ny) = sup
θx ,θy∈H

π (θx , θy | x, y, nx , ny)

= (nx + 1)!(ny + 1)!
x!y!(nx − x)!(ny − y)!

(
x + y

nx + ny

)x+y (
nx + ny − x − y

nx + ny

)nx+ny−x−y

,

and T , the tangent set to the hypothesis is

T (x, y, nx , ny) = {θ ∈ (0, 1) : π (θ | x, y, nx , ny) ≥ sup
θ∈(0,1)

π (θ | x, y, nx , ny)},

finally leading to e-value,

e-value = 1 − Pr [θ ∈ T (x, y, nx , ny)].

The computation of the asymptotic e-value is rather simple and almost identical to
the asymptotic LRT p-value: it just requires the evaluation of Pr [−2 ln (λ(X,Y )) ≤
−2 ln (λ(x, y))]. But unlike the asymptotic LRT p-value, under regularity assump-
tions, the asymptotic distribution of −2 ln (λ(X,Y )) is shown to beχ2 withm degrees
of freedom, where m is the dimension of the parameter space. See [3] and [8] for
more on the asymptotic e-value.
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13.3 Comparing the Indices

In this section, we study the behavior of the proposed P-value when compared with
other indices. We remark the fact that this is not a simulation study since for each
sample size we evaluate all indices for all possible configurations of 2×2 contingency
tables.

First, considering that all indices presented in the previous section are based on
the same statistic, λ(x, y), we plot the indices against the value of the respective
statistic. The studied indices are the P-value, the LRT asymptotic p-value, the chi-
square p-value, and e-values (exact and asymptotic). The sample sizes considered are
(nx , ny) = {(5, 5), (10, 10), (17, 29), (30, 30), (100, 100), (300, 300), (1000, 1000)}.

Figure 13.1 shows the comparisons. It is clear that the exact and the asymptotic
e-values are quite similar, even for small sample sizes, being close to the 45o line
(grey circles and triangles). The P-value, and the LRT and chi-square asymptotic
p-values (diamonds, squares, and dark circles, respectively) are also very similar to
each other.

The difference found between e-values—exact and asymptotic—and all the three
p-values is a consequence of the construction of the indices. While e-values consider
m degrees of freedom, p-values considerm−h, where h is the dimension of�H . This
situation is more clear while noticing the asymptotic relationship between e-value
and the LRT p-value highlighted by Diniz et al. [3].

Bearing this relationship in mind, it is natural to question if there is some relation
between the P-value and the e-value. To verify that, Fig. 13.2, displays graphs with
P-values in the horizontal axis and exact e-values in the vertical axis. The grey
line represents the asymptotic relationship between e-value and the LRT p-value.
From the figures, it is clear that, as the sample size increases, both indices are
attracted towards the asymptotic line. In this case, we think that the asymptotic
relation between the e-value and the LRT p-value given in [3] is also being verified
for the P-value and the e-value.

13.4 Discussion and Conclusion

In this chapter, we implement the ideas of Pereira and Wechsler [7] to compute the
P-value, a significance index to test the homogeneity hypothesis in 2 × 2 contin-
gency tables, based on the LRT statistic. Our index does not violate the likelihood
principle since the distribution of the test statistic does not depend on the parameter
θ . Moreover, the comparison study provide us the behavior of the proposed index,
showing that it is very similar to the asymptotic p-values, and to the e-value.

The main disadvantage of the P-value is that we need to evaluate the probability
of every contingency table in the sample space, given the margins. For 2 × 2 tables
this is not time consuming, at least for the sample sizes we considered for in the
comparative study. For larger tables (3 × 3, 4 × 3, . . . ) it may be even impossible to
compute it, since the amount of tables to be evaluated increases exponentially.
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Fig. 13.1 Comparison between significance indices for contingency tables (horizontal axis: LRT
statistic; vertical axis: significance indices; red: P-value; green: p-value asymptotic; magenta: χ2

p-value; blue: e-value; cyan: asymptotic e-value)
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Fig. 13.2 Comparison between P-value and e-value for 2 × 2 contingency tables (the red line is
the asymptotic relationship between LRT’s p-value and e-value, dots on top of this line represent
equality between indices)
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However, the study shows that the P-value is very similar to the asymptotic
p-values, even for small sample sizes. Then, since the asymptotic approximation
turns out to be reasonable in unexpected conditions, we can consider that asymptotic
indices (p-values and e-values) produces reliable results even with small sample sizes.

As a perspective for future research, we may address the homogeneity test for
contingency tables. We can also compare the results with other options to evaluate
the exact p-value for contingency tables.

References

1. Casella, G., Berger, R.: Statistical Inference, 2nd edn. Duxbury Press, Pacific Grove (2001)
2. Chernoff, H.: On the distribution of the likelihood ratio. Ann. Math. Stat. 25(3), 573–578

(1954)
3. Diniz, M.A., Pereira, C.A.B., Polpo, A., Stern, J., Wechesler, S.: Relationship between

Bayesian and frequentist significance indices. Int. J. Uncertain. Quantif. 2(2), 161–172 (2012).
doi:10.1615/Int.J.UncertaintyQuantification.2012003647

4. Lin, M., Lucas, H.C., Shmueli, G.: Research commentary-too big to fail: large samples
and the p-value problem. Inf. Syst. Res. 24(4), 906–917 (2013). doi:10.1287/isre.2013.0480.
http://pubsonline.informs.org/doi/abs/10.1287/isre.2013.0480

5. Moran, J., Solomon, P.: A farewell to p-values? Crit. Care Resusc. 6, 130–137 (2004)
6. Pereira, C., Stern, J.: Evidence and credibility: a full Bayesian test of precise hypothesis.

Entropy 1, 104–115 (1999)
7. Pereira, C.A.B., Wechsler, S.: On the concept of p-value. Braz. J. Probab. Stat. 7, 159–177

(1993)
8. Pereira, C.A., Stern, J., Wechsler, S.: Can a significance test be genuinely Bayesian? Bayesian

Anal. 3(1), 19–100 (2008)
9. van der Vaart, A.: Asymptotic Statistics. Cambridge University Press, Cambridge (1998).

http://books.google.com.br/books?id=UEuQEM5RjWgC
10. Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite

hypotheses. Ann. Math. Stat. 9, 60–62 (1938)



Chapter 14
Combining Optimization and Randomization
Approaches for the Design of Clinical Trials

Victor Fossaluza, Marcelo de Souza Lauretto, Carlos Alberto de Bragança
Pereira and Julio Michael Stern

Abstract Intentional sampling methods are non-randomized procedures that select
a group of individuals for a sample with the purpose of meeting specific prescribed
criteria. In this paper, we extend previous works related to intentional sampling,
and address the problem of sequential allocation for clinical trials with few patients.
Roughly speaking, patients are enrolled sequentially, according to the order in which
they start the treatment at the clinic or hospital. The allocation problem consists
in assigning each new patient to one, and only one, of the alternative treatment
arms. The main requisite is that the profiles in the alternative arms remain similar
with respect to some relevant patients’ attributes (age, gender, disease, symptom
severity and others). We perform numerical experiments based on a real case study
and discuss how to conveniently set up perturbation parameters, in order to yield a
suitable balance between optimality—the similarity among the relative frequencies
of patients in the several categories for both arms, and decoupling—the absence of
a tendency to allocate each pair of patients consistently to the same arm.

We describe a possible allocation that the experimenter judges to be free of covariate inter-
ference as haphazard. Randomization may be a convenient way of producing a haphazard
design. We argue that it is the haphazard nature, and not the randomization, that is important.
It seems therefore that a reasonable approximation to an optimal design would be to select a
haphazard design. ... a detailed Bayesian consideration of possible covariates would almost
certainly not be robust in that the analysis might be sensitive to small changes in judgments
about covariates.

Lindley [16, pp. 438–439] - The Role of Randomization in Inference.
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14.1 Introduction

Lindley [17, pp. 47–48] illustrates the celebrated Simpson’s paradox with a medi-
cal trial example. In such example, the association between two variables, Treatment
and Recovery from a given illness, is reversed if the data is aggregated or disaggre-
gated over a confounding variable, sex, see also [33]. Randomized and double-blind
(masked) clinical trials are designed to shield the experiment from undesired bias
effects caused by undue interference or deliberate manipulation of confounding vari-
ables. The introduction of randomized tests, first proposed in Peirce and Jastrow [23]
and popularized by Fisher [11], has established a new paradigm for statistically valid
empirical research. However, the standard sampling methods by randomized design
are not always appropriate; for example, they have limited application when cost,
ethical or inherent rarity constraints only allow the use of very small samples.

Intentional sampling methods are non-randomized procedures that select or allo-
cate groups of individuals with the purpose of meeting specific prescribed criteria.
Such methods can overcome some of the aforementioned limitations of standard
randomized designs for statistical experiments. However, intentional or purposive
sampling methods pose several interesting questions concerning statistical infer-
ence, as extensively discussed in Basu and Ghosh [4], see also Schreuder et al. [27,
Sect. 6.2], Brewer [7] and Särndal [8] and following discussions in Madow et al.
[18].

This paper focus on sequential allocation methods, following previous research
in the field of intentional sampling presented in [12, 15]. Particularly, we discuss an
allocation scheme that combines aspects of intentional and randomized sampling
methods.

The paper is organized as follows. Section 14.2 provides a brief discussion of
sampling design under the perspective of linear regression superpopulation model.
Section 14.3 elucidates how to use linear regression models to handle compositional
data, which is of direct interest for our case study. Section 14.4 illustrates our ap-
proach of combining purposive sampling with random perturbation techniques for
providing samples which are approximately balanced, as stated by Royall and Pf-
effermann [26, p. 20], in an application case concerning a clinical trial allocation.
Section 14.5 presents and discusses our numerical experiments and results.

14.2 Linear Regression Superpopulation Model

We will introduce the basic ideas for our approach in the context of the linear
regression superpopulation model, as presented by Royall and Pfeffermann [26],
Pereira and Rodrigues [24] and Tam [30].

E

⎛
⎝
⎡
⎣ys
yr

⎤
⎦
⎞
⎠ =

⎡
⎣Xs

Xr

⎤
⎦β , Cov

⎛
⎝
⎡
⎣ys
yr

⎤
⎦
⎞
⎠ =

⎡
⎣Vs,s Vs,r

V ′
s,r Vr ,r

⎤
⎦.
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Row i of the n×m matrix X contains the explanatory variables for individual i,
and is known for the entire population. The response variable, yi , is observed for the
individuals in a given sample, S, indexed by i in s = [1, 2, . . . ,m], and unobserved
for the remaining individuals, indexed by i in r = [m+ 1,m+ 2, . . . , n]. (Whatever
the sample, s = [i1, i2, . . . , im], we can always reorder the indices so to place them
first.) We partition all vectors and matrices of the model accordingly and assume that
Vs,s > 0.

We seek an optimal linear predictor, p′ys , for a quantity of interest, κ = q ′y, and
define the auxiliary matrices: t ′ = [t ′s , t ′r ] = [p′ − q ′

s , −q ′
r ] and M = (

X′
sV

−1
s,s Xs

)−1
.

Since probability expectation is a linear operator, that is, for any random (vector)
variable, z, E (Az + b) = AE (z) + b, one can compute the expected value of the
prediction error,

E
(
t ′y
) = (

t ′X
)
β = (

t ′sXs − q ′
rXr

)
β.

Hence, for a general parameter β, the predictor p is unbiased if and only if it obeys
the balance constraint,

t ′X = t ′sXs − q ′
rXr = p′Xs − q ′X = 0.

Solving the normal linear system for the minimum variance unbiased estimator
problem at hand yields the solution

t∗s = (p∗ − qs) = V −1
s,s

(
Vs,r + XsU

(
X′

r − X′
sV

−1
s,s Vs,r

))
qr .

Finally, we can write the optimal (minimum-variance unbiased) prediction for the
quantity of interest, κ = q ′y, as

κ̂ = q ′
sys + q ′

r

(
Xrβ̂ + Vr ,sV

−1
s,s

(
ys − Xsβ̂

))
, where β̂ = MXsV

−1
s,s ys , and

Var
(
κ̂
)=q ′

r

(
Vr ,r − Vr ,sV

−1
s,s V

′
r ,s

)
qr+q ′

r

(
Xr−Vr ,sV

−1
s,s Xs

)
M
(
Xr − Vr ,sV

−1
s,s Xs

)′
qr .

The balance and optimality conditions obtained above can be used for choos-
ing a good predictor p, but they can also be used to select a “good” sample
s = [i1, i2, . . . , im]. Many survey sampling studies are interested in population
totals, where q = 1, that is, κ = 1′y where 1 is the column vector of ones of
appropriate dimension in the context. In this case, the balance equation takes the
form p′Xs = 1′X.

Robustness is also a desirable characteristic of a survey design. Imagine our model
is misspecified, say by omission of important covariates, Z, in the expanded covariate
matrix X̃ = [X,Z]. Without loss of generality, assume that we use “orthogonal”
covariates, for witch X′Z = 0 and Z′Z = I . We would like to still be able to
make a useful prediction. In general, this desire is just wishful thinking if we know
nothing about the ignored covariates inZ. Now, assume that we fixp as the expansion
predictor,p = (N/n)1, and choose a representative sample,Xs , for which the sample
totals are (approximately) balanced, that is, p′Xs ≈ 1′X. If we are lucky enough,
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the balance equation will also (approximately) hold for the omitted covariates, that
is, (N/n)1′Zs ≈ 1′Z. For further developments of this idea, see [24, 26, 30].

But how do we manage to get lucky? According to Lindley [16, pp. 438–439],
that seems to be the role of randomization in experimental design. For complemen-
tary and mutually supportive views of the role of randomization in statistical design
of experiments, see [6, 28, 29]. There is a vast literature in design-based random
sampling that aims to achieve this goal. In this paper, we explore the use of pur-
posive sampling. For a more extensive discussion of this approach and a complete
application case, see [15].

14.3 Compositional Models and Simplex Geometry

We begin this section reviewing some basic notions of compositional models
and Simplex geometry, as presented in [1, 2]. The open (m-1)-Simplex is the set
Sm−1 = {

x ∈ Rm | x > 0 ∧ 1′x = 1
}
, where 1 in the vector of ones of appropriate

dimension. The closure-to-unity transformation, from Rm+ to Sm−1, the additive lo-
gratio transformation, from Sm−1 to the unrestricted Rm−1 space, and the centered
logratio transformation, from Sm−1 to a hyperplane through the origin of Rm, are
defined as

clu(x) = (1/1′x)x, alr(x) = log ((1/xm)[x1, . . . xm−1]),

and clr(x) = log ((1/g(x))[x1 . . . xm]), g(x) = (x1x2 . . . xm)1/m.

It is easy to check the normalization conditions stating that 1′clu(x) = 1 and
1′clr(x) = 0, as well the following expressions of the inverse transformations

alr−1(z) = clu( exp ([z1, . . . zm−1, 0])), clr−1(z) = clu( exp ([z1, . . . zm])).

We can introduce the power (scalar multiplication) operator, ∗, and the pertur-
bation (vector summation) operation, ⊕, providing a vector space structure for the
Simplex, namely, α ∗ x = clu([xα1 , . . . xαm]) and x ⊕ y = clu([x1y1, . . . xmym]). The
perturbation operation can be interpreted as the effect of proportional decay rates in
y over the fractional composition in x. The power operation can be interpreted as
the α-times repeated effect of proportional decay rates. The perturbation operation
defines an Abelian (commutative) group, where the identity element is e = (1/m)1,
and the inverse of a perturbation is given by x−1 = clu([1/x1, . . . 1/xm]). Hence, we
define the difference x * y = clu([x1/y1, . . . xm/ym]).

Next, we equip the Simplex with a metric structure. More specifically, we search
for a distance function, DS(x, y), that exhibits the invariance properties that are most
adequate for the purpose of compositional analysis. The most important of these
invariance properties are:
- Perturbation invariance: For any perturbation, z, DS(x ⊕ z, y ⊕ z) = DS(x, y).
- Permutation invariance: For any permutation matrix, P , DS(Px,Py) = DS(x, y).
- Power scaling: For any α > 0, (1/α)DS(α ∗ x,α ∗ y) = DS(x, y).
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The following distance function exhibits all of these desirable invariance prop-
erties, as well as the standard properties required from a distance function, like
positivity, symmetry and the triangular inequality.

D2
S(x,y) =[clr(x) − clr(y)]′I [clr(x) − clr(y)] =

= [alr(x) − alr(y)]′H−1[alr(x) − alr(y)],Hi,j = 2δi,j + 1(1 − δi,j ).

We can further extend the mathematical structure over the Simplex to a vector
(finite Hilbert) space, defining the inner product

〈x, y〉S = clr(x)′Iclr(y) = alr(x)′H−1alr(y).

Defining the norm, ‖x‖2
S = 〈x, x〉S , it is easy to check that DS(x, y) = ‖x * y‖S

and that ‖x‖S = DS(x, e). Finally, we can compose the additive logratio transforma-
tion with an orthogonalization operation that translates Aitchison’s inner product for
the Simplex to the standard inner product for the unrestricted Euclidean space. For
example, we can use the Cholesky factorization L′L = H to define the isometric
logratio transformation ilr(x) = L−talr(x), where L−t denotes the transpose of L−1.
In this case, since H−1 = L−1L−t , we have

〈x, y〉S = ilr(x)′L(L−1L−t )L′ilr(y) = ilr(x)′I ilr(y) = 〈ilr(x), ilr(y)〉E .

All these compatible vector space structures make it easy to develop linear re-
gression models for compositional data, see [10, 21]. In the most simple terms, in
the Euclidean space we can use the standard linear properties of the expectation
operator, and consequent transformation properties for the covariance operator, as
reviewed in the previous section. These properties suffice to prove Gauss–Markov
theorem, allowing the computation of optimal unbiased estimators via least-squares
linear algebra, see [32, Sect. 14.4]. Hence, we can map compositional data, naturally
presented in Sm−1, into Rm or Rm−1, analyse the data with linear regression models
and, if so desired, map the models back to the Simplex.

The centered logratio transformation from Sm−1 to Rm requires regression mod-
els under linear equality constraints. Meanwhile, the additive logratio transformation
allows the use of standard (unconstrained) regression models in Rm−1. Moreover,
in many practical applications, the last coordinate in the Simplex, xm, is a signif-
icant proportion that may represent the preponderant component, an aggregate of
many residual or indiscriminated components, a dispersion medium, etc. In this
case, the coordinates generated by the additive logratio transformation have an intu-
itive interpretation. Furthermore, under appropriate conditions, the random variates
corresponding to these coordinates in the statistical model have probability distribu-
tions with interesting statistical properties, as analysed in [3], [25, Sect. 7]. Finally,
the isometric logratio transformation provides orthogonal coordinates in the unre-
stricted Euclidean space. However, in many practical applications, these orthogonal
coordinates have a less intuitive interpretation than the oblique coordinates given by
the additive logratio transformation.
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Nevertheless, all these approaches will define compatible statistical models,
render coherent statistical inferences, and mutually support each other for rich inter-
pretations. In particular, it is easy to translate to the context of compositional data
the results obtained in the last section concerning best unbiased predictors and well
balanced samples. This will be the starting point of the next section.

14.4 Haphazard Intentional Allocation for Clinical Trials

In the setting discussed in Sect. 14.2, we choose purposively a sample S that
represents well the covariates X, that is, so that (N/n)1′Xs ≈ 1′X. (We could even
seek a sample that, simultaneously, also approximately minimizes the variance of
our prediction κ̂ for κ = 1′y.) However, at the same time, we would like to use
some sort of randomization technique in order to obtain a sample S that is haphazard
with respect to the omitted covariates, so that it is (probably) balanced, that is,
(N/n)1′Z ≈ 1′Z. In this section, we introduce a technique for conciliating these
goals, in a clinical trial case study.

The case study discussed in this work is the allocation of patients with obsessive-
compulsive disorder (OCD) between two treatment arms, see [12]. Patients are
enrolled sequentially, according to the order in which they start the treatment at
the clinic or hospital. The allocation problem consists in assigning each new patient
to one, and only one, of two alternative treatments (arms). A requisite stated by
the trial coordinators is that profiles in the alternative arms remained similar with
respect to some relevant patients’ factors. In other words, it was expected that the
compositional vectors (i.e. relative frequencies of patients in each variable category)
remained similar each other as new patients were allocated. The available clinical
trial dataset consists of T = 277 patients.

Roughly speaking, the factors and respective number of classes considered are:
(1) Current patient’s age (a): three classes; (2) Treatment history (h): three classes;
(3) OCD symptom severity (v): nine classes; and (4) Gender (g): two classes. A
more detailed description on these factors and respective categories may be found in
Fossaluza et al. [12].

After some patients are already in treatment, we denote by nai , nhi , nv
i and n

g

i the
quantities of patients already allocated to arm i belonging to each category of factors
age, history, severity and gender. For example, na1 = [na1,1, na1,2, na1,3] denotes the
quantity vector of patients in arm 1 belonging to the three age classes.

In order to yield allocations with approximately the same number of patients in
each arm, we also consider, besides the previous factors, the sample size (z) in each
arm. With that purpose we define qi as the total number of patients allocated to arm i,
and the vector of total allocation to arm i and its complement, nz

i = [qi , (q1+q2−qi)].
The complete profile of arm i, i = 1, 2, is stored in the concatenated vector

ni = [nai , nhi , nv
i , n

g

i , nz
i ]. In order to avoid empty categories in the allocation process,

we may add to vector n a ground-state or weak-prior, see [25], in the form of
vector w = [wa , wh, wv, wg , wz]. For any character ξ in the set {a,h, v, g, z}, where
factor wξ has κ(ξ ) categories, we take wξ = [1/κ(ξ ), . . . , 1/κ(ξ )]. From vectors
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n and w, we obtain the regularized proportions vector: pi = [pa
i ,ph

i ,pv
i ,p

g

i ,pz
i ],

where p
ξ

i = clu(nξi + wξ

i ), ξ ∈ {a,h, v, g, z}.
We define the heterogeneity measure between arms 1 and 2 by the function:

�(p1,p2) = 1

5

(
Ds(p

a
1 ,pa

2 ) + Ds(p
h
1 ,ph

2 )+Ds(p
v
1,pv

2)+Ds(p
g

1 ,pg

2 ) + Ds(p
z
1,pz

2)
)
.

(14.1)

Let us consider a new patient that enrolls the study and must be allocated to one
of arms 1 or 2. We denote by xa , xh, xv, xg and xz the binary vectors indicating to
which categories the new patient belongs. For example, in vector xa = [xa1 , xa2 , xa3 ],
xak = 1 if and only if the patient belongs to age category k, k ∈ [1, . . . , κ(a)]. Vector
xz is set as xz = [1, 0]. So, the relevant information about the new patient is carried
by the vector x = [xa , xh, xv, xg , xz].

The arm allocation decision for the new patient is taken as follows.

1. For j = 1, 2, consider the allocation of the new patient, x, in arm j , that is,
for i = 1, 2, make mi = ni + δ(i, j )x and perform the following steps:
a) For i = 1, 2 and ξ ∈ {a,h, v, g, z}, compute the regularized proportions

p
ξ

i = clu(mξ

i + wξ

i );

b) For i = 1, 2, set pi = [pa
i ,ph

i ,pv
i ,p

g

i ,pz
i ];

c) For i = 1, 2, set bi = [ui , 1 − ui], where ui are independently generated from
Unif orm(0, 1) distribution;

d) For ε ∈ [0, 1], compute the ε-perturbed distance

dε(j ) = (1 − ε)�(p1,p2) + εDs(b1, b2).

2. Choose the allocation j that minimizes dε(j ), assign the new patient to the
corresponding arm, and update vector n accordingly.

The perturbation parameter ε introduces a random component in the allocation
method. The higher the value of ε, the higher the proportion of randomness in
the allocation. For ε = 0, we have a deterministic intentional allocation scheme,
as described in [12], and for ε = 1, we have the pure random allocation method,
which consists in assign each patient randomly (with probability 0.5) to one of the
two arms.

14.5 Numerical Experiments

In order to evaluate the performance of our allocation procedure, we conducted
some numerical experiments described below.

We generated P = 300 random permutations of the original OCD data, each one
representing a possible sequence of patients arriving to the hospital or clinic. For
each random permutation and for each value of ε ∈ {0.005, 0.01, 0.05, 0.25, 1}, we
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ran the haphazard intentional allocation method H = 300 times, each one expected
to yield a different allocation configuration. At each patients’ permutation we also
ran once the deterministic intentional sampling procedure, by setting ε = 0.

Two criteria were used to analyse the performance of the haphazard intentional
allocation method: Optimality and Decoupling. The first criterion, Optimality, is
based on the distance � defined in Eq. 14.1 and concerns the difference among the
relative frequencies of patients in the several categories for both arms.

The second criterion, Decoupling, concerns the absence of a tendency to allocate
each pair patients to the same arm. In this work, we use the Yule’s coefficient of
association (Q), see [34], in the following way. After each batch of H runs of
haphazard allocations, for each pair of patients, A andB, we build a 2×2 contingency
table z where zij denotes the number of runs patient A was assigned to arm i and
patient B was assigned to arm j (i, j = 1, 2).

The Yule’ coefficient, given by Q = (z11z22 − z21z12)/(z11z22 + z21z12), measures
the balance among the number of pairs in agreement and disagreement. It ranges in
the interval [ − 1, 1]; equals zero when the numbers of agreement and disagreement
pairs is equal; and is maximum (−1 or +1) in the presence of total negative (complete
disagreement) or positive (complete agreement) association.

Figures 14.1 and 14.2 present the 5, 25, 50, 75, 95% empirical percentiles of� and
Q, respectively. In Fig. 14.1, the quantiles for � span the H haphazard allocations.
In Fig. 14.2, the quantiles forQ span the T (T −1)/2 pairs of patients, where the value
of Q for each pair is computed over the H haphazard allocations. Each bar height
corresponds to the median over the P random permutations, and the vertical line in
each bar represent the corresponding (5%, 95%) percentiles. Continuous and dashed
horizontal lines in Fig. 14.1 represent, respectively, the median of distance � for the
deterministic intentional allocation method, ε = 0, and the (5%, 95%) percentiles
over P random permutations. Figure 14.2 omits the percentile 50%, since the Yule’s
coefficient medians were close to zero for all allocation methods.

Figure 14.1 shows a clear difference between the optimality (�) achieved by the
haphazard intentional allocation method and the pure random method. Notice that,
for ε ≤ 0.01, even the 95% percentiles of � for the haphazard intentional method
are lower than the 5% percentile for the pure random method.

We also notice that, for the same range of ε, the distribution of distances �

achieved by the haphazard intentional method comes close to the distribution pro-
vided by the deterministic method, only showing moderate degradation in the 95%
percentile.

Figure 14.2 shows that, for the lower range of ε, the absolute values of Yule’s
association coefficient (Q) tend to be high, indicating that the haphazard intentional
allocation method, with too small an ε, tends to allocate the same pairs of patients
in the same arms, that is, it fails to achieve the desired decoupling property. On the
other hand, moderate values of ε attenuate these dependencies, making the haphazard
intentional allocation method perform in the decoupling criterion almost as well as
the the pure random method. Indeed, for ε ≥ 0.05, the distribution of Yule’s Q is
very close to the pure random method, which provides our benchmark for decoupling
performance.
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Fig. 14.1 The 5, 25, 50, 75 and 95% percentiles for � optimality, with ε ∈ {0, 0.005, 0.01, 0.05,
0.25, 1}

Fig. 14.2 The 5, 25,50,75 and 95% percentiles for Yule’s Q decoupling, with ε ∈ {0, 0.005, 0.01,
0.05, 0.25, 1}
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It is worth mentioning that, for the haphazard intentional allocation method, the
percentiles intervals (represented by vertical lines in each bar) are, in general, similar
to the pure random method (except for the 5 and 95% percentiles of Q for ε ≤ 0.01).
This result suggests that the proposed method is highly adaptive, in the sense that
its performance indicators (optimality and decoupling) are little sensitive to patients
permutations.

The results of these numerical experiments indicate that, under an appropriate cal-
ibration of the perturbation parameter ε, the haphazard intentional allocation method
proposed in this paper has the remarkable property of being able to conciliate the
performance on optimality achieved by the deterministic intentional allocation with
the performance on decoupling achieved by the pure random allocation method.

14.6 Acknowledgements and Final Remarks

The present article does not include Bayesian models incorporating prior information
although, formally, such models only generalize the implicit uninformative priors.
Despite our focus in this paper have been on the conceptual and practical discussions
concerning randomization and intentional sampling, it is perfectly possible to extend
our analysis to more general Bayesian models, a work we intend to do following [5].
The article Six Approaches to Enumerative Survey Sampling, by Brewer and Särndal
[8], see also [27, Sect. 6.2], has been used for the last 30 years as a classification
scheme concerning, among other things, the role of randomization in survey sam-
pling. However, it is not straightforward to fit the allocation method we have just
presented in that classification scheme. We hope to explore this theme in following
articles.

As duly noted by an anonymous referee, an important topic for further research
concerns a comparative analysis of the logical status of all the aforementioned
randomization, intentional and mixed-randomization sampling methods according
to several possible theoretical and epistemological frameworks. In the standard
Bayesian decision theoretical framework, randomization methods may not be
incompatible with optimal decisions, and may even be able to address some
extra-theoretical demands. However, they can never find a direct intra-theoretical
justification; see [9, Sect. 8.5, pp. 128–130]. Nevertheless, the standard decision
theoretical framework can be expanded by taking into account games with multiple
adversarial opponents, see [19, 20], [29, Sect. 6.8]. Bonassi et al. [6] explore this ex-
panded decision-theoretical framework, survey the pertinent literature, and suggest
interesting approaches for further development. Finally, the function and logical sta-
tus of randomization methods can be analyzed in the framework of systems theory,
see for example [22, pp. 16–20, 340–348] and [28].

All the aforementioned theoretical frameworks offer alternative ways to deal with
concepts related to decoupling, separation, shielding from undue interference, or
defensive strategies against players with hostile objectives. Hence, logical analyses
conducted in these frameworks should be able to provide guidelines for the coherent
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development and application of intentional but haphazard sampling methods in the
scope of Bayesian statistics.

The anonymous referee also stresses the importance of carefully analyzing the
ethical consequences of using alternative sampling methods. In the context of clin-
ical trials, the experimenter must always consider at least two competing (if not
conflicting) objectives: On one hand, the primary objective of any clinical trial is the
acquisition of valid or objective knowledge, see; Chap. 5. On the other hand, provid-
ing appropriate health care for all patients participating in the trial is a second goal
that should never be neglected, see [13, 14]. The use of intentional sampling methods
is a technical solution that has the potential of facilitating the reconciliation of such
multiple objectives. Moreover, these considerations can be extended to multi-phase
and adaptive trials. All these are topics that certainly deserve further research.

The authors are grateful for support received from EACH-USP, the School of
Humanities Arts and Sciences; IME-USP, the Institute of Mathematics and Statistics
of the University of São Paulo; FAPESP, the São Paulo Research Foundation (grants
Reg-2012/04788-9 and CEPID-2013/07375-0); and CNPq, the Brazilian National
Council for Scientific and Technological Development (grants PQ-306318-2008-3
and PQ-302046-2009-7).
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Chapter 15
Factor Analysis with Mixture Modeling to
Evaluate Coherent Patterns in Microarray Data

Joao Daniel Nunes Duarte and Vinicius Diniz Mayrink

Abstract The computational advances over the last decades have allowed the use
of complex models to analyze large data sets. The development of simulation-based
methods, such as the Markov chain Monte Carlo (MCMC) method, has contributed to
an increased interest in the Bayesian framework as an alternative to work with factor
models. Many studies have applied the factor analysis to explore gene expression data
with results often outperforming traditional methods for estimating and identifying
patterns and metagene groups related to the underlying biology. In this chapter, we
present a sparse latent factor model (SLFM) using a mixture prior (sparsity prior)
to evaluate the significance of each factor loading; when the loading is significant,
the effect of the corresponding factor is detected through patterns displayed along
the samples. The SLFM is applied to investigate simulated and real microarray data.
The real data sets represent the gene expression for different types of cancer; these
include breast, brain, ovarian, and lung tumors. The proposed model can indicate how
strong is the observed expression pattern allowing the measurement of the evidence
of presence/absence of the gene activity. Finally, we compare the SLFM with two
simpler gene detection methods available in the literature. The results suggest that
the SLFM outperforms the traditional methods.

15.1 Introduction

In recent years, Bayesian framework has become an important alternative to explore
factor analysis, being the main reason, the development of iterative Markov chain
Monte Carlo (MCMC) simulation methods, which have allowed the use of complex
models and large data sets. In particular, Bayesian factor modeling has brought
interesting improvements to the analysis of gene expression data. In the literature,
we can easily find studies applying this model on microarray data and, in most cases,
their results show better identification of patterns and hidden genomic structures.
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For example, West [16] introduced sparse latent factor models (SLFM) as a nat-
ural extension of the sparse regression model. The study applies prior distributions
for variable selection and demonstrates the ability of latent factor models to describe
the pattern/profile of signatures on genomic expressions. Lucas et al. [6] also ap-
plied sparse hierarchical prior distributions and obtained substantial improvements
in the identification of complex patterns of covariance between genes. The paper
explores the Bayesian methodology for large-scale regression, analysis of variance,
and latent factor models. Carvalho et al. [2] used sparsity priors for addressing the
dimension reduction in latent factor models applied to gene expression data. Stochas-
tic simulation and evolutionary stochastic search methods are used to deal with the
uncertainty about the number of latent factors. This same problem is studied in [5]
using reversible jumps MCMC methods.

In this chapter, we improved the SLFM presented in [9] by using a univariate
distribution for each element of the α vector, thus giving the model more flexibility
on pattern detection. We also implemented this model in the statistical software R
[12].

The focus of this study is to perform inferences with SLFM. We will apply this
model to capture the underlying structure of gene expression data and use results
of variable selection to classify arrays of data regarding the presence or absence of
a particular gene. This model will be assessed in terms of: (i) quality of parameter
estimation and (ii) quality of classification of gene presence.

We use real gene expression data from breast, lung, ovarian, and brain tumors. We
also explore simulated data to evaluate model accuracy; in this case, real classification
of gene activity is known and chosen by the researcher. Section 15.2 describes the
SLFM and indicates the MCMC setup. Section 15.3 shows the analysis using the
sparse latent factor model-univariated (SLFM-U) which assumes the sparsity prior
for each loading separately. Finally, Section 15.4 presents the conclusions.

15.2 Sparse latent factor model

Factor analysis has been used for dimension reduction and to study patterns and
structures in the data set. The latent factor models, presented in [16], split the variation
of predictor variables into components that represent recurring patterns, and separate
them from the inherent variation in each variable, which we call noise. Large data
sets, e.g., microarray data, require strategies to facilitate the analysis, given the large
number of parameters proposed in a usual statistical model for this case. Sparse
models are widely used in this context because they are designed to identify zeros
or nonsignificant components. An SLFM is discussed below.

15.2.1 The SLFM

Let X be the matrix containing the data set. Assume that X has dimensions m × n,
where each row i may represent an individual, a variable , a feature, etc. Each column
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j represents a sample (vector of observations). Consider X = αλ + ε where α is
the loadings matrix, λ is the factor score matrix, and ε represents the noise matrix
(m × n). The α matrix is m × L and λ is L × n, where L is the number of factors
in the model. We assume that εij ∼ N (0, σ 2

i ) and σ 2 = (σ 2
1 , σ 2

2 , . . . , σ 2
m). Note that

the variance of ε is indexed by i suggesting that it is constant along the samples but
differs from row to row.

Let us assumeL = 1 to illustrate a simpler case with only one factor. Accordingly,
αwill be a column vector (m×1) andλwill be a row vector (1×n). The following prior
distributions are specified: λj ∼ N (0, 1) and σ 2

i ∼ IG(a, b). The N (0, 1) is chosen
to fix the magnitude of λ and then avoid identification problems related to the values
of α and λ. We use a sparse prior for the loading αi : αi ∼ (1−Zi)δ0(αi)+ZiN (0,ω),
where Zi ∼ Bernoulli(qi) and qi ∼ Beta(λ1, λ2). As each loading in α is sampled
from an univariate distribution, we call this model SLFM-U.

The likelihood can be expressed in two different ways. Calculations of poste-
rior distributions are simplified depending on the chosen version of the likelihood
function.

• Likelihood 1: Denote X·j as the j th column of X. Then (X·j |α, λj , σ 2) ∼
Nm[αλj ,D], where D = diag(σ 2

1 , σ 2
2 , . . . , σ 2

m). Assuming conditional indepen-
dence between the columns of X, we have:

p(X|α, λ, σ 2) =
n∏

j=1

p(X·j |α, λj , σ 2).

• Likelihood 2: Let Xi· be the ith row of X. Then (X′
i·|αi , λ, σ 2

i ) ∼ Nn[λ′αi , σ 2
i In].

Supposing conditional independence between rows of X, we have:

p(X|α, λ, σ 2) =
m∏
i=1

p(Xi·|αi , λ, σ 2
i ).

Assuming independence between rows and columns of X, the full conditional
distributions used in the Gibbs sampling are as follows: if Zi = 0, then
(αi |α−i , λ, σ 2,Z,X) ∼ δ0(αi); if Zi = 1, then (αi |α−i , λ, σ 2,Z,X) ∼ N (Mα ,Vα),
with Vα = [ 1

ω
+ 1

σ 2
i

∑n
j=1 λ

2
j ]−1 and Mα = Vα[ 1

σ 2
i

∑n
j=1 λjXij ]. The parameter qi

represents the prior probability that a given variable has null effect; its full con-
ditional distribution is: (qi |Z) ∼ Beta(γ ∗

1 , γ ∗
2 ), with γ ∗

1 = γ1 + ∑m
i=1 Zi and

γ ∗
2 = γ2 + m − ∑m

i=1 Zi . The full conditional distribution of Zi = 1 is given
by:

q∗
i = p(Zi = 1|α, λ, σ 2, qi ,X) = qi

qi + N [0|Mα ,Vα ]
N [0|0,ω] (1 − qi)

. (15.1)

In order to calculate the full conditional distribution of λ, we use Likelihood 1
to reach the following formulation: (λj |α, λ−1, σ 2,X) ∼ N (Mλ,Vλ), where Vλ =
(α′D−1α+1)−1 andMλ = Vλ(α′D−1X·j ). The full conditional distribution ofσ 2, i =
1, . . . ,m is: (σ 2

i |α, λ, σ 2
−i ,X) ∼ IG(A,B), with A = a + (n/2) and B = b +

(1/2)(Xi·X′
i· − 2αiλX

′
i· + αiλλ

′α′
i).
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15.2.2 MCMC and Analysis Criterion

This section discusses the MCMC algorithm used to generate posterior samples of the
parameters. The Gibbs sampling takes into account the full conditional distributions,
discussed in the previous section, to obtain the samples. The algorithm is as follows:
First, iterate over i: (i) sample σ 2

i from IG(A,B), (ii) sample Zi , (iii) sample qi
from Beta(γ ∗

1 , γ ∗
2 ), (iv) sample αi from N (Mα ,Vα) if Zi = 1, and (v) make αi = 0

if Zi = 0. Finally, iterate over j to sample λj from N (Mλ,Vλ).
In this study, we consider the posterior mean as the point estimate summarizing

the information of the chains. However, since we are using a sparse prior for α, it
is necessary to estimate qi in first place and decide whether αi will be set to zero
or estimated from the sample related to the nonzero component of the mixture. The
identification of rows not affected by the factor considers the following criterion:
The factor effect over the ith row of X is null, if q∗

i in (15.1) is small (less than
0.5) for the ith factor loading. The main aim is to classify data matrices in terms
of presence or absence of patterns. This classification will also be based on the
posterior probabilities q∗

i in (15.1). The matrix classification follows the criterion:
First, calculate the high probability density (HPD) intervals for q∗

i ; αi is said “absent”
if the superior limit of the HPD interval is less than 0.5, it is “marginal” if the HPD
interval includes to 0.5, and it is “present” if the inferior limit of the HPD interval
is greater than 0.5. Finally, calculate the number of loadings in each category; the
whole matrix X is said to display a coherent pattern if the category “present” is the
most frequent.

In terms of matrix classification for most rows, “present” indicates the occur-
rence of a consistent pattern, suggesting gene activity and “absent” indicates that
no pattern is observed (no activity). The matrix classification “marginal” suggests
an intermediate observed pattern which is not strong or weak enough to guide our
decision (inconclusive gene activity).

15.3 Gene Expression Analysis

15.3.1 Affymetrix Technology

The data used in the analyses are related to GeneChip Affymetrix microarrays rep-
resenting the gene activity in different types of tumor cells. In short, the data are
obtained through the hybridization property of complementary nucleic acids. Single
RNA nucleotide strands, 25 bases long, are extracted from the tumor cell and labeled
with a fluorescent tag. In the hybridization procedure, the single RNA strand from
the tumor will connect to its complementary sequence built in a small chip or array,
if such sequence is considered in the array. Next, the array is washed to remove
unmatched material and a laser is applied to activate the microarray fluorescence.
The light intensity is scanned and translated into a gene expression measurement
which is proportional to gene activity of that sequence in the tumor. It is important
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to clarify that each sequence of 25 bases is called a sequence probe representing a
fraction of the gene; in this study, we use the term “gene” to refer to a probe set
containing 11–20 probes in the microarray.

Before fitting the models it is necessary to preprocess the data to remove noise
effects; this is a standard procedure in microarray analysis. The brightness of a chip
is subject to distortions as the amount of RNA in the sample and changes in the
camera exposure time. Also, the raw data intensities are skewed and have a long
tail. We assume that the intensities of each probe follows the normal distribution;
the mean and variance may vary from probe to probe. The scanner calibration can
also generate unwanted effects, which occurs in all microarrays. To deal with those
issues, we used the following steps: (i) divide the probe intensities on each array by
the mean intensity of the corresponding array, (ii) transform data using the natural
logarithm, (iii) normalize the rows, and (iv) calculate the first principal component
of the whole data set and subtract it from the expressions in each row of X, i.e.,
Xi − Xi × pc1 × pc′

1. The data matrix used to fit the models is the result of this
procedure.

15.3.2 Simulated Data Analysis I

In order to study the performed of the model, we performance a simulated study.
In this case, real values of the target parameters are known and were chosen to
generate the data. Performance is assessed by comparison of estimated and real
values. Data was generated via the following steps: (i) independently sample 251
λj ’s from N (0, 1), (ii) independently sample 40 αi’s from N (0, 1), (iii) randomly
set 5 αi’s as zeros, (iv) sample 40 σ 2

i from IG(2.1, 1.1), (v) generate the εij ’s from
N (0, σ 2), and (vi) calculateX = αλ′+ε. The data matrixX has dimensions 40×251,
the same size of a real matrix considered ahead. Preprocessing is not required in this
simulated case.

Figure 15.1 shows the real values of the parameters, the estimated posterior mean,
and the HPD intervals (95 %). As it can be seen, the model was effective in estimat-
ing the parameters; most of the HPD intervals contain the real values. The SLFM
incorrectly classifies 7 αi’s out of 40 loadings, i.e., the success rate of classification
was 82.5 %.

15.3.3 Simulated Data Analysis II

This simulated study is concerned with the classification of the whole matrix repre-
senting a probeset. The procedure to generate the data follows the steps: (i) compute,
for all 22,283 probesets, the correlation matrix expressing the association between
rows of a real matrix X; this gives us an idea of how strong would be the pattern
in each data matrix; (ii) select 500 matrices (200 with low correlation and 300 with
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Fig. 15.1 Performance of the model: real values (triangles), posterior mean values (circles), and
the HPD interval represented by the line segment. Parameters: α (left); λ (center) σ 2 (right)

Table 15.1 Comparison of false positive rate (FPR), false negative rate (FNR), true positive rate
(TPR), and true negative rate (TNR) for MAS 5.0 P/A and SLFM-U

Model FPR (%) FNR (%) TPR (%) TNR (%)

MAS 5.0 P/A 45.5 8.6 91.3 54.5

SLFM-U 0 0 100 100

intermediate to strong correlation); (iii) fit the SLFM-U, for those 500 matrices, and
save the parameter estimates {α̂, λ̂, σ̂ 2} as reasonable choices of real values; and (iv)
generate 500 simulated matrices using X = α̂λ̂ + ε; for the 200 low pattern cases,
set α = 0. A good model should be able to correctly identify the status: “absent”
(200 cases with α = 0) or “present” (300 cases with intermediate to strong pattern).

Table 15.1 shows that SLFM-U was able to classify 100 % of the matrices cor-
rectly, i.e., 0 % of false positives and 100 % of true positives. It also shows that MAS
5.0 P/A had 8.6 % of false negative and 45.5 % of false positives, suggesting that
SLFM-U outperforms the MAS 5.0 P/A. Figure 15.2 shows a graph representing
the proportions of “presence” for each matrix. The first 200 points in the level 0 are
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Fig. 15.2 Left: Proportion of “presence” in each matrix; right: ROC curve comparing MAS 5.0
P/A (continuous) and SLFM-U (dashed)

related to low pattern matrices (in these cases, 0 is the proportion of rows display-
ing significant patterns). The following 300 cases are related to intermediate-strong
pattern matrices where the proportion of significant rows are above 0.5 for all cases.
Figure 15.2 also presents ROC curves indicating that SLFM-U was able to achieve
higher TPR and lower FPR than MAS 5.0 P/A.

15.3.4 Real Data Analysis I

In this study, we compare the SLFM-U to other two detection methods (MAS 5.0
P/A and PANP) proposed in the literature. The MAS 5.0 P/A is a method developed
by Affymetrix and it is built within the MAS 5.0 preprocessing software. This method
uses information from perfect match (PM) and mismatch (MM) probes to calculate
the scoreR = (PM−MM)/(PM+MM). The Wilcoxon signed rank test is applied
to the score data and, based on the p-value, the matrices are classified as “present,”
“marginal,” or “absent.” The PANP method, proposed by [15], uses information
from the negative strand matching probes NSMPs ) to build an empirical cumulative
density function; based on an arbitrary cut point, the data matrices (probe sets) are
classified into one of those three categories.

The data set used in this analysis was developed by Affymetrix and can be found at:
http://www.affymetrix.com/support/technical/sample_data/datasets.affx. This data
set consists of 3 replicates of 14 separate hybridizations of 42 DNA transcripts from
the human genome. Solutions with different concentrations (0–512 pm) of 42 target
sequences were used in the hybridization. In this context, a good detection method
should be able to identify the 42 target sequences as present in the DNA transcription.

This study has also been performed by [9], but using a Bayesian factor model with
a single multivariate mixture prior to the whole vector α (SLFM-M, the M stands

http://www.affymetrix.com/support/technical/sample_data/datasets.affx
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for the multivariate configuration of the sparsity prior). Their results are very similar
to the ones obtained here: the PANP was able to identify 16 sequences as “present”
while the MAS 5.0 P/A indicates 14 cases as “present”; the SLFM-U proposed here
correctly identifies all 42 target genes as “present”. Therefore, SLFM-U outperforms
PANP and MAS 5.0 P/A in this particular data analysis. PANP and MAS 5.0 P/A are
very simple methods whose classification depends on an arbitrary choice of cutoff
points. In addition, these methods provide a P/M/A call for each array or sample,
whereas, the SLFM-U takes into account the coherent patterns displayed along all
arrays to generate its call; the most frequent call generated by PANP and MAS
5.0 P/A across all samples is used to summarized their detection results for each
gene. Given their simplicity, PANP and MAS 5.0 P/A have the advantage of being
computationally faster to run; however, the SLFM-U has a better performance and
may be implemented in a more effective way reduce its computational cost.

We also have used SLFM-U to analyze all the 22,300 probesets from this data set
and compare the results with the other methods. The MAS 5.0 P/A identifies 46.9 %
of the genes as “present,” the PANP method identifies 99.8 % of presence while
SLFM-U recognized 1.9 % of the genes as “present.” Since the correct classification
is not known, it is not possible to evaluate the performance of the methods for the
whole data set, but here we can see that the SLFM-U is more restrained in a sense
that it indicates the “presence” status only if the the data provides strong evidence
for this.

15.3.5 Real Data Analysis II

In this study, we evaluate the influence of copy number alteration (CNA) on the gene
expression of four different types of cancer. Previous studies [7, 11] have identified
for breast cancer, chromosome regions associated with the occurrence of CNA. This
type of abnormality may have important effects on the evolution of cancer. We will
check if the genes located in a chromosomal region with CNA, identified in [7] for
breast cancer, also indicate the occurrence of CNA in other types of cancer (lung,
ovarian, and brain tumors).

Figure 15.3 shows that for each data set approximately half of the genes were
classified as “present.” We have found that genes 5, 11, 15, and 22 were classified
as “present” in all seven data sets. We have analyzed a second region with CNA,
and the results are similar: three genes of region 2 were classified as “present” in all
seven data sets.

15.4 Conclusions

In this study, we have discussed an SLFM-U to investigate how strong are the patterns
exhibited across samples/arrays. The coherent pattern across samples is an important
source of information to evaluate the gene activity. The probes (fractions of the
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Fig. 15.3 CNA analysis of genes in a chromosomal region for seven data sets representing four
types of cancer. The boxplots represent the posterior distribution of the probabilities q∗

i , used in our
criterion to evaluate the significance of αi
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gene sequence) tend to behave similarly, in terms of gene expression, within the
same sample when the gene is present; combining their expressions along samples
would display a coordinated pattern. The SLFM-U takes advantage of this type of
information to generate a P/M/A detection call.

We have implemented the Gibbs sampling algorithm for the posterior inference
related to the SLFM-U. Our main goal was to use the SLFM-U in the gene expression
classification problem. This study have considered simulated and real data sets to
explore the model results. In the first simulated study, we have generated data to
evaluate how accurate is the parameter estimation for the Bayesian model. Looking
at the plots comparing the real and estimated values, we can conclude that the model
performs well, since most of the HPD intervals contain the true values. In the second
simulated study, we have generated data to assess the matrix classification regarding
the presence of patterns. The SLFM-U outperformed the MAS 5.0 P/A, achieving
100 % of true positives with 0 % of false positives in our data analysis.

In the first real data analysis, we have used data previously studied in [9]; our
results agree with those presented in this paper. In brief, we have 42 arrays hybridized
with solutions containing different concentrations of 42 target sequences; thus, these
42 sequences are supposed to be classified as “present.” The SLFM-U has correctly
identified all 42 cases as “present,” while other methods (MAS 5.0 P/A and PANP)
provide wrong detections. We have also compared the classification of 22,300 probe-
sets using SLFM-U, MAS 5.0 P/A and PANP; the three methods indicate different
results with the percentage of presence cases being much lower for the SLFM-U.

In the second real data analysis, we have fitted the model to study CNA in different
types of cancer. In the presence of CNA, the expression of neighbour genes tend to
behave coherently leading to a strong pattern in our data matrix; here, each row
represents a whole probe set. In the literature, a group of genes was identified in
a chromosomal region with CNA for breast cancer. The purpose of this study was
to determine whether this CNA is also observed for the same group of genes in
other type of cancer. Our results indicate that some genes are affected by CNA in all
four types of cancer. This conclusion is based on the analysis of coherent patterns
displayed in each data matrix; the boxplots located above 0.5 provide evidence of
CNA.
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Chapter 16
Bayesian Hypothesis Testing in Finite
Populations: Bernoulli Multivariate Variables

Brian Alvarez R. de Melo and Luis Gustavo Esteves

Abstract Bayesian hypothesis testing for the (operational) parameter of interest
in a Bernoulli (multivariate) process observed in a finite population is the focus
of this study. We introduce statistical test procedures for the relevant parameter
under the predictivistic perspective of Bruno de Finetti in contrast with the usual
superpopulation models. The comparison between these approaches, exemplified in
a simple scenario of majority elections, shows considerable differences between the
corresponding results for the case of observed large sampling fractions.

16.1 Introduction

Finite population models are commonly used when the size of the population under
investigation, N , is known. When we do not know the value of N , superpopulation
models are used instead.Applications of finite population models usually take place in
situations where the population is small (e.g., when we want to study characteristics of
a number of industries or banks of a certain town) or the sampling fraction [10] is large
(for instance, when forecast about the final result of an election must be performed
based on the partial counting of votes at advanced stage). In such conditions, it is
expected that inferences drawn from these models are more accurate than those from
superpopulation models.

In this chapter, we consider a population composed ofN units,P = {1, 2, . . . ,N}.
A real number (or vector) is associated to each unit in such a way that we have the
vector of population values X = (X1,X2, . . . ,XN ), where Xi denotes the charac-
teristic of interest of the ith individual, Xi ∈ R

k , k ≥ 1. We assume that the vector
X is unknown, its distribution is exchangeable, that is, the order of the population
units does not change the distribution of X [5], and that the population being stud-
ied is closed, in the sense that the only random quantities under consideration are
X1, . . . XN [4].
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In finite population models, inferences are made about operational parameters,
which are functions of the vector X. For instance, if X = (X1,X2, . . . ,XN ) ∈ R

N ,
max{X1, . . . ,XN } and X1 + . . . + XN are operational parameters. The inference
about the operational parameter is carried out by determining its posterior distri-
bution (the prior is derived directly from the uncertainty on X) given the observed
values from the sample (in this chapter, we then test certain hypotheses of interest).
The advantages of working with the predictivistic approach [4], and therefore with
operational parameters, are that the parameters are observable quantities, as opposed
to abstract quantities, such as limits of relative frequencies, and there is no need
to define a parametric space [9]. The predictivistic perspective was introduced by
Bruno de Finetti and is considered a more “pure” Bayesian approach [5].

We consider the scenario of a small majority election with three candidates, as
described by Fossaluza [3]. We regard the population total(s) as the operational
parameter of interest and suppose that a sample of n < N units, (X1, . . . ,Xn)
(without loss of generality as X is exchangeable), is available. The aim is to test
hypotheses of interest concerning the operational parameter under the predictivistic
approach and compare the results obtained with those found by adopting the usual
Bayesian superpopulation model.

This chapter is organized in the following way: In Sect. 16.2, we examine the
case where X1, . . . ,XN are Bernoulli random variables indicating if the electors
will (or will not) vote for a given candidate. One-sided and simple hypotheses tests
are discussed. Section 16.3 deals with the case where X1, . . . ,XN represent the
preferences of the voters among all the candidates. The possibility of a second round
election (if none of the candidates attains a simple majority in the first round) is
tested on the basis of the preferences of n electors. Finally, in Sect. 16.4, we make
our final comments and point a few questions for future investigation.

16.2 Univariate Case

Consider a situation in which we desire to estimate the amount (proportion) of voters
that will vote for a given candidate. We may consider, for each elector, a Bernoulli
variable that takes the value 1 if he votes for the specified candidate, and 0 otherwise.
Thus, our interest is to make inference about the population total T (X) = ∑N

i=1 Xi

(or, equivalently, about the population proportion T (X)
N

). The posterior distribution of
the operational parameter T (X), given the sample information X1 = x1, . . . ,Xn =
xn, n < N , under the finite population predictivistic standpoint is presented in the
following result.

Result 15.1. Let X = (X1, . . . ,XN ) be an exchangeable random vector taking values
on {0, 1}N according to the probability measure P and define pt = P(T (X) = t),
t = 0, 1, . . . ,N , as the prior uncertainty about the parameter T (X). The posterior
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distribution for T (X), given a sample (x1, . . . , xn), is:

P
(
T (X) = t

∣∣X1 = x1, . . . ,Xn = xn
) ∝

(
N − n

t −∑n
i=1 xi

)

(
N

t

) pt ,

if t ∈{∑n
i=1 xi , . . . ,N−n+∑n

i=1 xi}, andP(T (X)= t |X1 = x1, . . . ,Xn = xn) = 0,
otherwise.

The proof of Result 15.1 follows immediately from Bayes theorem and can be
found in [1].

On the other hand, when N is large, we usually model the proportion of votes that
a candidate will receive instead of the total, taking into account the superpopulation
model. Therefore, we may consider a Beta(α,β), α,β > 0, distribution as the prior
uncertainty for the proportion π of interest and assume that the (infinite) random
variables (Xi)i≥1, givenπ , are conditionally independent Bernoulli random variables
with parameterπ . Thus, the posterior distribution for the proportionπ , given a sample
(x1, . . . , xn), is Beta(α +∑n

i=1 xi ,β + n −∑n
i=1 xi).

Next, we perform hypothesis testing concerning the population total T (X) (pro-
portion π ), taking into account N known (unknown), that is, the finite population
(superpopulation) model.

16.2.1 One-Sided Hypotheses

First, the interest is to know whether the total (proportion) of votes that a candidate
will receive will exceed a specified value. In other words, our goal here is to test the
hypothesis H0 : T (X) ≤ t0 (H

′
0 : π ≤ π0) against the alternative H1 : T (X) > t0

(H
′
1 : π > π0). Taking t0 = N

2 (π0 = 0.5), then rejecting H0 (H
′
0) means that the

candidate will receive more than 50 % of the votes and win the election in the first
round. In order to test these hypotheses, we consider the Bayes test that basically
consists of calculating the posterior probability of the null hypothesis and rejecting
it when its posterior probability is smaller than a specified threshold [2].

The null hypotheses posterior probabilities, given the sampling total (which is a
sufficient statistic)

∑n
i=1 Xi = s, s ∈ {0, 1, . . . , n}, under the superpopulation and

finite population approaches are, respectively, given by

P

(
H

′
0

∣∣∣∣∣
n∑

i=1

Xi = s

)
=
∫ 0.5

0

Γ (α + β + n)

Γ (α + s)Γ (β + n − s)
πα+s−1(1 − π )β+n−s−1dπ

and

P

(
H0

∣∣∣∣∣
n∑

i=1

Xi = s

)
= 1

c

,N
2 �∑

t=s

(
N − n

t − s

)
(
N

t

) pt ,
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Fig. 16.1 Values of the probabilities ofH0 : T (X) ≤ N
2 (H

′
0 : π ≤ 0.5) as functions of the sampling

total for a population with N = 100 units

where c is the normalizing constant, c =∑N
t=sP (X1=x1, . . . ,Xn=xn|T (X)=t)pt ,

and ,b� is the largest integer less than or equal to b.
Figure 16.1 shows the posterior probabilities of the null hypotheses as functions of

the sampling total assuming uniform prior distributions (Beta(1,1) in the superpop-
ulation model and Uniform{0, 1, . . . , N} in the finite population one). Considering
a population of size N = 100 and samples of sizes n = 20 and n = 80, we observe
that there is almost no difference between such probabilities when the sample is small
(n = 20), but when the sample size increases the differences are greater, exceeding
20 % in some cases (for instance, when

∑n
i=1 Xi = 38 the difference is 0.214).

16.2.2 Simple Hypotheses

The researcher may also be interested in predicting the exact amount (proportion)
of votes that a candidate will receive. In this case, we can test H ∗

0 : T (X) = t0
(H ∗∗

0 : π = π0) against H ∗
1 : T (X) �= t0 (H ∗∗

1 : π �= π0). Note that, under the
superpopulation model of Sect. 16.2.1, H ∗∗

0 is a sharp hypothesis and its probability
will be zero for all possible sample outcomes. Thus, the Bayesian procedure based
on the posterior probability of the null hypothesis (Sect 16.2.1) should now be aban-
doned. Hence, we consider the full Bayesian significance test (FBST) [11] which
is a Bayesian procedure suitable for testing sharp null hypotheses without the need
to assign positive prior probabilities to them (for details, see [6, 7, 12]). Under the
finite population point of view, the probability of H ∗

0 may be positive, and we could
consider the Bayes test based on the posterior probability of the null hypothesis.
Nonetheless, we still use the FBST in this case for two reasons: (1) when N is large,
the prior distribution is so widely spread over the set {0, 1, . . . ,N} that any simple
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Fig. 16.2 Values of the evidence in favor of H ∗
0 : T (X) = ⌊

N
2

⌋
(H ∗∗

0 : π = 0.5) as functions of
the sampling total for a population with N = 100 units

null hypothesis (even the mode of the posterior distribution) may be rejected because
its posterior probability is too small (when compared with a threshold fixed before-
hand) and (2) the comparison between evidence values of null hypotheses generated
by the FBST under both approaches seems to be more suitable than the comparison
between the FBST evidence and the posterior probability of a null hypothesis.

For π0 = 0.5, the tangent region and evidence value [11] for the superpopulation
model are given by

T s
x = {π ∈ (0, 1) : f (π |s) > f (π0|s)} and

ev({π0}; x) = 1 −
∫
T s
x

Γ (α + β + n)

Γ (α + s)Γ (β + n − s)
πα+s−1(1 − π )β+n−s−1dπ ,

whereas under the predictivistic model, for t0 = ⌊
N
2

⌋
, they are given by

T f
x =

{
k∈ {s, . . . ,N} : P

(
T (X) = k

∣∣∣∣∣
n∑

i=1

Xi = s

)
>P

(
T (X) =

⌊
N

2

⌋ ∣∣∣∣∣
n∑

i=1

Xi = s

)}

and ev({⌊N
2

⌋}; x) = 1 −
∑
T
f
x

P

(
T (X) = k

∣∣∣∣∣
n∑

i=1

Xi = s

)
,

where f (.|s) denotes the posterior Beta density with parameters α+ s and β+n− s.
Assuming again uniform prior distributions, Fig. 16.2 shows the evidences in

favor of the null hypotheses for all the possible values of the sampling total. As in
the previous section, the greater the sampling fraction, the greater are the differences
between the results under the finite population and the superpopulation models.

Simulations with different prior distributions have also been conducted, consid-
ering both one-sided and simple hypotheses, to evaluate the effect of the prior on
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the results of the tests. To do this, under the superpopulation model, we have given
different values to the hyperparameters α and β of the prior Beta distribution of π
and, for the finite population model, we have considered the distribution of ,Nπ� as
a prior for T (X), so as to minimize (in a sense) the differences between the shapes
of the priors. We have observed that the finite population method is less sensitive to
prior specification than the superpopulation model. We have also performed simula-
tions for other values of t0 (or π0) and have obtained similar results (curves are only
moved to right (to left) as we increase (decrease) its value).

16.3 Multivariate Case

Now, consider the situation in which we aim to learn about the population proportions
(totals) of votes of M candidates a1, . . . , aM . For each elector, consider an M-
dimensional vector Xj that takes the value I

(M)
k = (0, . . . , 0, 1, 0, . . . , 0) (theM-tuple

composed of zeros except for the value 1 at the kth position) if the elector intends
to vote for the candidate ak , k = 1, . . . ,M . In this way, we want to infer about the
population totals T(X) = ∑N

j=1 Xj = (T1(X), . . . , TM (X)), where Tk(X) denotes the
number of votes for candidate ak , k = 1, . . . ,M .

Another way to think about this model is to imagine an urn containing N balls and
that each ball is labeled with one of the different numbers a1, . . . , aM . The interest
lies in discovering how many balls of each type exist in the urn.

The following result shows the posterior distribution of T(X) under the predic-
tivistic approach, given the observation (x1, . . . , xn), n < N .

Result 15.2. Let X = (X1, . . . , XN ) be an exchangeable random vector taking values
on
{
I

(M)
1 , . . . , I(M)

M

}N
, where I

(M)
k is an M-dimensional vector of zeros except for the

value 1 at the k-th position, k = 1, . . . ,M , according to the probability measure
P and consider pt = P(T(X) = t), t ∈ {(t1, . . . , tM ) ∈ N

M :
∑M

i=1 ti = N}, as
the prior uncertainty about the vector T(X). Then, its posterior probability function
given (x1, . . . , xn), is:

P
(
T(X) = t

∣∣X1 = x1, . . . , Xn = xn
) ∝(

N − n

t1 − t1s . . . tM − tMs

)
(

N

t1 . . . tM

) pt

M∏
i=1

I{tis ,... ,N−∑j �=i tjs }(ti) ,

where t = (t1, . . . , tM ) ∈ N
Mwith

∑M
i=1 ti = N and ts = ∑n

i=1 xi = (t1s , . . . , tMs)
∈ N

M with
∑M

i=1 tis = n. (The proof of this result can be found in [8])
From a Bayesian superpopulation point of view, we model the vector of pro-

portions π = (π1, . . . ,πM−1) where πi represents the proportion of votes for
candidate ai , i = 1, . . . ,M − 1, so that πi ≥ 0, π1 + . . . + πM−1 ≤ 1 (we
define πM = 1 − ∑M−1

i=1 πi). We suppose that the prior uncertainty on π can be
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modeled by a Dirichlet distribution of order M − 1 [2], that is, π ∼ Dir(α), with
α = (α1, . . . ,αM ), αi > 0, i = 1, . . . ,M . We also assume that the (infinite) random
vectors (Xi)i≥1, given π , are conditionally independent Mult inomial(1, π ). Thus,
the posterior distribution of π , given X1 = x1, . . . , Xn = xn, is also Dirichlet, with
updated parameter α + ts.

16.3.1 Testing the Possibility of a Second Round

In this section, we consider the application of the multivariate model, described
in Sect. 16.3, to the scenario of majority elections with M = 3 candidates. In this
simplified scenario, we are interested in the possibility of a second round in a majority
election. This question may be answered by means of hypothesis testing, in which
we must choose one of the hypotheses:

⎧⎨
⎩
H0 :

⋂3
i=1{Ti(X) ≤ N

2 } (H
′
0 :
⋂3

i=1{πi ≤ 0.5})
H1 :

⋃3
i=1{Ti(X) > N

2 } (H
′
1 :
⋃3

i=1{πi > 0.5}) . (16.1)

Hypothesis H0 (or H
′
0) states that none of the candidates have more than 50 % of

the votes so that there will be a runoff. On the other hand, the alternative hypothesis
H1 (H

′
1) states that (at least) one of the candidates gets more than half of the votes

and, therefore, there will be no need to conduct the second round.
To test the hypotheses in (16.3.1), we use the Bayesian approach discussed in

Sect. 16.2.1. Considering the superpopulation approach, we can compute the prob-
ability of H

′
0 using the marginal distributions of the vector π = (π1,π2) (recall

π3 = 1 − π1 − π2), as follows (note that H
′
1 is a union of disjoint sets):

P
(
H

′
0

∣∣∣X1 = x1, . . . , Xn = xn

)
=

1 −
3∑

i=1

∫ 1

0.5

Γ (
∑3

k=1{αk + tks})
Γ (αi + tis)Γ (

∑
j �=i{αj + tjs})π

αi+tis−1
i (1 − πi)

∑
j �=i {αj+tjs }−1dπi.

Under the predictivistic approach for finite population, the posterior probability of
the null hypothesis H0 is:

P (H0|X1 = x1, . . . , Xn = xn) =
∑
t∈D

P (T(X) = t|X1 = x1, . . . , Xn = xn),

where D = {
(t1, t2, t3) ∈ N

3 : t1 ≤ N
2 , t2 ≤ N

2 , t1 + t2 ≥ N
2 and t1 + t2 + t3 = N

}
.

To compare the results obtained from the superpopulation and predictivistic mod-
els, we consider a population of size N = 100, samples with n = 20 and n = 80
units and uniform priors: In the finite population model, a uniform distribution on
the set {(t1, t2, t3) ∈ N

3 : t1 + t2 + t3 = N} and, in the superpopulation model, we
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consider π ∼ Dir(1, 1, 1) as the prior distribution. Calculating the probabilities of
the null hypotheses, we observe that when the sampling fraction is small (n = 20),
the results produced by both methods are very similar, although some differences
may still occur, for example, if the sampling vector of totals is ts = (9, 2, 9), then the
probability of H0 calculated under the predictivistic approach for finite population
is 0.53, while, under the superpopulation model, this value drops to 0.48. Due to the
exchangeability and uniformity of prior distributions, the same values occur when
the sampling totals are ts = (2, 9, 9) or ts = (9, 9, 2).

On the other hand, when the sample size increases (n = 80), the differences
between the results obtained from these methods stand out, reaching more than
36 %. For example, when ts = (37, 5, 38) (or any permutation of this vector), the
probability of the null hypothesis in the superpopulation model is 0.49 and it increases
to 0.85 in the finite population model. If ts = (38, 4, 38), the probabilities are 0.79
for finite population and 0.42 under the superpopulation model.

16.4 Final Remarks

In this chapter, we explore the differences between the results of hypothesis testing
obtained from the usual Bayesian superpopulation model and the corresponding
results under the predictivistic approach considering a simple scenario of majority
elections.

It is well-known that such methods yield similar results in cases where the sam-
pling fraction is small. On the other hand, little emphasis has been given in the
literature to the situations of small populations or of large sampling fractions. The
latter usually occurs, for instance, in electoral processes when statistical forecasts on
the final result of the election must be conducted on the basis of the partial counting
of votes at advanced stage. In such circumstances, the finite population approach
should be preferred over the superpopulation model.

In short, we consider, in a simplified scenario of elections, tests for univariate
and multivariate operational parameters. In the univariate case, the FBST and the
procedure based on the posterior probability of the null hypothesis are applied, re-
spectively, to simple and one-sided hypotheses, under both the finite population and
superpopulation models. In the multivariate example, procedures are developed to
test the possibility of a second round in elections.

For small sampling fractions, the approaches yield similar results, while for large
sampling fractions, the differences between the posterior probabilities (evidences)
of the hypotheses of interest are prominent, exceeding 20 % in some cases. When the
sample size is close to the population size, this occurs because, under the predictivistic
model, the amount of values ofT (X) with positive posterior probability is much lower
than prior to sampling, while in the superpopulation model, the supports of the prior
and posterior distributions are the same, although there is a considerable decrease
in the variance. For the same reason, the finite population model is less sensitive to
changes in the prior distributions. In addition, the fluctuations of the null hypothesis
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posterior probabilities (and evidences) due to variations of the sufficient statistic
(sampling totals) are smoother and less sensitive in superpopulation models.

The comparative study of the aforementioned approaches for other operational
parameters, such as the population maximum and minimum, is the goal of future
inquiries. Also open to investigation is the derivation of theoretical bounds for the
differences between probabilities of hypotheses of interest determined from these
approaches.
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Chapter 17
Bayesian Ridge-Regularized Covariance
Selection with Community Behavior in Latent
Gaussian Graphical Models

Lijun Peng and Luis E. Carvalho

Abstract Gaussian graphical models have been extensively used to model con-
ditional independence via the concentration matrix of a random vector. They are
particularly relevant to incorporate structure when the length of the vector is large
and naive methods lead to unstable estimation of the concentration matrix. In co-
variance selection, we have a latent network among vector components such that
two components are not connected if they are conditionally independent, that is, if
their corresponding entry in the concentration matrix is zero. In this work, we expect
that, in addition, vector components show a block dependency structure that repre-
sents community behavior in the context of biological and social applications, that
is, connections between nodes from different blocks are sparse while connections
within nodes of the same block are dense. Thus, to identify the latent network and
detect communities, we propose a Bayesian approach with a hierarchical prior in
two levels: a spike-and-slab prior on each off-diagonal entry of the concentration
matrix for variable selection; and a degree-corrected stochastic blockmodel (SBM)
to capture the community behavior. To conduct inference, we develop an efficient
routine based on ridge regularization and maximum a posteriori (MAP) estimation.
Finally, we demonstrate the proposed approach in a meta-genomic dataset of com-
plex microbial biofilms from dental plaque and show how bacterial communities can
be identified.

17.1 Introduction

In a network, objects are represented by nodes and their interactions by edges. A
cluster of nodes with dense connections within nodes but with sparse interactions
with nodes in other clusters is thought of as community. In recent years, there has been
tremendous interest in applying network analysis in a number of fields. In biology, for
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instance, network analysis has been employed to describe interdependency among
genes and gene products as well as discovering modules that function alike in an
attempt to gain a better understanding of a working cell [1, 3, 7, 18]. In other words,
it is of great significance to identify and detect the community structure underlying
biological networks such as protein interaction, association, and metabolic networks.

Gaussian graphical models [4] have been widely used to describe conditional
independence between components of a random vector [20]. In a Gaussian graphical
model, we associate to each component Xi of a Gaussian random vector -X a node
in a graph G = (V ,E), and two nodes i and j are not connected in G if and
only if their corresponding components are conditionally independent given all the
other components, that is, if the partial correlation between Xi and Xj is zero. In
other words, (i, i) �∈ E if and only if ρXi ,Xj |XV \{i,j} = 0. Equivalently, if C is the
concentration matrix of X, that is, the inverse variance of X, then, since the partial
correlation ρXi ,Xj |XV \{i,j} ∝ Cij , (i, j ) �∈ E if and only if Cij = 0. Thus, inferring
conditional independence is equivalent to estimating null entries in a concentration
matrix [14].

There are several difficulties in identifying the conditional independence of Gaus-
sian variables. The first challenge is the “large p, small n” regimen that stems from
inferring a large concentration matrix based on relatively few observations. Under
this regimen, the sample covariance matrix is singular and thus cannot be inverted to
directly compute the concentration matrix. A commonly used alternative is to include
some form of regularization, such as graph lasso [4, 8, 16]. The second challenge
is developing an effective procedure to identify the corresponding network based on
the estimated concentration matrix. Traditional variable selection approaches such
as stepwise regression and those especially adapted to Gaussian graphical models
[6] offer a way to check the significance of estimated partial correlations. However,
determining edges of networks and inferring concentration matrices are performed
separately. A potential drawback of these methods is that once a “bad” model is
selected, the estimation of concentration matrices is unreliable as a result. To rem-
edy this problem, efficient approaches to jointly perform model selection and graph
estimation have been proposed [22, 23]. However, none of the methods mentioned
above has taken community structure into account when estimating the conditional
independence.

Among the many community detection approaches, we focus on stochastic block-
models (SBM) where the probability of an association between two nodes depends
on the communities to which they belong [5, 12]. We employ a hierarchical Bayesian
SBM that regards probabilities of association as random and group membership as
latent variables which allows for degree-correction, that is, models where the degree
distribution of nodes within each group can be heterogeneous [17].

Our main contribution in this chapter is to jointly estimate concentration matrices
and latent networks while taking community structure into account. To this end, we
propose a Bayesian approach with a hierarchical prior with two levels in Sect. 17.2:
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1. We develop a Bayesian ridge-regularized covariance selection that specifies a
spike-and-slab prior on each off-diagonal entry of the concentration matrix. With
this approach, we are able to obtain a positive-definite estimate of the concen-
tration matrix and determine the underlying network simultaneously. We relate
covariance selection and variable selection for Gaussian graphical models through
an efficient algorithm in Sect. 17.3.

2. We offer a Bayesian approach for community detection that explicitly charac-
terizes community behavior and a maximum a posteriori (MAP) estimator to
efficiently conduct inference in Sect. 17.3.

Results from a simulation study comparing our ridge-regularized covariance selec-
tion to other methods are reported in Sect. 17.4. We show that our proposed method is
efficient and as reliable as other commonly used methods.A real-world meta-genomic
dataset of complex microbial biofilms is used to demonstrate the covariance selec-
tion as well as community detection in Sect. 17.5. Finally, we offer some concluding
remarks and directions for future work in Sect. 17.6.

17.2 Model Framework

We develop a hierarchical model to (i) perform covariance selection on a latent
network of associations between individuals and (ii) identify the set of communities to
which these individuals belong. We start by assuming that the data -X = ( -X1, . . . , -Xn)
for each sample follows

-Xi | -μ, -C iid∼N( -μ, -C−1), i = 1, . . . , n, (17.1)

where each -Xi is p-dimensional. The mean μ can have more structure, as we will
see in Sect. 17.5. We set an non-informative prior on μ, P(μ) ∝ 1.

The likelihood in (17.1) implicitly defines a Gaussian graphical model on a undi-
rected graph withp nodes and adjacency matrix -A. Recall that in a Gaussian graphical
model, node i and node j are conditionally independent (Cij = 0) if and only if there
is no edge between them (Aij = 0). To select which off-diagonal entries in -C are
zero we adopt a spike-and-slab prior [9, 11] with -A as indicators:

Cij |Aij
ind∼N(0, ρ2Aij + ρ2ν0(1 − Aij )), i, j = 1, . . . ,p, i < j , (17.2)

where ρ2 is chosen to be large (the “slab”) while ν0 is small (the “spike.”) For the
diagonal entries we set

Cii | λind∼Exp(λ/2), i = 1, . . . ,p, (17.3)

for computational convenience. In addition, we settle on a non-informative prior for
λ, P(λ) ∝ 1.
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Finally, to model the adjacency matrix -A, we adopt a degree-corrected SBM
which specifies that the probability of an edge between node i and j depends on their
labels (σi , σj ) and their expected degrees, and that σ follows a product multinomial
distribution [17]:

Aij |-σ , -γ , -η ind∼ Bern(logit−1(γσiσj + ηi + ηj )), i, j = 1, . . . ,p, i < j , (17.4)

σi
ind∼ MN(1; -π ), i = 1, . . . ,p.

Hyper-parameters -γ capture within and between community probabilities of as-
sociation (in logit scale) and node intercepts -η = (η1, . . . , ηp) capture the expected
degrees of the nodes.A more realistic model is attained by further setting a hyper-prior
distribution on γ and η,

(γ , η) ∼ I (γ ≤ 0) · N
(
0, τ 2I

)
, (17.5)

where τ 2 controls how informative the prior is. The constraint γ ≤ 0 in this SBM
is essential to community detection since we should expect as many as or fewer
edges between communities than within communities on average, and thus that the
log-odds of between and within probabilities is non-positive.

To summarize, in the likelihood, we adopt a Gaussian graphical model; in the
next level, we select the covariance structure in -C−1 with a spike-and-slab prior; and
finally, we capture community behavior in the components of -X via a SBM on -A.

17.3 Inference

To develop the MAP estimator for -C, -A, σ , γ , and η, we follow a cyclic gradient
descent approach where each parameter is obtained by optimizing

[ -C, -A | σ , γ , η,μ, λ, -X], [σ | γ , η, -C, -A,μ, λ, -X],[γ , η | σ , -C, -A,μ, λ, -X],

[μ | σ , -C, -A, σ , γ , η, λ, -X], [λ | σ , -C, -A, σ , γ , η,μ, -X]

in turn. While we have a step using μ, in general we have μ̂ = ∑n
i=1

-Xi/n and so we

often consider -Xi | -C iid∼N(-0, -C−1) by precentering -X. Similarly, the MAP estimator
for λ is straightforward: λ̂ = 2/

∑p

i=1 Cii .
Now, we want to find a concentration matrix -C and latent network -A that maximize

log P( -C, -A|σ , γ , η, -X), or equivalently,

log P( -C, -A, -X|σ , γ , η) = n

2
log | -C| − 1

2

n∑
i=1

( -Xi − μ)
& -C( -Xi − μ)

− 1

2ρ2

∑
1≤i<j≤p

C2
ij

Aij + ν0(1 − Aij )
− λ

2

p∑
i=1

Cii +
∑

1≤i<j≤p

Aij (γσiσj + ηi + ηj ).

(17.6)
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To find the conditional MAP estimator for -C and -A, we focus on each of their rows
(or columns) at a time. For the ith row and column, we consider the log-likelihood
as a function of -Ci,·, that is,

log P( -Ci,·, -X, -A) = n

2
log |Cii − -Ci,−i

-C−1
−i,−i

-C−i,i | − 1

2
(SiiCii + 2-Si,−i

-C−i,i)

− 1

2ρ2

∑
j �=i

C2
ij

Aij + ν0(1 − Aij )
− λ

2
Cii ,

up to terms that do not involve -Ci,·. Here -S = ∑n
i=1 ( -Xi −μ̂)( -Xi − μ̂)

&
is a sufficient

statistic. Then, if -Vi = Diagj �=i

{
1/[ρ2Aij +ρ2ν0(1−Aij )]

}
, -Ci,−i is the ith row with

ith column removed and -C−1
−i,−i is the sub-matrix of -C−1 with ith row and column

removed, the ridge-regularized estimator for -Ci,· is given by

-̂Ci,−i = −[(Sii + λ) -C−1
−i,−i + -Vi]

−1 -Si,−i ,

-̂Ci,i = n

Sii + λ
+ -̂Ci,−i

-C−1
−i,−i

-̂C
&
i,−i . (17.7)

We note that -C is kept positive definite along the whole procedure. Since -C . 0,
-C−i,−i . 0 for any i; after the update -Ci,·, -C is still positive definite since

Cii − -Ci,−i
-C−1
−i,−i

-C−i,i = n

Sii + λ
> 0,

as noted in [22]. We can obtain the estimate by solving (17.7) for each row and
iterating until convergence. Thus, if the initial value of the concentration matrix is
symmetric and positive definite, then the estimate based on (17.7) is also symmetric
and positive definite throughout the iterative procedure.

This series of updates is conditional on -A, as seen in Eq. (17.6). However, we
further propose an approach where the adjacency matrix is estimated along with the
concentration matrix in the covariance selection procedure, that is, we update -C and
-A jointly. Moreover, to avoid the risk of getting stuck if we update the whole row
-Ai,· each time, we propose to update at most one entry in -A at each iteration. That is,

we move to -A(t+1)
i,· where the candidate move set for -Ai· is { -Ai,· : H ( -Ai,·, -A(t)

i,· ) ≤ 1}
and H (·, ·) is the Hamming distance. In practice, we adopt the SWEEP operator [10]
and Cholesky up/down-dates to make the iterative algorithm more efficient.

Once we are given the adjacency matrix -A representing relationships between
“actors” i and j in a network, we adopt a Bayesian degree-corrected SBM given
in Eq. (17.4) to detect the community structure in the network [17], that is, to find
a conditional MAP estimator for [σ |γ , η, -C, -A, -X] and [γ , η|σ , -C, -A, -X]. First, we
take σi to be the mode of σi |σ[−i],β, -A. Next, a regularized iterative reweighted
least-squares (IRLS) is carried out. IRLS is usual when fitting logistic regression
models [15]. To guarantee that the community constraints γ ≤ 0 are met, we use an
active-set method [21]. More details can be found in [17].
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To summarize, the Bayesian ridge-regularized graph estimate is obtained by
iterating until convergence the following steps:

Algorithm 1 Bayesian ridge-regularized covariance selection

17.4 Experimental Results

In this section, we evaluate the performance of our proposed Bayesian ridge-
regularized estimator in identifying latent networks. For comparison, we also
estimate the concentration using sample estimates and a lasso-regularized estimator
[22].

Our simulation study generates networks from a popular benchmark suite due
to Fortunato [13] that accounts for heterogeneities in node degree distributions and
community sizes. The model used in the simulation considers the following parame-
ters: both degree distribution and the community sizes are assumed to follow power
law distributions with exponents a = 2 and b = 1, respectively; each network
consists of p = 50 nodes and has average degree 〈k〉 = 10. Mixing parameter μ
captures the proportion of between-community edges. We highlight two community
behaviors: gregarious, with μ = 0.1 , or non-assortative, with μ = 0.4.

We further generated concentration matrices based on the networks as ground truth
according to Eq. (17.2) with fixed ρ2 = 100 and ν0 = 10−6 for simplicity. The value
ρ2 = 100 is large enough to distinguish the differences in the concentration matrix
when edges in the latent network are present or absent. The data -X = { -X1, . . . , -Xn} for
n = (10, 25, 50, 100, 200) was generated as in Eq. (17.1). We estimated concentration
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matrices based on -X by sample concentration, our approach with -A known as well as
unknown (latent), and Lasso estimates with different tuning parameters ranging from
0.001 to 10. The comparison in terms of the log relative Frobenius norm of estimated

concentration matrices, log (‖ -̂C − -C‖F /‖ -C‖F ), is shown in Fig. 17.1. Our proposed
approach outperforms the sample and Lasso estimates in terms of the log relative
Frobenius norm. In addition, the error we made in estimating latent networks is
mainly due to false negatives (failing to detect an edge when there is one), especially
when we have fewer observations.

17.5 Case Study

Periodontitis is the inflammation of the tissues that surround the teeth, and is caused
by specific bacteria. These bacteria often explore symbiotic relations, and are thus
expected to be found in communities. In this case study, we take a dataset that
measures 16S ribonucleosomal expression levels using the Human Oral Microbe
Identification Microarray (HOMIM) for 276 bacteria and contrasts 90 sites in healthy
individuals to 514 sites in patients with varying degrees of periodontitis [7]. We
assume, as before, that individual samples are independent, but now we exploit a
decomposable mean model where the mean response for bacteria i and sample j is
given by:

μijc = θic + φj , i = 1, . . . ,p, j = 1, . . . , n, (17.8)

where c is the condition, either healthy or diseased. Parameters θic capture the ex-
pression effect of each bacteria per condition, while parameters φj represent the
baseline expression level per sample and are considered nuisance.

After running our proposed procedure for K = 2, . . . , 10 communities, we select
K = 3 based on the Bayesian information criterion (BIC). The two first panels
in Fig. 17.2 depict the inferred networks and communities. As can be seen, the
“diseased” bacterial community is more connected and has a stronger community
effect. To compare the joint effect of expression via θ and connectivity, we compute
alpha-centralities [2] using θ̂·c as weights. The rightmost panel in Fig. 17.2 contrasts
alpha-centrality between the two conditions; for comparison, we mark bacterial
species according to [19] complexes. Interestingly, bacteria from the red and orange
complexes—usually associated to more severe forms of periodontitis—tend to have
higher alpha-centralities in the diseased sample group relative to the healthy group.

17.6 Discussion

In this chapter, we developed a Bayesian ridge-regularized covariance selection
model that incorporates community behavior through a latent network. This class of
models has many practical applications in social sciences and systems biology. Good
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Fig. 17.2 Inferred networks for healthy (left) and diseased (right) samples. Colors mark inferred
communities. In the right, alpha-centrality with α = 0.5 with θ estimates as exterior weights; colors
mark Socransky complex classification [19]

results based on our simulation study indicate that the proposed approach is a seri-
ous contender for covariance selection when compared to Lasso-based estimators.
Moreover, as the case study shows, our estimator reliably captures biological assor-
tativity in bacterial communities, and is able to classify bacteria with respect to their
different responses in expression and connectivity under two scenarios. Moreover,
since most of the bacteria in dental biofilms are not cultivable, the proposed model
gives insight into which partnerships are needed for these bacteria under different
conditions. For future work, we plan to extend the proposed model in two main ways:
to accommodate different types of data and add more flexibility, we intend to adopt
other generalized linear model families in the latent network layer of the model, that
is, we also want to consider valued and weighted networks; many applications have
time series data, and so we plan to develop dynamic models.
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Chapter 18
Bayesian Inference of Deterministic Population
Growth Models

Luiz Max Carvalho, Claudio J. Struchiner and Leonardo S. Bastos

Abstract Deterministic mathematical models play an important role in our under-
standing of population growth dynamics. In particular, the effect of temperature on
the growth of disease-carrying insects is of great interest. In this chapter we pro-
pose a modified Verhulst—logistic growth—equation with temperature-dependent
parameters. Namely, the growth rate r and the carrying capacity K are given by
thermodynamic functions of temperature T , r(T ) and K(T ). Our main concern is
with the problem of learning about unknown parameters of these deterministic func-
tions from observations of population time series P (t , T ). We propose a strategy
to estimate the parameters of r(T ) and K(T ) by treating the model output P (t , T )
as a realization of a Gaussian process (GP) with fixed variance and mean function
given by the analytic solution to the modified Verhulst equation. We use Hamiltonian
Monte Carlo (HMC), implemented using the recently developed rstan package of
the R statistical computing environment, to approximate the posterior distribution of
the parameters of interest. In order to evaluate the performance of our algorithm, we
perform a Monte Carlo study on a simulated example, calculating bias and nominal
coverage of credibility intervals. We then proceed to apply this approach to labora-
tory data on the temperature-dependent growth of a Chagas disease arthropod vector,
Rhodnius prolixus. Analysis of this data shows that the growth rate for the insect pop-
ulation under study achieves its maximum around 26 ◦C and the carrying capacity is
maximum around 25 ◦C, suggesting that R. prolixus populations may thrive even in
non-tropical climates.
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18.1 Introduction

Deterministic models of population growth have played a major role in our under-
standing of biological populations [1, 2, 4, 7]. These mechanistic models allow us
to draw a pittoresque picture of the real world and capture the main features of the
system(s) under study.

In many applications it is of interest to estimate parameters of these models using
observed (output) data. This chapter proposes a Bayesian approach to this problem
in the context of models for insect population growth. In what follows, we introduce
the necessary notation and concepts to be used hereafter.

Consider a deterministic model M(·). Let y ∈ Y ⊂ R
n be the set of model inputs

and x ∈ X ⊂ R
p be the model outputs. The deterministic model M(x; θ ) = y,

where θ ∈ Θ ⊂ R
q is a q-dimensional parameter vector, completely specifies the

relationship between x and y.
Here we are concerned with the problem of, having observed x and y, draw

inference about θ . From a Bayesian perspective, we are concerned with obtaining
the posterior distribution [7]:

p(θ |x, y) ∝ p(y, x|θ )π (θ ) (18.1)

∝ p(y|x, θ )π (x|θ )π (θ ) (18.2)

∝ p(y|x, θ )π (x)π (θ ), (18.3)

where (18.3) follows from the assumption of a priori independence of the inputs and
parameters.

We discuss several aspects of the uncertainty in such models and illustrate with a
temperature-dependent Verhulst model, proposed in [11].

This chapter is organized as follows: in Sect. 18.1 we outline the necessary theory
and notation. Sect. 18.2 details the model, likelihood, priors, and posteriors. A
simulation study is presented in Sect. 18.2.4 and a discussion with our closing remarks
is given in Sect. 18.3.

18.2 Logistic Growth with Temperature-Dependent Parameters

Global temperature change may be an important factor on infectious diseases emer-
gence [6]. Arthropod-borne diseases are particularly influenced by climate change;
their vectors are very sensitive to temperature variation. In this chapter we are in-
terested in studying the temperature dependency of population growth of a Chagas
disease vector, the insect Rhodnius prolixus.

To this end, we introduce a modified logistic growth equation also known as the
Verhulst equation [10, 11], with temperature-dependent parameters. The ordinary
non-linear differential equation

dP

dt
= r

(
1 − P

K

)
P , (18.4)
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takes two parameters, the growth rate r and the carrying capacity K . For a given
initial population condition N0, an analytic solution is available for the number P (t)
of individuals at time t :

P (t) = K

1 +
(
K−N0
N0

)
e−rt

. (18.5)

In order to incorporate temperature-dependent behavior, we introduce
temperature-dependent parameters, r(T ) and K(T ). The analytic solution in (18.5)
is slightly modified to yield P (t , T ) for time t and temperature T :

P (t , T ) = K(T )

1 +
(
K(T )−N0

N0

)
e−r(T )t

. (18.6)

To complete the model we must specify K(T ) and r(T ) as smooth functions of T .
We model K(T ) and r(T ) as Gaussian kernels over T :

K(T ) = cKexp

(
− (T − aK )2

bK

)
(18.7)

r(T ) = crexp

(
− (T − ar )2

br

)
. (18.8)

18.2.1 Likelihood

Assume P (t , T ) to be a Gaussian process (GP) with fixed variance τ 2. Recall-
ing the notation in Sect. 18.1, we have x = {T , t ,N0}, y = {P (t , T )} and
θ = {aK , bK , cK , ar , br , cr , τ 2}. Additionally, note that the parameter vector θ can
be split into the disjoint sets θK = {aK , bK , cK} and θ r = {ar , br , cr}, which
parameterize K(T ) and r(T ), respectively.

Let y = {y1, y2, . . . , yN } be an output vector with N measurements, which we
observe directly. Moreover, let t = {t1, t2, ..., tN } be the vector which contains the
observed times of the observations and T the analogous vector for experimental
temperatures. We then specify

yi |ti , Ti ,N0, θ ∼ N (μ(ti , Ti ,N0; θ ), τ 2) (18.9)

μ(ti , Ti , θ ) = K(Ti ; θK )

1 +
(
K(Ti ;θK )−N0

N0

)
e−r(Ti ;θ r )ti

, ∀i = 1, 2, . . . ,N (18.10)

which is equivalent to writing yi = M(ti , Ti ,N0; θ ) + ε, ε ∼ N (0, τ 2).
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18.2.2 Priors

For i = 1, 2, ..,K , let θ i denote each of the K = 7 model parameters. Assuming a
priori independence, we have

π (θ ) =
K∏
i=1

π (θ i). (18.11)

We then specify prior distributions for the θ as follows1:

aK , ar ∼ Normal(20, 10) (18.12)

bK , br ∼ Gamma(4, 5) (18.13)

cK ∼ Gamma(1, 1000) (18.14)

cr ∼ Normal(1/2, 2) (18.15)

τ 2 ∼ Gamma(1/10, 10). (18.16)

These priors were formulated to reflect both model restriction (e.g., positivity and
concavity) and biological knowledge about model parameters.

The aK and ar parameters mimic the mean parameter in a Gaussian distribution,
and control where the functions will achieve their maximum. We assume a normal
distribution with moderate variance to provide a relatively uninformative accounting
of placement in the positive side of the real line.

For bK and br it is also necessary to ensure positive-definiteness, which we achieve
using Gamma priors. Our prior for b allows very “stretched” forms ofK(T ) and r(T )
(see Fig. 18.3), while ensuring concavity. Finally, cK and cr control curve height for
K(T ) and r(T ) respectively.

The choice for cK is essentially arbitrary, since little is known about natural
populations of R. prolixus in terms of carrying capacity. We thus parameterize π (bK )
to reflect rough projections taking into account the number of laid eggs. Since r in
Eq. 18.4 can theoretically assume negative values, we used a prior for cr that allows
negative values.

Now, let θ r and θK be partitions of the parameter vector, which in combination
with the deterministic forms given in (18.7) and (18.8) induce prior distributions
on r and K for each fixed temperature T , π∗(r) = r(T ;π (θ r )), and π∗(K) =
K(T ;π (θK )) respectively. These prior distributions can be easily approximated using
Monte Carlo sampling and are presented in Fig. 18.3 (dashed lines).

1 Please note that throughout this text we assume gamma distributions are parameterised in terms
of shape and scale—as opposed to rate— and normal distributions are parameterised in terms of
mean and standard deviation.
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18.2.3 Posterior

Hence, from (18.3) and assuming a priori independence of t and T

p(θ |y, t , T ) ∝ p(y|θ , t , T )π (t)π (T )π (θ ), (18.17)

is the desired posterior.
This distribution can not be obtained in closed form, therefore we have re-

sort to MCMC techniques to obtain an approximation. Hamiltonian Monte Carlo
(HMC)[5] is an MCMC algorithm that replaces the random walk (RW) proposal
of the Metropolis-Hastings algorithm by a “leapfrog” proposal based on the gra-
dient of the log-posterior distribution. We then used the stan [9] package of the
R Statistical Computing Environment [8] to approximate (18.17) through Hamil-
tonian Monte Carlo (HMC). The HMC implementation of rstan relies on the
No-U-turn sampler (NUTS) [3] which automatically sets the step size (ε) and the
number of steps, i.e., trajectory length (L), dropping the need for hand-tuning and
making the algorithm efficient for a broad class of target distributions. Among
the the advantages of HMC we would like to highlight the ability of making
moves far away from the current value with higher acceptance probability than
RW, thus providing quicker convergence even for highly correlated target poste-
riors. R code implementing the posterior approximation presented here is available
at https://github.com/maxbiostat/CODE/tree/master/BIDPGM.

The MCMC was run for 50, 000 iterations until convergence which was assessed
by inspecting the trace- and autocorrelation plots and potential scale reduction factor.
After discarding the burn-in we approximate the posterior distribution of P (t , T )
using Monte Carlo sampling as follows. Let Q be the number of samples.

1. Construct a grid of values for t and T

2. For each q = 1, 2, ...,Q draw a vector θ (q) = {a(q)
K , b(q)

K , c(q)
K , a(q)

r , b(q)
r , c(q)

r } from
the posterior distribution of the parameters

3. Evaluate M(t , T ,N0; θ (q)) to get P (t , T )(q)

From these Q samples, we can compute several quantities of interest, for instance
the posterior mean of the population for a particular temperature at a given time.
Let tj and Tj represent a particular pair of temperature and time. Then the posterior
mean of P (tj , Tj ) is

E
[
P (tj , Tj )

] = 1

Q

Q∑
q=1

P (tj , Tj )(q) = 1

Q

Q∑
q=1

M(tj , Tj ,N0; θ (q)). (18.18)

The posterior median and quantiles can be obtained in a similar fashion.

https://github.com/maxbiostat/CODE/tree/master/BIDPGM
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Table 18.1 Bias assessment using the simulated data set— posterior mean

Parameter Valuea Posterior mean Biasb MSE Coveragec

aK 30.00 29.44 0.01 7.99 0.93

ar 23.00 22.71 0.00 3.31 0.86

bK 10.00 13.08 0.95 450.26 0.94

br 15.00 16.82 0.22 16.77 0.88

cK 700.00 692.17 0.09 7203.06 0.96

cr 0.40 0.43 0.00 0.04 0.85

τ 3.16 4.89 0.94 67.02 0.88

a “True” value used for simulation
b Bias divided by the true parameter value
c Coverage of the 95 % credibility intervals

18.2.4 Simulation Study

We conducted a Monte Carlo simulation study in order to evaluate the approach
proposed here. Simulation was carried out as follows: for each m in a total of M
simulation steps,

1. Fix θ , τ and N0

2. Construct a grid of values for t and T

3. For each point in the grid, sample from a normal distribution with mean
M(T , t ,N0; θ ) and variance τ , generating a data set P (m)

4. Using 50, 000 iterations of HMC, obtain an estimate θ̂
(m)

of model parameters

In this chapter, we use both the a posteriori mean and median as point estimates for
θ . With these results at hand, we are able to compute the normalized squared bias
and mean squared error (MSE) for each parameter, as well as nominal coverage for
the 95 % credibility intervals. The normalized squared bias for each parameter is
defined as

B(θi) = θ−1
i E

[
θ̂i − θi

]2
. (18.19)

Let Z(m)
i be the indicator variable that assumes 1 if the mth 95 % credibility interval

contains the true value of θi and zero otherwise. Coverage is defined as

C(θ i) = E

[
Z

(m)
i

]
= 1

M

M∑
j=1

Zij . (18.20)

Code for this step is also available at https://github.com/maxbiostat/CODE/tree/
master/BIDPGM.

Table 18.1 shows the bias, MSE and coverage for each parameter using the pos-
terior mean as a point estimate. Parameter values were chosen so as to reflect a
biologically sound behavior for P (t , T ).

https://github.com/maxbiostat/CODE/tree/master/BIDPGM
https://github.com/maxbiostat/CODE/tree/master/BIDPGM
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The results for the posterior median as point estimator were largely in agreement
with those for the posterior mean and thus are omitted here.

In Fig. 18.1 we present prior and posterior distributions for model parameters
used in this simulation study where we can notice the posteriors are substantially
less diffuse than the priors.

18.2.5 R. prolixus data

We now turn our attention to a real-world data set. Chagas disease is an important
tropical disease, transmitted by a blood sucking bug, R. prolixus. Temperature is key
factor for both insect development and vector competence. We are thus interested in
drawing inference on model parameters to understand the role of temperature in the
insect’s population dynamics.

In a laboratory experiment, N0 = 30 females were observed in several tempera-
tures, and the number of eggs laid was recorded for 35 days. We take the cumulative
number of ecloded eggs for each temperature condition as a good approximation of
P (t , T ), since all conditions (light, water, food, etc.) were optimal. The data thus
consisted of N = 350 observations, from 10 temperature conditions for 35 days
each.

In Fig. 18.2 we show prior and posterior distributions for each parameter using this
data. Results are similar to that of the simulated data, with substantially concentrated
posteriors in comparison to the priors. Interestingly, while the prior expectation for
bK was 25, we obtained a posterior mean around 106 (Table 18.2), indicating that
the variability of the response of Rhodnius to temperature is much greater than we
anticipated. See more on this at Sect.18.3.

Figure 18.3 shows the prior and posterior (induced) distributions of the thermo-
dynamic functions. These are easily obtained using Monte Carlo sampling from the
prior and posterior distributions of θ , respectively.

Finally, we present the posterior distribution for P (t , T ) obtained using the ap-
proach described in Sect. 18.2.4. We also present the heat map of the original
laboratory data described above and the posterior distribution obtained by Monte
Carlo sampling of the marginal posteriors from MCMC (Fig. 18.4). It can be noticed
that the posterior distribution allows a region of optimality for populational growth
around 20 − 25 ◦C. Each thermodynamic function, r(T ) and K(T ) can have its own
point of maximum, however.

In Table 18.2 we provide posterior estimates obtained for the real data along with
prior expectations and 95 % credibility intervals.
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Fig. 18.1 Prior and posterior distributions of parameter for the simulated data. Red bars (histogram)
show the marginal posterior distributions and green lines depict prior densities. Dashed vertical
lines mark true parameter values. Please note that vertical axes differ
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Fig. 18.2 Prior vs posterior distributions of parameter for the real data set. Please note that vertical
axes differ
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Table 18.2 Posterior inference results for the real set. We report posterior and prior expectations,
along with the appropriate 95 % credibility intervals. Five independent chains were run for 50, 000
iterations each with the first 25, 000 discarded as burn-in. Convergence was assessed using trace
plots and the potential scale reduction factor

Posterior mean (95 % C.I.) Prior mean (95 % C.I.)

aK 19.23 (17.56 – 21.09) 25.00 (5.40–44.60)

ar 25.73 (25.44–26.10) 25.00 (5.40–44.60)

bK 106.17 (75.25–137.31) 20.00 (5.44–43.84)

br 26.77 (22.59–32.19) 20.00 (5.44–43.84)

cK 1023.32 (898.28–1165.40) 1000.00 (25.31–3688.87)

cr 0.66 (0.58–0.76) 0.50 (−3.41–4.41)

τ 177.33 (166.10–191.78) 1.00 (0.00–9.78)

Fig. 18.3 Prior and posterior credibility intervals for the thermodynamic functions under for the
real data set. We show K(T ) in (a) and r(T ) in (b). Dashed lines and lighter tones depict prior and
solid lines and darker tones represent the posterior 95 % credibility intervals. Thick solid lines mark
the medians

18.3 Discussion

Deterministic, differential-equation-based models are an important tool in Theoreti-
cal Biology, allowing us to study the behavior of biological systems using simple and
easily interpretable equations. In this chapter we adapt a classical population growth
model, the Verhulst logistic equation, initially proposed in 1838, to accommodate
temperature-dependent parameters. We then proceed to develop a Bayesian approach
to learn about model parameters when population time series are available.

Our approach is based on the idea that both the growth rate r and the carrying
capacityK are smooth functions of temperature, which we model as Gaussian kernels
of the form presented in (18.7). This parameterisation is very flexible, allowing us to
model a variety of temperature-response patterns. It is biologically motivated, since
the response of the insect populations to temperature change should have a maximum
point and substantially decrease at extremely high and extremely low temperatures
[11].
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Fig. 18.4 Heat maps showing population through time and temperature. In a we show the laboratory
data collected for Rhodnius and in b the posterior mean, obtained using Monte Carlo sampling
from the posterior distribution of the parameters (Sect. 18.2.4). Please note that legend ranges differ
slightly

The main idea is to model population through time as a GP with a determinis-
tic mean function M( ·) which is given by the solution to the differential equation
(Eq. 18.6). The posteriors outlined in (18.3) and (18.17) allow for the incorporation
of uncertainty regarding model inputs. Although this source of uncertainty is negli-
gible in our setting due to carefully controlled experimental conditions, it could play
an important role in studies dealing with field data.

It should also be noted that in this chapter we assume independence between model
inputs. This assumption may be irrealistic, since temperature is likely to depend on
time in general. In our particular conditions, all experiments were performed in
controlled environments, where temperature was kept constant throughout time. In
the case of population time series obtained from field data, this assumption is likely
not to hold.

From Table 18.1 it can be noticed that our approach presents good frequentist
properties, with high coverage probabilities of the credibility intervals for most pa-
rameters. The only exception is the GP variance, τ 2, for which we could not recover
the true value with good accuracy, albeit achieving good coverage. This result most
likely stems from the restricting assumption of fixed variance (over time). Replacing
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the fixed variance by a smooth function of time τ 2(t) could greatly improve model
fit and is an important future direction of research.

In conclusion, in this chapter we provide insight on how to perform inference on
the parameters of a complex, non-linear deterministic model of population growth
when population time series are available. These parameters are directly interpretable
and provide important information about the underlying biological dynamics. The
framework proposed here can be adapted to a broad class of models, for exam-
ple, to learn about the parameters of epidemiological models using data on disease
incidence. Moreover, the Bayesian approach allows for a complete treatment of
uncertainty on model inputs and outputs, thus providing more realistic predictions
when data is subject to measurement uncertainty. The issue of how to incorporate
and accommodate uncertainty about model structure is also an important one and
constitutes an interesting avenue for future research.
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Chapter 19
A Weibull Mixture Model for the Votes
of a Brazilian Political Party

Rosineide F. da Paz, Ricardo S. Ehlers and Jorge L. Bazán

Abstract Statistical modeling in political analysis is used recently to describe elec-
toral behaviour of political party. In this chapter we propose a Weibull mixture model
that describes the votes obtained by a political party in Brazilian presidential elec-
tions. We considered the votes obtained by the Workers’ Party in five presidential
elections from 1994 to 2010. A Bayesian approach was considered and a random
walk Metropolis algorithm within Gibbs sampling was implemented. Next, Bayes
factor was considered to the choice of the number of components in the mixture. In
addition the probability of obtain 50 % of the votes in the first round was estimated.
The results show that only few components are needed to describe the votes obtained
in this election. Finally, we found that the probability of obtaining 50 % of the votes
in the first ballot is increasing along time. Future developments are discussed.

19.1 Introduction

Statistical modelling in political analysis has been used recently to describe the
electoral behaviour of a political party and examples of study of voting behaviour
are [12]. In Brazil the electoral behaviour underwent a process of change since 1994
to the recent days. In 1994, Brazilians voted in one of the most important elections
held since 1945. This was the second election held since the end of military rule from
1964 to 1985. In terms of the presidential vote, in 1994 the candidate of The Brazilian
Social Democracy Party (in Portuguese: Partido da Social Democracia Brasileira,
PSDB) won the majority of votes on the first ballot (54.3 %) and the candidate of
Workers’ Party (in Portuguese: Partido dos Trabalhadores, PT) obtained 38.4 % of
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the total of votes. For more information about this election see for example [16] or
the Superior Electoral Court (TSE) website http://english.tse.jus.br.
However the Workers’ Party elected its candidates for president in the last three
elections occurring in 2002, 2006 and 2010. Results on the presidential elections in
Brazil are available on the TSE website.

In order to investigate the probabilistic behaviour of votes obtained by a political
party in Brazilian general elections we propose a Weibull mixture model. In par-
ticular, we considered the presidential votes obtained by Workers’ Party in the five
elections from 1994 to 2010 using data obtained from TSE website. As seen in [4],
analysts have argued that the social policies that President Luis Inacio Lula da Silva
implemented enabled the number of voters of the Workers’ Party to expand from
middle-class and highly educated people to low-income and poorly educated indi-
viduals from the Northeast of Brazil. From the nine states in the Northeast region we
chose to analyse the data from Sergipe State (SE) for illustration purposes because
this is the state with the smallest number of electoral districts.

For estimation purposes, a Bayesian approach was considered and a random walk
Metropolis algorithm within Gibbs sampling was implemented. Next, a Bayes factor
approach was considered to the choice of the number of components in the mixture.
Finally the probability of obtaining 50 % of the votes in the first ballot was estimated.
The results show that only a few components are needed in the mixture to describe the
votes obtained in this election. In addition we found that the probability of obtaining
50 % of the votes in the first ballot is increasing along time.

The rest of the chapter is organized as follows. In Sect. 19.2, we describe the finite
mixture model and a finite mixture of Weibull distributions is proposed to model the
data of votes of a Brazilian political party. In Sect.19.3 we present the main results
and the future developments are discussed in Sect.19.4.

19.2 Statistical Model

19.2.1 The Votes of a Political Party

Percentages of votes obtained by a political party in an election in different cities
of a region or country can be assumed as a random variable X > 0. As usually
observed in the histogram of this type of data, they present a positive asymmetric
distribution, that is the votes are concentred in lower percents and occasionally are
observed higher values and the mean is greater than the median. As suggested by
Durtschi et al. [8], these are some characteristics of Benford’s Law which has been
invoked as evidence of elections data for example by Bërdufi [2]. Recently, Cuff et
al. [7] have established the relation between the Weibull distribution and Benford’s
Law.

In this chapter the percentage of votes to each city are assumed to follow a Weibull
distribution which is governed by two parameters, that is X ∼ W (δ, η); being zero
the lower end of its support. The parameter δ is a shape parameter and η is a scale
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parameter. η determines the scale along its support of votes and the parameter δ, de-
termines the concentration of the distribution of votes. High values of η correspond
to a high degree of concentration (low dispersion) of votes. The Weibull distribution
can be seen as a generalisation of the exponential distribution and commonly de-
scribes the time we have to wait for one event to occur, if that event becomes more
or less likely with time. Here the η parameter describes how quickly the probability
ramps up (proportional to xη−1). For 0 < η < 1, the density function tends to ∞
if x approaches zero from above and is strictly decreasing. For η = 1, the density
function of votes tends to 1/δ to lower votes x approaches zero from above and is
strictly decreasing. For η > 1, the density function of votes tends to zero as the votes

x approaches zero from above, increases until its mode δ
(
η−1
η

)1/η
and decreases

after it.
Additionally by observing the histogram of percent of votes by cities multimodal-

ity is identified, that is it is possible to identify different populations (clusters of
votos) because a different electoral behaviour between cities is expected. Conse-
quently a Weibull mixture distribution can be assumed in order to identify these sub
populations. In [22] this type of distribution has been considered in different areas
but similar situations.

19.2.2 Mixture Model

Finite mixture of distributions is a flexible method of modelling. Its more direct
role in data analysis and inference is to provide a convenient and flexible family of
distributions to estimate or approximate distributions which are not well modelled
by any standard parametric family. This type of model is useful in the modelling of
data from a heterogeneous population, that is a population which can be divided in
clusters or components. In this sense, the components in the data can be modelled for
unimodal distributions belonging to a same parametric distribution family. For more
details about modelling and applications of finite mixture models, see for example
[15].

By observation of the data in Fig. 19.1 we propose to model these data as a k-
component mixture of distributions.
This finite mixture approach is flexible enough for modelling the sort of data that
appears in such an experiment where the data clearly exhibits multimodality.

A random variable X is said to follow a finite mixture of distributions if its density
function is given by,

f (x|θ , w) =
M∑
j=1

wj fj (x|θ j ), (19.1)

where each fj (x|θ j ) is a density function indexed by a parameter vector θ j and the
weights w1, . . . , wM are such that 0 < wj < 1 and

∑M
j=1 wj = 1 and M is the
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Fig. 19.1 Histograms of the data of voting percentage obtained by Workers’ Party in presidential
elections, in the cities of Sergipe State, from year 1994 and 1998, when the PT lost the presidential
election, to 2002, 2006 and 2010, when the PT candidate was Presidential winner, and its estimated
densities based on the posterior predictive distribution for 1, 2 and 3 components
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number of components of mixture. See for example [13], for a review on existing
techniques for Bayesian modelling and inference on mixtures of distributions.

Suppose that x = (x1, ..., xn) are independent and identically distributed coming
from a distribution with the probability density function 19.1. The likelihood function
is given by,

L(θ , w) =
n∏

i=1

M∑
j=1

wj f (xi |θj ).

To eliminate the summation in this last expression, it is convenient to introduce the
auxiliary vectors Zi = (Zi1, ...,ZiM ) where Zij = 1 if the ith observation belongs
to the j th mixture component, Zij = 0 otherwise and P (Zij = 1) = wj . The
distribution of each Xi given Zi has density function given by,

f (xi |Zi , θ ) =
M∏
j=1

[f (xi |θj )]Zij ,

and the joint distribution of (Xi ,Zi) can be written as

f (xi ,Zi |θ , w) =
M∏
j=1

[wj f (xi |θj )]Zij .

Therefore, the complete data likelihood function is given by,

L(θ , w) =
n∏

i=1

M∏
j=1

[wj f (xi |θj )]Zij .

This hierarchical representation of the model facilitates the Bayesian analysis.
In this chapter we assume a finite mixture of Weibull distributions for each Xi

where the j th component has scale and shape parameters ηj and δj respectively.
We prefer Weibull distribution since that gives a distribution for which the failure
rate is proportional to a power of time and the parameters of the model are easily
interpretable. Consequently other distributions were discarded.

Considering Weibull distribution the complete data likelihood function is then
given by,

n∏
i=1

M∏
j=1

[
wj

δj

ηj
exp

(
−
(
xi

ηj

)δj
)(

xi

ηj

)δj−1
]Zij

. (19.2)

19.2.3 Prior Specification

Following the Bayesian paradigm, we need to complete the model specification by
assigning prior distributions to the parameters. Then, by applying the Bayes theorem
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the posterior density is proportional to the product the likelihood function 19.2 by
the prior density.

We shall assume that all the parameters are a priori independent. Then, within
each component, gamma prior distributions are assigned to the Weibull parameters,
that is ηj ∼ Gamma(aj , bj ) and δj ∼ Gamma(cj , dj ), j = 1, . . . ,M , here the
notation Y ∼ Gamma(cj , dj ) means that the random variable Y follows a gamma
distribution with parameters cj and dj . Also, since the vector of weights w is defined
on the simplex {w ∈ R

M : 0 < wj < 1, j = 1, ...,M ,
∑M

j=1 wj = 1} we consider a
Dirichlet prior distribution for w. Its prior density function is then given by,

p(w|ν1, . . . , νM ) = Γ (ν1 + · · · + νM )

Γ (ν1) · · ·Γ (νM )

M∏
j=1

w
νj−1
j

where ν1 > 0, . . . , νM > 0 are the hyperparameters. In this chapter, the
hyperparameters ηj , δj and νj , j = 1, . . . ,M are held fixed.

Finally, we need to impose identifiability constraints since the labelling of the
mixing components is arbitrary and we need some rule to discriminate among the
components (see for example [11]). A typical solution, also adopted here, is to
impose an ordering constraint μ1 ≤ μ2 ≤ · · · ≤ μM where μj is the mean of the
j th component in the mixture.

19.2.4 Inference

Since the posterior density cannot be fully obtained in closed form we use a Markov
chain Monte Carlo (MCMC) approach to simulate parameter values and obtain pa-
rameter estimates. Details of MCMC methods can be found for example in [21]. In
order to obtain a sample from the joint posterior distribution of the parameters we
first obtain the complete conditional distributions. First note that

P (Zij = 1|x, η, δ, w) ∝ f (xi |Zij = 1, ηj , δj )P (Zij = 1|wj )

∝ wj

δj

ηj
exp

(
−
(
xi

ηj

)δj
)(

xi

ηj

)δj−1

for i = 1, . . . , n. So, for each observation we just need to sample j ∈ {1, . . . ,M}
with probability proportional to wj

δj

ηj
exp

(
−
(

xi
ηj

)δj)(
xi
ηj

)δj−1
. Now, combining

the likelihood function 19.2 with the prior densities of δj and ηj it follows that,

p(ηj |x,Z, δ, η−j ) ∝ η
aj−nj δ−1
j exp

⎧⎨
⎩−

∑
i:Zij=1

(
xi

η

)δj

− ηjbj

⎫⎬
⎭

p(δj |x,Z, η, δ−j ) ∝ δ
nj+cj−1
j η−nj δ exp

⎧⎨
⎩−

∑
i:Zij=1

(
xi

η

)δj

− dj δj

⎫⎬
⎭

∏
i:Zij=1

x
δj−1
i
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where nj = ∑n
i=1 Zij denotes the number of observations in the j th mixture

component.
The complete conditional density of each δj and ηj is not of any standard form

and we use a Metropolis-Hastings algorithm. We adopt a random walk Metropolis
algorithm by proposing values of log (δj ) and log (ηj ) from a normal distribution
centered about its current value and fixing the variance to tune the acceptance rates.

Finally, the complete conditional density of w is given by,

p(w|x,Z, δ, η) ∝
M∏
j=1

w
νj+nj−1
j ,

which represents a Dirichlet distribution with parameters ν1+n1, . . . , νM+nM . Sam-
pling from this complete conditional distribution is then accomplished by drawing
independent gamma variables and scaling them to sum to 1.

In this work, the Gibbs sampling method is used combined with Metropolis-
Hasting algorithm to obtain sample of the posterior distribution of parameters δ, η, w
and Zi , for i = 1, ...,N , see [13]. The Gibbs sampling algorithm can be written as
follows,

1. Initialize choosing w(0), δ(0)
j and η

(0)
j , for j = 1, ...,M

2. For t = 1, 2, . . . repeat
a) For i = 1, ...,N generate Z

(t+1)
i ∼ Mult inomial(1, π̂ (t)

i1 , ..., π̂ (t)
iM ), wherein

π̂
(t)
ij = p(Z

(t)
ij = 1|xi , δ(t−1)

j , η(t−1)
j )= p(xi |δ(t−1)

j , η(t−1)
j ,M)w(t−1)

j∑M
j=1 w(t−1)

j p(xi |δ(t−1)
j , η(t−1)

j ,M)

(19.3)

b) Generate w(t) from the p(w|Z(t))
c) For j = 1, ...,M do

(i) Generate
(
δ

′
j , η

′
j

)
∼ Lognormal

((
log (δ(t−1)

j ), log (η(t−1)
j )

)
, σ 2

j I
)

with σ 2
j = 0.05.

(ii) Generate u ∼ Unif orm(0, 1)
(iii) Compute

α
((

δ
(t−1)
j , η(t−1)

j

)
,
(
δ

′
j , η

′
j

))
=

min

{
1,

p
((

δ
′
j ,η

′
j

)
|x,Z

)

p
((

δ
(t−1)
j ,η(t−1)

j

)
|x,Z

) LN
((

δ
(t−1)
j ,η(t−1)

j

)
|
(

log (δ
′
j ),log (η

′
j )
)

,σ 2
j I
)

LN
((

δ
′
j ,η

′
j

)
|
(

log (δ(t−1)
j ),log (η(t−1)

j )
)

,σ 2
j I
)
}

where LN (y|.) is the density of log-normal distribution evaluate of y

(iv) If α
((

δ
(t−1)
j , η(t−1)

j

)
,
(
δ

′
j , η

′
j

))
< u then

(
δ

(t)
j , η(t)

j

)
=
(
δ

′
j , η

′
j

)
else(

δ
(t)
j , η(t)

j

)
=
(
δ

(t−1)
j , η(t−1)

j

)
.
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19.2.5 Choosing the Number of Components

The specification of a mixture model involves the determination of the number of
components M . Here, instead of endeavouring to apply more complex methods as
in [18] and [20] for example, we compare models by means of Bayes factor and
marginal likelihood [3]. To describe de Bayes factor suppose two models Mj and
Mk with equal prior probabilities p(Mj ) and p(Mk). The Bayes factor is obtained as
the ratio of marginal likelihood m1(x) and m2(x), such that

Bjk = p(x|Mj )

p(x|Mk)
= p(Mj |x)

p(Mk|x)

p(Mk)

p(Mj )
= mj (x)

mk(x)
, (19.4)

where p(Mj |x)/p(Mk|x) is the posterior odds and p(Mj )/p(Mk) is the prior odds.
Since the Bayes factor is higher than 1 then Mj has a higher posterior probability.

In particular, the marginal likelihood for theM-component mixture model is given
by,

p(x|M) =
∫

p(x|θ ,M)p(θ |M)dθ ,

where θ denotes the complete set of parameters (η, δ, w). Computation of the marginal
likelihood requires proper prior distributions and the analytic evaluation of this inte-
gral is not possible in the context treated here (see for example [5] for an extensive
description and comparison of available numerical strategies). In this chapter, we
compute an approximation to the marginal likelihood based on the MCMC output
using the methods described in [6]. The estimator is based on the identity

m(x) = f (x|θ ,M)p(θ |M)

p(θ |x,M)
, (19.5)

where the numerator can be directly computed. Thus the calculation of the marginal
likelihood is reduced to finding an estimate of the posterior density at a point θ∗. For
estimation efficiency we take the point θ∗ = (η∗, δ∗, w∗) as the posterior mean of
θ in the M-component model. We now drop the dependence on M to simplify the
notation and note that the posterior density ordinate can be rewritten as,

p(θ∗|x) = p(δ∗, η∗|x)p(w∗|x, η∗, δ∗).

Our approach is based on an additional G iterations sampling values of Z from
its complete conditional distributions evaluated at (δ∗

j , η∗
j ) and sampling values of

(δj , ηj ) from its proposal distribution in the Metropolis-Hastings step also evaluated
at (δ∗

j , η∗
j ).

Let q((δj , ηj ), (δ
′
j , η

′
j )) denote the proposal density of (δj , ηj ) in the random walk

Metropolis update. Then, following [6] the marginal density ordinate of each (δ∗
j , η∗

j )
is estimated as

p̂((δ∗
j , η∗

j )|x) =
L−1∑L

l=1 α
(

(δ(l)
j , η(l)

j ), (δ∗
j , η∗

j )
)
q
(

(δ(l)
j , η(l)

j ), (δ∗
j , η∗

j )
)

G−1
∑G

g=1 α
(

(δ∗
j , η∗

j ), (δ(g)
j , η(g)

j )
) ,
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where {(δ(l)
j , η(l)

j )} are the sampled values from the marginal posterior distribution of

(δj , ηj ), {(δ(g)
j , η(g)

j )} are drawn from q
(

(δ∗
j , η∗

j ), (δj , ηj )
)

and α(·, ·) are the accep-

tance probabilities. The conditional density ordinates of wj is estimated by averaging
with respect to the sampled valuesZ(g) their complete conditional densities evaluated
at (δ∗

j , η∗
j ), that is

p̂(wj |x, δ∗
j , η∗

j ) = G−1
G∑

g=1

p(wj |x,Z(g), δ∗
j , η∗

j ).

Finally, the posterior density ordinate is estimated as,

p̂(θ∗|x) =
M∏
j=1

p̂((δ∗
j , η∗

j )|x)p̂(w∗
j |x, η∗

j , δ∗
j ),

which is in turn used in 19.5 to obtain an estimate of the marginal likelihood.

19.2.6 Predictive Distribution

A posterior feature of interest is the predictive distribution for a future observation.
As discussed by Escobar and West [9], a density estimation can be obtained by
summarizing the unconditional predictive distribution

h(x) = p(xN+1|x) =
∫
p(xN+1|�)dp(�|x) = Eθ |x [f (x|�)] . (19.6)

Thus, the Monte Carlo approximation for h(x) is obtained as

ĥ(x) = 1

L

L∑
l=1

f (x|�(l)), (19.7)

where
{
�(l)

}L
l=1 are draws from the joint posterior distribution.

In this work, the posterior predictive distribution is used to calculate cumulative
probabilities by use of numerical integration such as the Simpson rule, see details of
numerical integration methods in [1].

19.3 Results

For each data set of vote percentage, obtained considering elections of 1994, 1998,
2002, 2006 and 2010, as seen above, we have implemented the algorithm shown
in Sect.19.2.4 to mixtures of Weibull distributions. In terms of MCMC, we report
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Table 19.1 Twice the natural logarithm of the Bayes factor of the data of voting percentage under
one model resulting of mixture of Weibull distribution relative to another

Election 2 × log
(
p(x|2-component)
p(x|1-component )

)
2 × log

(
p(x|2-component)
p(x|3-component)

)
2 × log

(
p(x|3-component)
p(x|1-component )

)

1994 560.0 133.3 426.8

1998 753.7 −7.9 761.6

2002 607.9 −3.1 610.9

2006 625.6 −9.4 635.1

2010 562.2 18.3 543.8

results corresponding to 10,000 iterations following a burn-in period also of 10,000
iterations. The convergence of MCMC chain is assessed using separated partial
means test proposed by Geweke [10] and all indicate that the chains have converged.
The values of hyperparameters in the prior distributions were specified to produce
approximately vague priors. Thus, for the five elections and each number of com-
ponents in the mixture we specified aj = (4, 5, 5, 7, 7), cj = (49, 49, 45, 10, 10) and
dj = (7, 7, 5, 1, 1/2). Also, for all elections we set bj = 1/10, and νj = 1. The
main variation chosen was in the hyperparameter for shape parameter of Weibull
distribution as discussed in Sect. 3.2. Thus for elections in 2006 and 2010 smaller
values of these hyperparameters were chosen in order to reflect the greater disper-
sion of the distribution of the data. The acceptance rate in the Metropolis-Hastings
algorithm for sampling δj and ηj was controlled to lie within the interval 0.20–0.50
which is usually recommended in the MCMC literature. All results presented here
were obtained by using the software R [17].

The best model among the models with 1, 2 and 3 Weibull components was
selected considering twice the natural logarithm of the Bayes factor presented in
table 19.1, which interpretation can be seen in [19]. The results in this table show
that, for all election, models with two or three components are better than a model with
one component. However, when comparing models with two or three components
the results may vary. For the 1994 and 2010 elections two components in the mixture
are sufficient to fit the distribution of the votes. On the other hand, for the 1998, 2002
and 2006 elections three components are needed in the mixture.

In addition, considering the posterior mean of the parameters for each model we
estimate the graph of density for each model and compare with the histogram of
votes as showed in Fig. 19.1. We can see that the best model, that is the one for
which density estimate is closest to the data, coincides with the choice according to
Bayes factor.

Table 19.2 provides posterior means and 95 % HPD credible intervals for the
parameters in the model chosen according to Bayes factor for each year. The credible
intervals were constructed using the package MCMCpack of [14].

Using these parameters we can give some interpretations to the results. For exam-
ple in 1994 we identified two groups of cities in Sergipe. For the first group, formed
by 38 cities and with weight 0.45, we found an expected percentage of votes of
14.4 (posterior mean) with variability of 2.9 (posterior standard deviation), whereas
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Table 19.2 Posterior mean and HPD interval of parameters of the bestWeibull mixture model chosen
by Bayes factor evaluation. Data of voting percentage obtained by Workers’ Party in presidential
elections in the Sergipe State from year 1994 to 2010 was considered for fitting of the models

Posterior mean and HPD Interval (95 %)

Election Ma w(weight) δ(shape) η(scale)

1994 2 0.45(0.27, 0.61) 5.81 (4.42, 7.21) 15.57 (14.09, 17.04)

0.55 (0.39, 0.73) 5.18 (4.00, 6.50) 28.45 (26.97, 31.00)

1998 3 0.47 (0.26, 0.67) 5.38 (3.99, 6.81) 13.91 (12.05, 16.35)

0.28 (0.09, 0.47) 6.66 (4.72, 8.67) 22.56 (18.13, 29.50)

0.25 (0.11, 0.42) 6.69 (4.86, 8.52) 34.49 (30.94, 37.92)

2002 3 0.28 (0.05, 0.69) 7.18 (4.70, 9.64) 21.01 (16.52, 29.36)

0.42 (0.07, 0.66) 8.19 (5.63, 10.88) 31.65 (26.84, 41.88)

0.30 (0.09, 0.50) 8.57 (6.12, 11.07) 44.01 (40.20, 47.45)

2006 3 0.36 (0.08, 0.72) 11.04 (6.29, 16.50) 39.64 3(5.77, 45.15)

0.42 (0.06, 0.72) 9.65 (5.36, 14.97) 48.69 (43.40, 55.09)

0.22 (0.02, 0.48) 8.72 (4.93, 13.65) 58.96 (50.89, 67.03)

2010 2 0.84 (0.63, 0.97) 10.10 (6.16, 12.80) 50.17 (48.39, 52.28)

0.16 (0.03, 0.37) 18.12 (6.27, 29.01) 62.48 (51.91, 66.81)

a Number of components in the mixture

in the second group, formed by 37 cities and with weight 0.55, the corresponding
values are higher, 26.2 and 5.8 respectively. Likewise, in 2010, two populations were
also identified. For the first population, formed by 67 cities with weight 0.84, we
found an expected percentage of votes of 47.8 (posterior mean) with variability of
5.7 (posterior standard deviation), whereas in the second group, formed by 8 cities
and with weight 0.16, the corresponding values are higher, 60.7 and 4.1 respectively.
Note the significant increment of the percent of votes in both populations between
1994 and 2010. In addition, the first population in 2010 has 33 of the cities in the
first group in 1994 indicating specifically that this group of cities had a significant
increment over time.

Finally, from the best model for each election, the probability that PT obtains more
than 50 % of the votes in the first round was calculated, because if the presidential
candidate won the majority of votes in the first ballot the candidate is declared winner
of presidential election and the second ballot is not necessary. The probabilities were
estimated considering the predictive distribution by numerical integration using the
Simpson rule combined with Monte Carlo method as seen in Sect.19.2.6. These
corresponding probabilities of winning in the first ballot for PT party considering the
Sergipe state for elections in 1994, 1998, 2002, 2006 and 2010 were 3.15 × 10−6,
9.76×10−5, 0.0175, 0.273 and 0.459 respectively, thus indicating that this probability
was increasing over time.

We should note that as suggested by a referee a Mixture Normal model was
also implemented considering an algorithm similar to the one defined in Sect. 3.3



240 R. F. da Paz et al.

without Metropolis-Hasting step. The results showed, that there is a strong evidence
in favour of the Weibull mixture model. Additionally as discussed in Sect. 3.1 this
model can lead to inferences which can be misleading since the normal is a symmetric
distribution and can lead to overfit when additional component need to be included
to capture the asymmetry in the data.

19.4 Discussion and Further Development

This chapter proposed a Weibull mixture model to describe the electoral behaviour
of a Brazilian political party in different elections. The number of votes obtained by
Workers’ Party in the five Brazilian presidential elections from 1994 to 2010 were
considered for analysis. A fully Bayesian approach was undertaken using MCMC
methods.

We note that the results shown in this chapter are purely descriptive. They illustrate
how the votes of a particular political party in different elections in Brazil in a given
geographic area may exhibit multimodality and how the distribution of votes changes
over time. Also, we found that the probability of obtainig 50 % of the votes in the
first ballot is increasing along time.

In future developments we consider extending the analysis for all states of Brazil
as well as including other parties in the analysis. Also regression models explain
the electoral conduct should be considered in future analysis. Since that votes are
limited variables, that is votes is between a minimum and maximum value, models
for limited distributions as beta distributions also can be explored.
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Chapter 20
An Alternative Operational Risk Methodology
for Regulatory Capital Calculation

Guaraci Requena, Débora Delbem and Carlos Diniz

Abstract The main objective of this work is to suggest a new method for cal-
culation of regulatory capital required for operational risk as an alternative to the
corresponding version advocated by the Basel Committee of Banking Supervision.
Our method takes into account genuine dependence among the losses of possible
risk units within a financial institution. Our proposal reduces the amount of regula-
tory capital suggested by Basel Committee, where the risk units are assumed to be
perfectly positive-dependent. A simulation study is performed to compare both ap-
proaches. Finally, we discuss when Bayesian methods are preferable to the classical
ones.

20.1 Introduction

Operational risk, in general, is the risk of loss from an operational failure. This
means that financial institutions accept that their employees, processes, and systems
are imperfect and losses will arise from possible errors. Therefore, the companies
have to be prepared to cover an amount of risk (keeping losses in reasonable tolerance)
in pursuit of their objectives. Operational risk management differs from other types
of risk (e.g., credit or market risks), because it is used to protect the company but not
to generate a profit.

Initially, in the mid-1980s, the operational risk has been defined as a kind of
undesirable incident/event, such a fraud or a system error. The operative question to
the managers in the risk identification process was “What/where are your risks?”,
leading to the creation of a huge and unmanageable set of risks.
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Operational risk became recognized as a major risk class in the mid-1990s follow-
ing a number of large-scale insolvencies in the banking industry caused by events
outside of market and credit risk. Examples are Orange County, 1994; Barings
Bank, 1995; and Daiwa Bank, 1995; among others. In these cases, significant losses
were incurred due to operational risk failures. In response, the Basel Committee on
Banking Supervision released a proposal in June 1999 to replace the 1988 Basel
Capital Accord (Basel I), with a new risk-sensitive framework. The initial consul-
tative proposal introduced an operational risk category as a measure of exposure to
loss from undesirable nonoverlapping incidents/events (risk classes) and established
the corresponding capital requirements.

In the revision of the Basel II regulations (2006), operational risk is defined as “the
risk of loss resulting from inadequate or failed internal process, people or systems,
or from external events,” see [3]. This definition includes the legal risk (exposure
to fines, penalties) but excludes strategic and reputation risk. In addition, seven
basic event-type categories have been specified as internal fraud; external fraud;
employment practices and workplace safety; clients, products, and business prac-
tice; damage to physical assets; business disruption and systems failures; execution,
delivery, and process management.

The Basel Committee recognizes that operational risk is a term that has a variety of
meanings and therefore, for internal purposes, financial institutions are permitted to
adopt their own definitions of operational risk, provided that the minimum elements
in the Committee’s definition are included.

One of the main innovations of the Basel II agreement compared to Basel I has
been not only to require allocation of capital to cover operational risk but also to
advocate for an operational risk management system. An overview on operational
risk measurement techniques is given in [2]. Basel II offers banks three capital
calculation methods of increasing complexity.

• The basic indicator approach consists of applying a fixed percentage (15 %) to
the average of the positive annual gross income of the financial institution over
the previous 3 years;

• The standardized approach (SA) allows to apply a factor (between 12 and 18 %)
that depends on the business line. The reason is that some financial activities are
more exposed than others to operational risk (at least in relation to gross income).
Concretely, the factors for eight basic business lines are: corporate finance 18 %,
trading and sales 18 %, retail banking 12 %, commercial banking 15 %, payment
and settlement 18 %, agency services 15 %, asset management 12 %, and retail
brokerage 12 %. In order to be eligible, this method requires to have figures of
losses incurred by each combination of 8 business lines and 7 event types due to
operational risks (56 in total).

• Finally, the advanced measurement approach (AMA) allows the bank to build
its own method for assessing operational risk. The Basel II Accord allows three
alternative approaches: the loss distribution approach (LDA), the scenario-based
approach, and the scorecard approach. The three approaches differ only in the
emphasis on the information used to calculate regulatory capital. The chosen
method as well as the implementation conditions (existence of a centralized risk
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control structure, frequency, and relevance of reporting) are then submitted for
prior approval to the regulator. In order to be eligible, the AMA method requires
the following data to be available: internal loss data (specific to the bank); external
loss data (available databases for the whole profession); analysis of potential event
scenarios; and business environment and internal control factors.

Basel II Accord implementation, in Brazil, has focused on the SAs to credit, market,
and operational risk, see [4]. Brazilian banks use a version of the SA (by reducing
several factors of the basic business lines), called the alternative standardized ap-
proach (ASA), to calculate capital requirements for operational risk. Data provided
by the Brazilian Central Bank (BCB) indicate that if the banks were to apply SA,
following Basel II, their capital requirements would, on aggregate, double. The BCB
explained that the main reason for making only the ASA available to Brazilian banks
relates to anomalous Brazilian interest rate spreads, which make the ASA’s asset-
based indicator a much better proxy for operational risk in the Brazilian environment
than the gross income under the SA.

The method chosen for identification and measurement of operational risk must
be consistent within a banking group. The selection of the AMA allows to reduce
capital reserves, which is the main objective of this work. We formalize the problem in
Sect. 20.2 and propose a new method for reducing the regulatory capital advocated
by Basel II. In absence of real data, we provide a simulation study and compare
our method with Basel II requirements in Sect. 20.3. We finish with a discussion
indicating Bayesian methods as a possible tool for analysis.

20.2 Description of Methods

Operational risk is difficult to identify and assess as the causes are extremely hetero-
geneous, thus making developing statistical models for operational risk challenging.
The most typical example of statistical methods is the “LDA” associated with AMA.
It relies on a database of losses collected within the bank, enhanced with data from
external sources. The aim is to obtain the distribution of cumulative loss for each
business line and each type of loss event (56 risk units in total according to Basel II
Accord) and to use it as a base to calculate the regulatory capital.

We will first describe the methodology for calculation of operational risk fixed by
Basel II. In the sequel we will propose our alternative.

20.2.1 Basel II Approach

For each risk unit in a financial institution there is a random variable X associated,
named “cumulative operational loss,” which represents the aggregated loss during 1
year. Following LDA, the cumulative operational loss is defined by X = ∑N

i=0 Si ,
where S0 = 0. Its distribution is given by
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F (x) =P (X ≤ x)=
∞∑
n=0

P (X≤ x,N= n) =
∞∑
n=0

P

(
n∑

k=0

Sk ≤ x

)
Pr(N= n). (20.1)

The relation (20.1) is based on two assumptions: first, severities S1, S2, . . . are
independent and identically distributed random variables; and second, observed loss
frequency N and (S1, S2, . . . ) are independent.

Therefore, the first step of the LDA is to draw for each of 56 risk units, two
probability distributions for associated loss. The first represents the frequency of
loss events over a time interval (loss frequency distribution), and the other represents
the severity of these same events (loss severity distribution). To do so, one sorts loss
events by frequency on one hand, and by cost on the other hand, and represents the
result graphically (using histograms). For both distributions, the statistician estimates
the corresponding parameters that best represent the shape of the curve. In order to
validate the choice, one compares the result (frequency or loss) predicted by the
corresponding distribution with the output of the curve built from real data: if both
curves overlap, the model is considered reliable.

The analytical form of aggregated distribution given by (20.1) is difficult to get,
even under independence assumptions. Hence, using a Monte Carlo simulation,
selected frequency and severity distributions are combined in order to obtain for each
business line and each type of event, an aggregated curve of the loss distribution X

for a given time horizon. The LDA is described in [1].
Embrechts and Puccetti [5] argue that the most sensitive methodology for the oper-

ational risk is the LDA. The independence assumption between severities S1, S2, . . .
is unreasonable because of the common economic influence into a given risk unit. A
related discussion can be found in [6] and [7].

The value-at-risk (VaR) of a random variable X with distribution function at level
α ∈ (0, 1) is defined by

VaRα(X) = F−1(α) = inf{x|F (x) ≥ α},
where F−1 is the inverse of distribution function F (x). According to Basel II, the
operationalVaR for a fixed risk unit (to be denoted byVaR(X)), is the 99.9 % quantile
of distribution of the cumulative operational loss X, i.e.,

VaR(X) = F−1(0.999) = inf{x|F (x) ≥ 0.999}.
Thus, VaR(X) is a monetary value (the maximum loss incurred with a probability

of 99.9 %) that the finance institution needs in order to assign the so-called “marginal
unexpected loss” ULX in the risk unit with loss X. It is given by

ULX = VaR(X) − E(X), (20.2)

where E(X) is the expected value of X.
In general, the regulatory capital is defined as the economic capital which have to

cover the “total unexpected loss” (TUL) of the finance institution. Following Basel
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II Accord, the TUL is calculated as a summation of marginal unexpected losses for
all risk units, i.e.,

TUL =
M∑
k=1

ULXk
, (20.3)

where ULXk
is given by (20.2) and M denotes the number of risk units (56 in total).

Let (X1, . . . ,XM ) be a random vector with joint distributionH (x1, . . . , xM ),M ≥
2. Its upper and lower Fréchet–Hoeffding bounds are given by

max
{
FX1 (x1) + · · · + FXM

(xM ) − M + 1, 0
} ≤ H (x1, . . . , xM ) ≤ min

{
FX1 (x1), . . . ,FXM

(xM )
}

where FXi
is the distribution function of Xi , i = 1, . . . ,M . If the upper bound

is attained we say that marginal random variables are comonotonic, i.e, perfectly
positive-dependent. The variables are said countermonotonic (perfectly negative-
dependent) when the lower bound in last relation is reached.

A careful analysis of relation (20.3) indicates that it is fulfilled only if

VaR(X1 + · · · + XM ) = VaR(X1) + · · · + VaR(XM ).

This means that the TUL advocated implicitly assumes that all risk units are comono-
tonic, i.e., perfectly positive-dependent. In other words, the losses caused by possible
combinations of business lines and event types would occur simultaneously in same
time during the holding period. Furthermore, (20.3) implies that all losses are driven
from the same randomness, which hardly occurs in real situations. In fact, these
conclusions are a consequence of the following general result, see Proposition 6.15
in [9].

Proposition Let ψ : RM → R be increasing and left continuous in each argument
function and X1, . . . ,XM be comonotonic random variables. Then

VaRα(ψ(X1, . . . ,XM )) = ψ[VaRα(X1), . . . ,VaRα(XM )]

for α ∈ (0, 1).
In our case the function ψ(x1, . . . , xM ) = x1 +· · ·+xM.The interpretation is that

VaR calculations can be transported directly through increasing continuous functions
of possible comonotonic risk units.

20.2.2 An Alternative Methodology

The identification and the measurement of operational risk is a new issue in the
banking sector. As we noted, the Basel II proposal for calculation of TUL by (20.3)
is based on an unrealistic assumption of strongest positive dependence structure be-
tween all risk units. Thus, the regulatory capital is overestimated believing that all
marginal unexpected losses occur jointly. Giacometti et al. [8] argue that a financial
institution can effectively reduce its charge of regulatory capital by taking into ac-
count the dependence structure among the risk units. In the same sense, Frachot et
al. [7] state that the Basel II method is based on contradictory assumptions.
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These facts motivate to suggest an alternative methodology for regulatory capital
calculation. We will assume a dependence between risk units which is weaker than
the perfect positive one. The aim is to recommend aggregate unexpected loss (AUL),
which is (20.3).

For simplicity, we will illustrate our approach considering two risk units. Let
the cumulative operational losses X and Y be continuous with distributions F (x)
and G(y), respectively, and H (x, y) be their continuous joint distribution. The
corresponding upper and lower Fréchet–Hoeffding bounds are denoted by

H+(x, y) = min{F (x),G(y)} and H−(x, y) = max{F (x) + G(y) − 1, 0}.
Since the operational risk have to cover the marginal unexpected losses, we define
the probability

p = P (E(X) ≤ X ≤ VaR(X),E(Y ) ≤ Y ≤ VaR(Y )). (20.4)

Our proposal is to determine the AUL by

AUL = fk(p) = ap1/k + b, k > 0 (20.5)

where the family fk(p) of power functions depends of positive parameters a and
b. We will find the unknown parameters k, a, and b and the domain of p under the
following reasonable assumptions:

(A1) Take into account the expert opinion;
(A2) AUL should be nondecreasing in k and p;
(A3) AUL is represented by (20.3) if H (x, y) = H+(x, y);
(A4) The case of perfect negative dependence to be incorporated in AUL.

The performance of the function fk(p) depends of the choice of parameter k which
can be associated to expert opinion (recommended by Basel II). Adopting a local
experience, we will consider a particular bijection k = tg(π2 c). If k → ∞, then
c → 1 and therefore c ∈ [0, 1]. If the current economic situation is critical, the
expert assigns values of c close to 1. In this case of financial institution should apply
TUL calculated by (20.3).

The probability p in (20.4) can be equivalently represented by

p = H (VaR(X),VaR(Y )) −H (VaR(X),E(Y )) −H (E(Y ),VaR(Y )) +H (E(X),E(Y )).

Note that when the argument p increases the regulatory capital also must increase
and assumption (A2) is satisfied. In the comonotonic case we obtain

p+ = min{F (VaR(X)),G(VaR(Y ))} − min{F (VaR(X)),G(E(Y ))} −
− min{F (E(X)),G(VaR(Y ))} + min{F (E(X)),G(E(Y ))}.

Since F (VaR(X)) = G(VaR(Y )) = 0.999, we get the upper bound of p given by

p+ = 0.999 − max{F (E(X)),G(E(Y ))}.
If at least one of the events {X ∈ [E(X),VaR(X)]} and {Y ∈ [E(Y ),VaR(Y )]} do
not occur, we have p = 0. It is direct to check that such a case is possible only if
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Table 20.1 Terms for AUL

calculation E(X) 1.13

VaR(X) 4.53

E(Y ) 1.13

VaR(Y ) 4.69

min(ULX , ULY ) 3.4

max(ULX , ULY ) 3.56

p+ 0.4

the lower bound H−(x, y) is attained, i.e., both risks X and Y are perfectly negative
dependent. Substituting p = 0 in (20.5) one gets b = max{ULX, ULY }, where the
unexpected losses of X and Y are computed by (20.2).

Finally, assumption (A3) is fulfilled if

a = (ULX + ULY ) − max{ULX, ULY }
(p+)1/tg( π2 c)

.

Thus, we arrive to our proposal.

Theorem Under assumptions (A1)–(A4), the aggregated unexpected loss is

AUL = min{ULX, ULY }
(

p

p+

)1/tg( π2 c)

+ max{ULX, ULY }, (20.6)

where c ∈ [0, 1] and p ∈ [0,p+].
It is direct to verify that suggested aggregated unexpected loss (20.6) is inferior

than the regulatory capital advocated by Basel II through (20.3). In the worst case
scenario (perfect positive dependence between X and Y or c → 1) we have AUL =
TUL.

20.3 Comparison of the Methods

Here we show first the behavior AUL defined by (20.6) for fixed marginal distri-
butions. We assume that the distributions of X and Y already selected and their
parameters are estimated using the LDA. Let

X ∼ Weibull(1.5, 1.25)

Y ∼ Lognormal(0, 0.5).

The necessary quantities in (20.6) are summarized in Table 20.1.
Therefore, for the considered example we obtain

TUL = ULX + ULY = 6.96 and AUL = 3.4
( p

0.4

)1/tg( π2 c) + 3.56,

where p ∈ [0, 0.4] and c ∈ [0, 1].
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Fig. 20.1 Behavior of proposed AUL

Figure 20.1 shows the performance of AUL for admissible values of p and c. It
can be seen that the corresponding AUL curves are below the extreme TUL value
6.96.

Now, let us assume that our risk X and Y are dependent. Their continuous
joint distribution H (x, y) can be represented by some copula C as H (x, y) =
C(F (x),G(y)).

To obtain the joint distribution H (x, y) of X and Y with fixed above marginals,
we will use the Gaussian copula with parameter ρ ∈ [−1, 1]. It is given by

Cρ(u, v) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
φ2,ρ(x, y)dxdy,

where φ2,ρ(x, y) = 1

2π
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
x2 + y2 − 2ρxy

])
, ρ ∈ [−1, 1] and

a = Φ−1(u) is such that

u = 1√
2π

∫ a

−∞
exp

(
−x2

2

)
dx.

In fact, we need to calculate the probability p given by (20.4) being a function
of H (x, y). The results comparing TUL and AUL for various values of parameters ρ
and c are presented in Table 20.2. One can see that AUL values are nondecreasing
in each line and column along with increase of c and ρ, respectively. As should be,
any calculated AUL is smaller than the corresponding TUL value 6.96.
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Table 20.2 AUL-values
ρ c = 0.1 c = 0.5 c = 0.7 c = 0.9

−0.9 3.611271 3.737912 4.241459 5.599157

−0.3 3.642597 4.697959 5.532541 6.510147

0 3.680031 5.040993 5.832651 6.648987

0.3 3.744461 5.560509 6.248796 6.891505

1 6.96 6.96 6.96 6.96

20.4 Discussion and Conclusions

Dealing with operational risk measures is a relatively new field of research. Just
after the Basel II has permitted a substantial degree of flexibility within the advanced
models in 2004, the interest in calculating the corresponding capital charge has in-
creased. The AMA model is the most risk-sensitive one and leaves the possibility
for the bank to develop its own procedures for measuring and assessing the expo-
sure to operational risk. Dispute this freedom, the usage of the AMA is subject of
supervisory approval.

The BCB has implemented regulations to permit the use of banks’ internal models
for regulatory capital calculation. Final rules for the AMA were issued by BCB in
March 2013, see [4]. Several Brazilian banks are developing their ownAMA models,
but remain at relatively early stages of planning. So, it is unlikely that any bank will
be approved by BCB to use AMA within the next 3-year period.

Our proposal for regulatory capital calculation through Eq. (20.6) is actual and
based on possible dependence between risk units. It reduces the corresponding
amount suggested by Basel II, which is reasonable during financial crisis (when
risk units are perfectly positive dependent or the parameter c is evaluated by an
expert with a value close to 1).

As we noted in Sect. 20.1, the AMA allows to consider the financial institution
internal data along with data that could be from an external consortium, or data in
the form of risk scores based on opinions from industry experts or the owner of the
risk. The internal databases are more objective while the external ones are purely
subjective in general. This fact implicitly indicates the use of Bayesian methods for
estimation of unknown marginal and copula parameters and corresponding model
validation. For example, the external data are used to estimate a “prior density” for
the parameter of interest, and the internal data are used to estimate another density
for the parameter that is called the “sample likelihood,” see [2]. These two densities
are then multiplied to obtain the “posterior density” of the corresponding parameter.

For more complex marginal models and/or copula function one may have prob-
lems to maximize the likelihood using the conventional statistical techniques. An
alternative is to apply the Bayesian methods, which can be more efficient. Smith [10]
discusses this option in some detail. For instance, the Bayesian estimation can be
extended for nonlinear dependence structures, hierarchical models can be employed
for the marginals, etc.
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Chapter 21
Bayesian Approach of the Exponential Poisson
Logarithmic Model

José Augusto Fioruci, Bao Yiqi, Francisco Louzada and Vicente G. Cancho

Abstract Recently, a new three-parameter lifetime distribution motivated mainly by
lifetime issues has been proposed by the authors. In this chapter, we consider the
Bayesian analysis for this new distribution and compare its performance with the
classic ones. The approximate Bayes estimators obtained by Markov chain Monte
Carlo (MCMC) methods under the assumption of noninformative priors are com-
pared with the maximum likelihood estimators by simulation. Finally, the model is
fitted to a real data set and it is compared with several models.

21.1 Introduction

Recently several new distributions were proposed under the structure of primary
latent causes, such as [7–9]. Fioruci et al. [6] proposed the exponential Poisson
logarithmic (EPL) distribution, which is a three-parameter distribution and was con-
structed under the structure of secondary latent cause activation, i.e, the event of
interest will occur when any primary cause is activated, since each primary cause
is activated when all of secondary latent causes are activated. The EPL distribution
generalizes the exponential Poisson distribution proposed by Cancho et al. [4], and
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its probability density function (pdf ) is given by

f (y) = φ θ λ exp (− λ y − θ e−λ y)

− log (1 − φ){1 − e−θ − φ [1 − exp (− θ e−λ y)]} , y > 0, (21.1)

where φ ∈ (0, 1), λ > 0 and θ > 0. The parameter λ controls the scale of the
distribution and the parameters φ and θ control its shape. The corresponding hazard
rate function has the expression

h(y) = φθλ exp (− λy − θe−λ y)

− log
[
1 − φ

1−exp (−θe−λy )
1−e−θ

] {
1 − e−θ − φ[1 − exp (− θe−λ y)]

} , (21.2)

for y > 0, 0 < φ < 1, θ > 0, λ > 0 and it decreases for φ > 1 − e−θ and increases
for φ < 1 − e−θ .

The main aim of this chapter is to consider the Bayesian analysis for the EPL
distribution and compare its performance with the classical ones. Since the param-
eters φ, λ, and θ have different ranges, we assume the normal truncated priors on
them. Although they are not the conjugate priors, the prior information is easy to
control through their parameters. In many practical situations, the information about
the shape and scale of sampling distribution is available in an independent manner,
see [3]. Therefore, here it is assumed that the priors of the parameters φ, λ, and θ

are independent.
In this chapter we consider the squared error loss function. It is observed that

the Bayes estimators cannot be expressed in explicit form, so we compute the ap-
proximate Bayes estimators by Markov chain Monte Carlo (MCMC) simulation
methods.

The chapter is organized as follows. In Sect. 21.2, we study the inferential proce-
dure based on the Bayesian approach. We conducted a simulation study in order to
assess the performance of the Bayesian estimator and compare with the classical es-
timator. In Sect. 21.4 the application of the new distribution is illustrated considering
a real data set, where it is compared with its submodels and also with another models
with three parameters. Some final comments in Sect. 21.5 conclude the chapter.

21.2 Bayesian Inference

Let y = (y1, . . . , yn) be a random sample of the EPL distribution with unknown
parameter vector ξ = (θ , λ,φ). The likelihood function L(ξ |y) is given by

L(ξ |D) =
n∏

i=1

φ θ λ exp (− λ yi − θ e−λ yi )

− log (1 − φ){1 − e−θ − φ [1 − exp (− θ e−λ yi )]} (21.3)

where D denotes the observed data.
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For a Bayesian analysis, we assume the follow prior densities for parameters φ,
λ, and θ :

• φ ∼ N (μφ , σ 2
φ )I (0, 1), μφ and σφ known;

• λ ∼ N (μλ, σ 2
λ )I (0, ∞), μλ and σλ known;

• θ ∼ N (μθ , σ 2
θ )I (0, ∞), μθ and σθ known;

where N (μ, σ 2)I(a, b) denote the truncated normal distribution which is the proba-
bility distribution of a normally distributed random variable whose value lies within
the interval −∞ ≤ a < b ≤ ∞. In several areas, especially in medicine, it is
preferable to use the prior information when they are available; moreover, it is worth
mentioning that using a truncated normal distribution as prior facilitates the insertion
of information in certain regions of the parameter space, since the hyperparameters
no longer represent the mean and variance but still control the region of higher
probability mass.

Assuming the independence of the parameters, the prior densities for ξ can be
written as

π (ξ ) = π (φ)π (λ)π (θ ) (21.4)

and for express vague information priors, we consider μφ = μλ = μθ = 0 and
σ 2
φ = σ 2

λ = σ 2
θ = 100.

Combining the likelihood function (21.3) and the prior distribution in (21.4), the
joint posterior distribution for ξ is obtained as

πξ (ξ |D) ∝ L(ξ ; D)π (φ)π (λ)π (θ ).

This joint posterior density is analytically intractable. So we based our inference on
the MCMC method. Moreover, we observed that there is no closed form available for
any of the full conditional distributions. Thus, we choose the Metropolis–Hastings
algorithm to construct the Markov chain.

To use the random-walk chain with normal distribution as proposal density we

will adopt the reparameterization ϕ = (ϕ1,ϕ2,ϕ3) =
(

log
(

φ

1−φ

)
, log (λ), log (θ )

)
,

thus the original parameter space is transformed to R
3 space. So the resulting joint

posterior density is given by

π (ϕ|D) = πξ (ϕ−1|D) × exp (ϕ1 + ϕ2 + ϕ3)

(1 + exp (ϕ1))2
.

To implement the Metropolis–Hastings algorithm, we proceed as follows:

(1) Start with any point ϕ(0), and stage indicator j = 0;
(2) Generate a point ϕ′ from the transition kernel distribution N3

(
ϕj ,Σ

)
, where Σ

is the covariance matrix of ϕ;
(3) Update ϕ(j ) to ϕ′ with probability min{1,π (ϕ′|D)/π (ϕ(j )|D)} and make j =

j + 1;
(4) Repeat steps (2) and (3) until the process reaches a stationary distribution.
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In practice, it is difficult to obtain analytically the covariance matrix Σ and a
numerical approximation for it needs to be used.

21.3 Simulation Study

In this section, we conducted a simulation study to verify and compare the perfor-
mances of the Bayes estimators to the maximum likelihood estimators obtained by
Newton–Raphson method (NR).

A lifetime data was simulated from the quantile function of the distribution (via
inversion method) with the parameters φ = 0.5, λ = 1.0, and θ = 2.0. We took the
sample sizes n = 20, 40, . . . , 200 and conducted 1000 replicates for each sample
size. The vague information to prior distributions of the parameters was considered in
the study. For each generated data set we simulated one chain of size 30,000 for each
parameter, and the first 10,000 iterations were disregarded in order to eliminate the
effect of the initial values and avoid correlation problems, thus obtaining an effective
sample of size 20,000 upon which the posterior is based.

Table 21.1 shows the posterior mean, mean posterior variance, biases, and mean
squared errors (MSE) for some sample sizes in the top table and the averages of the
maximum likelihood estimates, variances of estimators, biases, and MSEs for some
sample sizes in the bottom table.

In the Bayesian estimator simulation study, the following observations were made:
the estimators of θ and λ approached the real values of the parameters as n increased,
so that their biases and MSEs went to zero as n increased;the estimator of φ presented
a negative bias, however its biases and MSEs are always near zero. In the classical
estimator simulation study the following observations were made: the estimator of
λ approached the real values of the parameters as n increased; the estimator of θ and
φ present a positive and negative bias, respectively, although its biases are always
near zero. The MSEs of θ and φ kept stable as n increased.

The graphics of biases and MSEs are presented in Figs. 21.1 and 21.2 for Bayesian
and classical simulations, respectively. Comparing the results, we can conclude
that the Bayesian estimators have better performance than the maximum likelihood
estimators in general; indeed the maximum likelihood estimators of φ and θ present
little biases.

21.4 Applications

In this section, we analyze a data set with 113 observed lifetimes of patients on the
waiting list for the Stanford heart transplant program as presented by Escobar [5].

In order to identify the shape of a lifetime data failure rate function we shall
consider a graphical method based on the TTT plot [1]. In its empirical version
the TTT plot is given by G(r/n) = [

(
∑r

i=1 Yi:n) + (n − r)Yr:n
]
/(
∑r

i=1 Yi:n) where
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Fig. 21.1 Bias (left panels) and mean squared errors (MSE) (right panels) of Bayesian estimation
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Fig. 21.2 Bias (left panels) and mean squared errors (MSE) (right panels) of the maximum
likelihood estimates

r = 1, . . . , n and Yi:n represent the order statistics of the sample. It has been shown
that the failure rate function is increasing (decreasing) if the TTT plot is concave
(convex). Although, the TTT plot is only a sufficient condition, not a necessary one
for indicating the failure rate function shape, it is used here as a crude indicator
of its shape. Fig. 21.3 shows the TTT plot for the considered data set, which is
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Fig. 21.3 Empirical-scaled
TTT-transform for the data
sets
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Fig. 21.4 Data set 1. Left panel: The density functions of the fitted models superimposed on the
histogram. Right panel: Kaplan–Meier curve with estimated survival function of the fitted models

convex, indicating a decreasing failure rate function for the first data set, which can
be properly accommodated by an EPL model.

We fitted the EPL model, its submodels (EP and exponential (Exp)), and two other
three-parameter models, the Weibull-geometric model (WG) proposed by Barreto-
Souza et al. [2] and the exponentiated Weibull model (EW) proposed by Mudholkar
and Srivastava [10] to the data set. For each model we then ran a total of 50,000
iterations, discarding the first 20,000 realizations as burn-in and thinning to every 5th
iteration. Posterior results were then based on 6000 realizations of the Markov chain.
The convergence was checked using the Geweke diagnostic, which did not indicate
lack of convergence. The models were compared using some more knowledge criteria
for this issue—the expectedAkaike information criterion (EAIC), expected Bayesian
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Fig. 21.5 The posterior marginal traces, density estimates, and autocorrelations of φ, λ, and θ ,
respectively

(or Schwarz) information criterion (EBIC), the deviance information criterion (DIC),
and the Bayes factor (BF). For a model M with pM parameters, these statistics are
defined as

EAIC = E[DM (θ )] + 2pM ,

EBIC = E[DM (θ )] + pM log (n),

DIC = 2E[DM (θ )] − DM [E(θ )],

where DM (θ ) is the deviance function of model M defined as −2 logLM (θ ). The
model with the smallest value for any one of these criteria (among all considered
models) is commonly taken as the preferred model for describing the given data set.
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Table 21.2 Bayesian estimates of the parameters and related statistics

Models Param. Mean CI (95%) SD EAIC EBIC DIC BF

φ 0.9772 (0.9402,
0.9965)

0.0152

EPL λ 0.0012 (0.0008,
0.0017)

0.0002 1561.8 1570.0 1557.3 1.0000

θ 1.0775 (0.2312,
2.8761)

0.7255

EP λ 0.0023 (0.0019,
0.0027)

0.0002 1608.9 1614.4 1606.0 <

0.0001

θ 0.0800 (0.0023,
0.2872)

0.0766

Exp λ 0.0023 (0.0019,
0.0027)

<

0.0001
1605.0 1607.7 1604.0 <

0.0001

α 0.7616 (0.6123,
0.9501)

0.0904

WG β 0.0019 (0.0006,
0.0033)

0.0008 1565.9 1574.1 1562.2 0.3709

p 0.4729 (0.0357,
0.8611)

0.2439

α 0.2862 (0.2257,
0.3421)

0.0308

EW β 10.9110 (1.6989,
25.132)

6.2684 1568.0 1576.2 1562.4 0.0628

θ 6.0961 (3.7324,
10.778)

1.9116

CI credible interval, SD standard deviation, EAIC expected Akaike information criterion, EBIC
expected Bayesian information criterion, DIC deviance information criterion, BF Bayes factor, EPL
exponential Poisson logarithmic, EP exponential Poisson submodel, Exp exponential submodel,
WG Weibull geometric model, EW exponentiated Weibull model

The Bayes factor evidence of a model M1 against a model M2 for a data set y is
defined as

BF (M1;M2) = p(y|M1)

p(y|M2)
,

where p(y|M) is the predictive density of y through the model M . Low value of
BF (M1;M2) is considered an evidence against M1.

Table 21.2 shows the posterior mean, 95 % credible interval, and the standard error
for the parameters of the models. The mentioned comparison criteria are present in
the Table 21.2 too, where the Bayes factor is computed for all methods against the
EPL model. The three-parameter models presented better results than the models EP
and Exp, where EPL model was the one that obtained lower values of EAIC, EBIC,
and DIC and higher value of BF. Fig. 21.5 shows the density posterior of the EPL
parameters.
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The graphic of the density functions of the fitted models superimposed on the
histogram, and the graphic of the estimated survival functions of fitted models
superimposed on the Kaplan–Meier curve are presented in the Fig. 21.4.

21.5 Concluding Remarks

In this chapter, we proposed a Bayesian approach of the EPL model, which is a
three-parameter lifetime distribution with strong physical motivation and a possible
extension to the EP model. In the simulation study we noted that the bias and MSEs of
the Bayesian estimators go to zero quickly as sample size increases, while the MSEs
of the classical estimators remained constant for some parameters, independent of
the sample size. This suggests that the Bayesian estimator is better than the classical
estimator for EPL model. Finally, the application of the model to a real data set was
presented and discussed. The EPL model fit was superior to those obtained using
its submodels (EP and Exponential models) as well as using other three-parameter
models.
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Chapter 22
Bayesian Estimation of Birnbaum–Saunders
Log-Linear Model

Elizabeth González Patiño

Abstract The Birnbaum–Saunders (BS) distribution was derived to model failure
times of materials subjected to fluctuating stresses and strains. Motivated by appli-
cations in the characterizations of materials, in 1991 Rieck and Nedelman proposed
a log-linear model for the BS distribution. This model has many applications, for
instance, to compare the median time life of several populations or to assess the
effect of covariates on accelerated life testing. In addition to the model studied under
the classical approach, we considered Markov chain Monte Carlo (MCMC) and we
made an implementation in WinBUGS to get a Bayesian approach under noninfor-
mative priori distribution. Similar results for both classical and Bayesian approaches
were obtained. This implementation was also adapted for censoring and we assessed
the influence of different percentages of censored data.

22.1 Introduction

Motivated by problems in airplanes due to the development and growth of a domi-
nant crack, in 1969 Birnbaum and Saunders proposed the Birnbaum–Saunders (BS)
distribution [2]. It describes the failure time T when some kind of accumulating
damage D(t) exceeds a threshold ω, i.e.,

T = Inf{t : D(t) > ω}.
Let T be the time until the occurrence of the failure, then T is a BS random variable
if its distribution is

FT (t) = Φ

{
1

α

[√
t

β
−
√
β

t

]}
, t > 0, and α,β > 0.
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The probability density function (PDF) is given by

fX(x;α,β) =
√

x−μ

β
+
√

β

x−μ

2α(x − μ)
φ

⎛
⎜⎝
√

x−μ

β
+
√

β

x−μ

α

⎞
⎟⎠ , x > μ and α,β > 0

(22.1)

where μ, α, and β are, respectively, position, shape, and scale parameters. The
parameter β also corresponds to the median value of the distribution. The functions
Φ(x) and φ(x) are the standard normal cumulative distribution function (CDF) and
PDF.

If t = x − μ, we can write the PDF (22.1) as

f (t ;α,β) = t + β

2α
√

2πβt3/2
exp

{
− 1

2α2

[
t

β
+ β

t
− 2

]}
, t > 0, and α,β > 0.

In 1991, Rieck and Nedelman [6] were interested in an application in which the main
interest was to study the time of failure for a material subjected to different patterns
of cycling forces. In order to do so, they proposed a log-linear model for the BS
distribution. The model’s principle is based on the empirical law

ln (N ) = a + bx, (22.2)

where N is the number of cycles to failure of the specimen and x is either stress
range per cycle, strain range per cycle, or the work per cycle.

According to Rieck and Nedelman (see [6]), under some assumptions, since N

can be considered as a random variable, the Eq. (22.2) may be rewritten as

N = ea+bxδ, (22.3)

with δ ∼ BS(α, 1).
Thereby, a log-linear model with an additive random effect is obtained by taking

logarithm in (22.3),
log (N ) = a + bx + log (δ),

where log (δ) has sinh-normal (SHN) distribution, SHN(α, 1).
The SHN distribution for a random variable T has distribution function given by

FX(x) = Φ

(
2

α
sinh

(
x − γ

σ

))
, x ∈ R, and α, σ > 0,

where Φ(x) is the standard normal CDF. This distribution is symmetric around the
location parameter γ , is unimodal forα ≤ 2 and bimodal forα > 2, and the mean and
variance are given by E(Y ) = γ and var(Y ) = σ 2ω(α), where ω(α) is the variance
when σ = 1. Other properties of SHN distribution can be checked in Rieck [5].

The SHN distribution is also called log-Birnbaum–Sanders with parameters α

and γ , denoted as log-BS(α, γ ), due to the relationship between the SHN and BS
distribution [7], proved by Rieck et al. [6] in the following theorem.
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Theorem 1 Let T be a random variable such as T ∼ BS(α,β). Then Y = log (T )
has SHN distribution with shape, location, and scale parameter given, respectively,
by α > 0, γ = log (β) and σ = 2, thus, Y = log (T ) ∼ SHN (α, γ , 2) with function
probability density given by

f (y;α, γ ) = 1

α
√

2π
cosh

(
y − γ

2

)
exp

{
− 2

α2
sinh2

(
y − γ

2

)}
.

Due to the importance of this model to accelerate life testing or to compare the
median lives of several populations, our purpose is to review it under a Bayesian
perspective.

In order to make inferences we use posterior distribution generated from simula-
tions by MCMC with WinBUGS. Since we are working on a Bayesian framework,
it does not need large sample properties.

Achcar and Martinez [1] made an exploration of Bayesian methods for this model
using a noninformative prior density for the parameters and found expressions for
the marginal posterior densities through Laplace’s methods for approximation of
integrals.

In this work, we use a parametric priori density function and construct the max-
imum likelihood function to make a simple implementation on WinBUGS. This
implementation was also adapted for censoring.

A life data set of 46 observations corresponding to the biaxial fatigue test of Brown
and Miller, developed in 1978 [3], is used to compare the estimation under classical
and Bayesian perspective.

22.1.1 Model

The generalization of Birnbaum–Saunders log-linear model is

Yi = x&
i β + εi , i = 1, · · ·, n, (22.4)

where

• Yi is the logarithm of the observed failure time Ti , {i = 1, · · ·, n}, Ti ∼ BS(αi ,βi)
and the distribution of Ti depends on p explanatory variables -xi = (xi1, · · ·, xip);

• β = (β1, · · ·,βp) is the vector of unknown parameters associated with the
explanatory variables;

• εi is the random error of the model with εi ∼ log-BS(α, 0), i.e., εi ∼ SHN(α, 0, 2),
{i = 1, · · ·, n}.
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22.2 Estimation

Rieck and Nedelman in [6] proposed point estimation of parameters of the model
(22.4) by maximum likelihood and least squares (LS). In this work, we consider
MCMC simulations to get posterior densities of parameters of interest.

22.2.1 Maximum Likelihood (ML)

Consider n independent observations y1, y2, · · · , yn under the model (22.4) , where
εi ∼ SHN(α, 0, 2). The likelihood function for ϕ = (β&,α)& is given by

L(ϕ; yi , xi) =
n∏

i=1

1

α
√

2π
cosh

(
yi − xi

&β

2

)
exp

{
− 2

α2
sinh2

(
yi − xi

&β

2

)}
.

(22.5)

The log likelihood function is expressed as

l(ϕ; yi , xi) ∝ −n ln α +
n∑

i=1

ln

[
cosh

(
yi − xi

&β

2

)]
− 2

α2

n∑
i=1

sinh2

(
yi − xi

&β

2

)
.

(22.6)

Considering

Wi = 2

α
cosh

(
yi − xi

&β

2

)
and Zi = 2

α
sinh

(
yi − xi

&β

2

)
,

the expression (22.6) may be rewritten as

l(ϕ; yi , xi) ∝
n∑

i=1

lnWi −
n∑

i=1

Z2

2
.

The score functions for β and α are given respectively by

∂l(ϕ; yi , xi)

∂βi
= 1

2

n∑
i=1

xij

{
ZiWi − Zi

Wi

}
, j = 1, · · ·,p and

∂l(ϕ; yi , xi)

∂α
= −n

α
+ 1

α

n∑
i=1

sinh

(
yi − xi

&β

2

)
. (22.7)
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From (22.7) it is possible to obtain an expression for the maximum likelihood
estimation (MLE) of α2 in terms of MLE vector β, given by

α̂2 = 4

n

n∑
i=1

sinh

(
yi − xi

&β̂

2

)
.

However, the MLE of β must be obtained numerically. The authors propose an iter-
ative procedure to obtain these estimators based on ordinary least squares estimators
(LSE).

22.2.2 Least Squares (LS)

According to Rieck and Nedelman in [6], the estimation by ordinary LS produces
explicit solutions for ϕ in (22.4). Although LS is not as efficient as ML, the estimates
are unbiased. The β estimate is highly efficient for small values of α.

In model (22.4), E[εi] = 0 and Var [εi] = 4ω(α). Since the observationsy1, · · ·, yn
are independent, Cov(εi , εj ) = 0 {i, j = 1, · · ·, n}, and so the best linear unbiased
estimator is

ϕ̂ = (X&X)−1X&Y,

with covariance matrix Cov(ϕ̂) = 4ω(α)(X&X)−1, and an unbiased estimator for

ω(α) is ω̂(α) = ∑n
i=1

(yi−X&
i β̂)2

4(n−p) .

22.2.3 Bayesian Approach

For the Bayesian approach, we assumed independent priors gamma density function
for the shape parameter, α ∼Gama(ξ0, δ0) and normal density function with mean
zero for the parameters of the linear predictor coefficients, βi ∼ N(0, σ 2

bj ), {j =
1, · · ·,p}. Thus, a priori density of ϕ is given by

π (ϕ) = π (α, β) ∝ αδ0−1 exp{−αξ0}
p∏

j=1

exp

{
− β2

2σ 2
bj

}
, j = 1, · · ·,p.

Combining this expression with the likelihood function (22.5), we obtain the posterior
density

π (ϕ|yi , xi) = π (α, β|yi , xi) ∝
n∏
i=i

αξ0−2 cosh

(
yi − x&

1 β

2

)

exp

{
− 2

α2
sinh2

(
yi − x&

1 β

2

)
− αξ0

} p∏
j=i
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exp

{
− β2

2σbj

}
∝

n∏
i=i

p∏
j=i

Wiα
ξ0−1 exp

{
−Z2

i

2
− αξ0 − β2

2σ 2
bj

}
,

(22.8)

where

Wi = 2

α
cosh

(
yi − x&

i β

2

)
and Zi = 2

α
sinh

(
yi − x&

i β

2

)
.

From (22.8), it is not simple to find the marginal posterior density for the model’s
parameters analytically. Notwithstanding, with WinBUGS, we may get the posterior
density simulated by MCMC.

In the case of one explanatory variable, μ = xi
&β = β0 + β1x, the posterior

density has the form

π (α,β0,β1|yi , xi) ∝
∏n

i=i
Wiα

ξ0−1 exp

{
−Z2

i

2
− αξ0 − β2

2σ 2
b0

− β2

2σ 2
b1

}
.

A possible implementation for this with priors α ∼ Gama(0.001, 0.001) and βi ∼
N(0, 100) {j = 1, 2} is given below.

model
{
c<-10
for(i in 1:n)
{
u[i]=b0+b1*x[i]
logver[i]<--log(a)+log(cosh((y[i]-u[i])/2))-(2/pow (a,2))*
pow(sinh((y[i]-u[i])/2),2)
zeros[i]<-0
aux[i]<--logver[i]+c
zeros[i]˜dpois(aux[i])
}
b0˜dnorm(0,0.01)
b1˜dnorm(0,0.01)
a˜dgamma(0.001,0.001)
}

Censored Data In the case where random censoring is observed, with δi the failure
indicator variable (δi = 1 for failure and δi = 0 for censoring) under the model
(22.4), the likelihood function in terms of Wi and Zi is given by

L(ϕ; yi , xi) =∝
n∏
i=i

[
Wi

2
exp

{
−Z2

i

2

}]δi
[1 − Φ(Zi)]

1−δi ,

whereΦ(.) is the standard normal CDF. Combining with the priorπ (ϕ), the posterior
density can be obtained:

π (ϕ|yi , xi) ∝
n∏
i=i

p∏
j=i

[
Wi

2
exp

{
−Z2

i

2

}]δi
[1 − Φ(Zi)]

1−δi αξ0−1 exp

{
−αξ0 − β2

2σ 2
bj

}
.
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Simulations of marginal posterior densities can be obtained in WingBUGS with
the following implementation (considering one explanatory variable).

model
{
c<-10
for(i in 1:n)
{
u[i]=b0+b1*x[i]
logver[i]<-delta[i]*(-log(a)+log(cosh((y[i]-u[i])/2))
-(2/pow(a,2))*pow(sinh((y[i]-u[i])/2),2))+
(1-delta[i])*log(1-phi(2/a*sinh((y[i]-u[i])/2)))
zeros[i]<-0
aux[i]<--logver[i]+c
zeros[i]˜dpois(aux[i])
}
b0˜dnorm(0,0.01)
b1˜dnorm(0,0.01)
a˜dgamma(0.001,0.001)
}

22.3 Application

A data set of 46 observations from Brown and Miller’s biaxial fatigue test (1978) [3]
was analyzed by Rieck and Nedelman [6] and has been reviewed.

In the test, cylindrical specimens were subjected to axial loads and torsion on
constant amplitude cycles to failure . The response variable is the number of cycles
to the occurrence of failure N and the explanatory variable is the work per cycle in
Mj/m

3. Hence, the interest is to model the number of cycles until failure.
Figure 22.1 shows an asymmetric behavior of response variable indicating that

a Birnbaum–Saunders regression model can be appropriate. Let ni be independent
random variables such as Ni ∼ BS(α,μi), {i = 1, · · ·, n}. From empirical laws,
consider the model

ln (μi) = β0 + β1 ln (Wi), i = 1, · · ·, 46,

where x = log (Wc) and Wc is the work per cycle.
The results of the model fitted under classical perspective are shown in

Table 22.1. The second column corresponds to the numeric solution from the
analytical derivatives using the package optim from R.

Table 22.2 corresponds to the results under the Bayesian framework by the
WinBUGS’ implementation, considering distributions Gamma(0.001 ; 0.001) e
Unif(0;10) as priori distribution for α and N(0,100) for βj , {j = 1, 2}. Chains
with 21,000 iterations were considered, with just a spacing of length 10 to minimize
the problem of simulated series autocorrelation. To reduce the effect of initial points,
the first 1000 iterations were discarded.
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Fig. 22.1 As the histogram of
the response variable has an
asymmetric behavior, and it is
concentrated in the range
0–1000, a
Birnbaum–Saunders
regression model is
appropriate
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Table 22.1 Estimates of
Birnbaum–Saunders
log-linear model under
classical approach

Parameter optim (SE) MLE (SE) LQE (SE)

α 0.417 (0.043) 0.41

β0 12.208 (0.392) 12.280 (0.403) 12.289 (0.406)

β1 −1.654 (0.109) −1.671 (0.112) −1.673 (0.113)

For all situations, it was considered that α(0) = 0.5 and LSE for β(0)
0 = 12.211

and β
(0)
1 = −1.655 as initial values for simulations.

The convergence of the chains simulates was previously verified. Figures 22.2 and
22.3 correspond to posterior density function and its simulation history, according
to Table 22.2.

Based on our results, we note that the prior distribution for α does not appreciably
affect the results, the estimates are similar and the Deviance information Criteria
(DIC) for the model selection does not change considerably. We can also observe
similar estimates from the classical and Bayesian framewok. A residual analysis for
classical fit is presented by Dos Santos [4].

Table 22.2 Estimates of Birnbaum–Saunders log-linear model under Bayesian approach

Parameter/priori Mean SD Per. 2.5 Per. 97.5

α ∼ G(0.001;0.001) 0.4338 0.0474 0.3529 0.5376

β0 ∼ N(0,100) 12.19 0.4094 11.380 13.000

β1 ∼ N(0,100) −1.648 0.1142 −1.872 −1.422

DIC: 889.6 pD: 2.948

α ∼ U(0;10) 0.4388 0.0487 0.3561 0.5482

β0 ∼ N(0,100) 12.18 0.4146 11.380 13.010

β1 ∼ N(0,100) −1.648 0.1158 −1.878 −1.421

DIC: 889.7 pD: 2.939
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Fig. 22.2 Posterior densities and their simulation history. With prior α ∼ Gama(0.001; 0.001),
β0 ∼ N(0, 100) and β1 ∼ N(0, 100)

Fig. 22.3 Posterior densities and their simulation history. With prior α ∼ U(0; 10), β0 ∼ N(0, 100),
and β1 ∼ N(0, 100)

Censored Data In order to make inference in the presence of censored data, different
percentages of random censoring were considered for biaxial fatigue data set. The
observations were artificially censored. The estimates are shown in Table 22.3 and
marginal posterior densities for 10, 30 and 45 % of censored observation are presented
in Figs. 22.4, 22.5, and 22.6, respectively.

We notice that as the censure increases, there is low accuracy due to increase of
standard error. We also notice a smaller DIC for low percentage of censoring. From
the posterior density for α, the right tail becomes heavier when the percentage of
censoring increases.

22.4 Discussion

A motivation for this work was to fit the Birnbaum–Saunders log-linear model pro-
posed in 1991 by Rieck and Nedelman under a Bayesian approach and to compare
it with the usual classical fit, which is based on the asymptotical properties for the
estimator.
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Table 22.3 Results under Bayesian approach of model fitted BS log-linear model for random
censoring of biaxial fatigue data set

% Censoring Parameter Estim. SEa Lower bound Upper bound

α 0.437 0.051 0.351 0.550

10 % β0 12.450 0.431 11.600 13.310

β1 −1.709 0.119 −1.943 −1.473

DIC: 899.7 pD: 2.938

α 0.493 0.067 0.382 0.644

30 % β0 12.160 0.490 11.180 13.110

β1 −1.597 0.138 −1.864 −1.319

DIC: 924.4 pD: 2.902

α 0.550 0.088 0.410 0.752

45 % β0 11.890 0.577 10.740 13.010

β1 −1.488 0.164 −1.797 −1.151

DIC: 936.5 pD: 2.884
aStandard error

Fig. 22.4 Marginal posterior densities of BS log-linear model with 10 % of censoring

Fig. 22.5 Marginal posterior densities of BS log-linear model with 30 % of censoring

Fig. 22.6 Marginal posterior densities of BS log-linear model with 45 % of censoring



22 Bayesian Estimation of Birnbaum–Saunders Log-Linear Model 273

In this study, we show the posterior density distribution assuming independent
priors—gamma density function for the shape parameter and normal density func-
tion with mean zero for the parameters of the linear predictor coefficients. Also we
consider right-censored data and in both situations, it is not easy to obtain analyt-
ical expressions for the marginal posterior densities for the parameters of interest.
However, we can see that WinBUGS is a useful tool because it allows one to obtain
marginal posterior densities considering MCMC with a simple implementation.

Based on the application results, large differences were not observed between the
classical and Bayesian framework. Furthermore in all situations, the Markov chains
converged quickly and the computational time was short. Notwithstanding, it could
be appropriate to conduct a simulation study to determine the optimal values for the
parameters of the priori density function.

Since the fit of the Birnbaum–Saunders log-linear model under a Bayesian
approach was suitable, it will be a good idea to make a Bayesian residual analysis.
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Chapter 23
Bayesian Weighted Information Measures

Salimeh Yasaei Sekeh

Abstract Following Ebrahimi et al. (J Stat Res Iran 3:113–137, 2006), we study
weighted information measure in univariate case. In particular, we address the con-
cept of comparison models based on information measure and, in our case, specially
Kullback–Leibler discrimination measure. The main result is presenting the rela-
tionship of weighted mutual information measure and weighted entropy. Indeed,
the importance of Weibull distribution family in weighted Kullback–Leibler infor-
mation and Kullback–Leibler information has been carefully examined, which is
useful in comparison models. As a notable application of the result, we study normal
distributions, which can prove the expected motivation.

23.1 Introduction

The Kullback–Leibler information measure, also known as relative entropy or
Kullback–Leibler divergence, between two probability density functions f (x) and
g(x) with support S and distribution functions F (x) and G(x) respectively,

I (f , g) =
∫
S

log
f (x)

g(x)
dF (x), (23.1)

is commonly used in statistics as a measure of similarity between two density distribu-
tions. The divergence satisfies three properties, hereafter referred to as the divergence
properties:

1. Self similarity: I (f , f ) = 0
2. Self identification: I (f , g) = 0 if and only if f = g almost everywhere
3. Positivity: I (f , g) ≥ 0 for all f , g

An information discrepancy function maps how different are the two distributions, but
it is worthwhile to mention that it does not indicate which of the two distributions is
more informative. On the other hand, a discrepancy function between distribution F
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and the uniform distribution quantifies the information associated with a probability
distribution F , see [7].

The Kullback–Leibler divergence is used in many aspects such as, determining
if two acoustic models are similar, optimization by minimizing and maximizing
the Kullback–Leibler information between distributions, and hypothesis testing and
model evaluation.

The notion of entropy was introduced and developed in the contexts of statistical
mechanics and system features, where Shannon, in 1948 [10], proposed the use of a
measure of uncertainty for discrete distributions as a measure in information theory.
The entropyH (X) of a continuous random variable with supportS and having density
and distribution functions f (x) and F (x), respectively, is defined as

H (X) = −E
[
log f (X)

] = −
∫
S

log f (x)dF (x). (23.2)

Note that entropy is a function of the distribution of X. It does not depend on the
actual values taken by the random variable X, but only on the probabilities.

Now, let us mention the conditional entropy of a random variable given as the
expected value of the entropies of the conditional distributions, averaged over the
conditioning random variable. For more details see [3].

Consider joint random variable (X,Y ) with support (S1×S2), joint and conditional
probabilities f (x, y) and f (y|x), respectively, the conditional entropy H (X|Y ) and
joint entropy H (X,Y ) are expressed as,

H (X|Y ) = −EX,Y
[
log f (X|Y )

] = −EY [H (X|Y = y)]

= −
∫ ∫

S1×S2

f (x, y) log f (x|y)dxdy,

H (X,Y ) = −EX,Y
[
log f (X,Y )

] = −
∫ ∫

S1×S2

f (x, y) log f (x, y)dxdy.

It can be shown that the naturalness of the definition of joint entropy and conditional
entropy is exhibited by the fact that the entropy of a pair of random variables is the
entropy of one and the conditional entropy of the other. On the other hand,

H (X,Y ) = H (Y ) + H (X|Y ).

Note that the above relation is famous as chain rule theorem.
One of the important questions for researchers in statistics is to what extent the

use of a variable Y reduces uncertainty about predicting the outcomes of another
random variable X. Retzer et al. (2008) provides a comprehensive treatment of this
subject. Assume random variable Y has distribution FY , information provided by
an observation Y = y about predicting outcomes of X can be measured by positive
information function I (fX|y , fX), where fX is the marginal distribution of X and
fX|y is the conditional distribution of X given y.
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Note that the information function does not indicate which of the two densities
(conditional density fX|y or the marginal density fX) is more concentrated but it
shows how different are the marginal and conditional distributions.

In general, one of the main tools that was used to measure the information provided
by an observationY = y about predicting outcomes ofX is the uncertainty difference,
/H (fX, fX|y) = H (X) − H (X|y). However we note that /H (fX, fX|y) can be
positive (or negative) when conditional densityfX|y is farther (or closer) to uniformity
than the marginal density fX.

Furthermore, to detect the information provided by an observation Y = y about a
random variable prospectX means to determine the entropy difference /H (fX, fX|y)
or the Kullback–Leibler I (fX|y , fX) [5]. It can be observed that the expected
information, which is known as mutual information, I (fX,Y , fXfY ), is given by,

I (fX,Y , fXfY ) = EY [H (X) − H (X|y)] = EY

[
I (fX|y , fX)

]
. (23.3)

As it has been seen in (23.3), mutual information is the information discrepancy
between the actual joint distributions of two random variables and their joint
distribution as if they were independent.

Following the results in [3], we are able to give other representations of mutual
information as:

I (fX,Y , fXfY ) = H (X) − H (X|Y ) = H (X) + H (Y ) − H (X,Y ). (23.4)

We continue this chapter by presenting the concept of weighted entropy and
information measures.

For n events E1,E2, . . . ,En and F1,F2, . . . ,Fn with probabilities p1,p2, . . . ,pn

and q1, q2, . . . , qn respectively, we have demonstrated that the information supplied
by the events Ei and Fi having probabilities pi , qi and utility u is given by

Ii = I (ui ,pi , qi) = ui log
pi

qi
.

The average of the information supplied by events E1,E2, ...,En and F1,F2, ...,Fn

is obtained as

I = I (u1, ..., un,p1, ...,pn, q1, ..., qn) =
n∑

i=1

piIi =
n∑

i=1

piui log
pi

qi
. (23.5)

Let us put u1 = u2 = ... = un = 1; in this case relation (23.5) implies Kullback–
Leibler information. In agreement with Belis and Guiasu [1], we recall the informa-
tion supplied by E1,E2, . . . ,En and F1,F2, . . . ,Fn, which is mentioned in (23.5),
weighted Kullback–Leibler information.

In continuous case, suppose X and Y be two nonnegative random variables with
probability functions f (x) and g(x), respectively, the weighted Kullback–Leibler
information denotes by Iw(f , g) is

Iw(f , g) =
∫
S

x log
f (x)

g(x)
dF (x). (23.6)
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In the field of transmission systems of communication, it was realized that a gen-
eral notion capable of abstracting various kinds of transmitted signals was necessary.
A possible solution is to consider signals as random abstract events, allowing the pos-
sibility of defining the quantitative aspects of information based on the probability
of different events. In fact, the occurrence of an event removes a double uncertainty:
the quantitative one related to its probability, and the qualitative one related to its
utility, where the utility of an event is independent of its probability. In this situation,
one can measure the information for the occurrence of an event with probability p

and utility u through a quantity depending on both variables. In particular, in the
context of theoretical neurobiology, some measures of uncertainty based on the no-
tion of the weighted entropy as the measure of uncertainty for an experiment with
finite measurable partition A1,A2, . . . ,An, (n > 1) have been considered, defined
by Belis and Guiasu [1] as

H 1
n (p, u) = −

n∑
k=1

ukpk logpk ,

where pk is the probability of the event Ak with utility uk .
In agreement with Belis and Guiasu [1] and Guiasu [6], Di Cresenzo and Lon-

gobardi [4] have demonstrated an analogous definition for the notion of weighted
entropy in continuous case as following:

Hw(X) = −E
[
X log f (X)

] = −
∫
S

x log f (x) dF (x). (23.7)

Note that the weighted entropy is a function of the distribution of nonnegative random
variable X and actual values taken by X.

Bayesian information measures are for an observation y made or to be made from
a random variable Y having a probability function fY |θ about the parameter Θ when
the prior can be described by a probability distribution with density fΘ . The main
target is to measure the information provided by data about the parameter which can
be applied to design comparison, data evaluation, and mainly model comparison.

For more details, refer to Lindley [8], Zelner [13, 14], Bernardo [2], and Soofi
[9, 11, 12].

Our purpose in this chapter is to introduce Bayesian weighted information mea-
sure and compare it with Bayesian information measure in univariate case. The
main application of our result (see Sect. 23.3) is directed toward model comparison,
although some other interesting examples, such as normal case, have been presented.

The rest of the chapter is organized as follows: Section 23.2 presents the notion of
weighted uncertainty and weighted mutual information functions. Furthermore, the
weighted general entropy is introduced. However, this concept is used for pointing
out the relationship between weighted mutual information and weighted uncertainty.
Finally, in this section, by presenting a well-known example as normal distribution,
our results are illustrated, which coincide with our expectations.

In Sect. 23.3, the expected weighted information is defined. Afterward, among
all distribution functions, the Weibull distribution is considered. By presenting this
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example and using the weighted Kullback–Leibler information in Bayesian analysis,
different models of Weibull family are compared.

23.2 Weighted Uncertainty and Information Measures

Here the definitions and properties, which we shall exploit later to use, and main
purpose of Bayesian analysis are stated.

Definition 1 AssumeX and Y as a pair of nonnegative continuous random variables
with joint support S1 × S2, having joint and conditional density functions f (x, y)
and f (y|x) respectively, the weighted joint entropy and conditional entropy are given
as:

Hw(X,Y ) = −EX,Y
[
XY log f (X,Y )

] = −
∫ ∫

S1×S2

xyf (x, y) log f (x, y)dxdy,

(23.8)

Hw(Y |X) = −EX,Y
[
XY log f (Y |X)

] = −
∫ ∫

S1×S2

xyf (x, y) log f (y|x)dxdy.

(23.9)

Without different indication, it will be noted that Hw(X,Y ) is as defined in [4].
Hereafter, we switch to introduce the extension of the weighted entropy as defined

in (23.7), and we shall call it a generalized weighted entropy and denote the same
by Hw,φ(X), where φ is any nonnegative and differentiable utility function.

Hw,φ(X) = −EX

[
φ(X) log f (x)

] = −
∫
S

φ(x) log f (x)dF (x). (23.10)

Taking into account the Definition 1 and relation (23.10), we are entitled to give the
following theorem that is known as the chain rule theorem. In fact the following
rule shows that the weighted entropy of a pair of random variables is the generalized
weighted entropy of one and the weighted conditional entropy of the other.

Theorem 1 Chain rule: Assume that (X,Y ) is a pair of nonnegative random
variables, then,

Hw(X,Y ) = Hw,φ(X) + Hw(Y |X) where φ(X) = XEY [Y |X] .

Proof We observe that for nonnegative (X,Y ),

Hw(X,Y ) = −
∫ ∞

0

∫ ∞

0
xyf (x, y) log f (y|x)dxdy −

∫ ∞

0

∫ ∞

0
xyf (x, y) log f (x)dxdy
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= Hw(Y |X) −
∫ ∞

0
xf (x) log f (x)

[∫ ∞

0
yf (y|x)dy

]
dx

= Hw(Y |X) −
∫ ∞

0
xEY [Y |x] f (x) log f (x)dx.

Using now the relation (23.10) by replacing φ(X) = XEY [Y |X], we obtain the
result. �

Equivalently we can write,

Hw(X,Y ) = Hw,φ(Y ) + Hw(X|Y ); φ(Y ) = YEX [X|Y ] .

When turning our attention to independent random variables, Di Cresenzo and Lon-
gobardi [4] emphasize the role of the mean value in the evaluation of joint weighted
entropy, which is the following:

Proposition 1 If X and Y are nonnegative independent random variables, it can
yield,

Hw(X,Y ) = E(Y )Hw(X) + E(X)Hw(Y ).

Moreover, let us continue with a new notion as weighted mutual information, which
is a measure of the amount of information that one random variable contains about
another random variable; however in weighted case, in spite of probability, the actual
values of random variables also are considered.

Definition 2 Consider two nonnegative random variables with joint density func-
tions f (x, y) and marginal density functions f (x) and f (y); the weighted mutual
information is weighted Kullback–Leibler information between the joint distribution
and product distribution f (x) f (y)as,

Iw(fX,Y , fXfY ) =
∫ ∞

0

∫ ∞

0
xyf (x, y) log

f (x, y)

f (x)f (y)
dxdy. (23.11)

In the following result, we explicitly note that the weighted mutual information is
equal to the weighted entropy of X in the reduction of its uncertainty due to the
knowledge of Y .

Remark 1 For nonnegative random variables X and Y , we can write,

Iw(fX,Y , fXfY ) = Hw,φ(X) − Hw(X|Y ) ; φ(X) = XEY [Y |X] . (23.12)

Proof

Iw(fX,Y , fXfY ) =
∫ ∞

0

∫ ∞

0
xyf (x, y) log

f (x, y)

f (y)
dxdy−

∫ ∞

0

∫ ∞

0
xyf (x, y) log f (x)dxdy

=
∫ ∞

0

∫ ∞

0
xyf (x, y) log f (x|y)dxdy
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−
∫ ∞

0

∫ ∞

0
xyf (y|x)f (x) log f (x)dxdy

= −Hw(X|Y ) −
∫ ∞

0
xEY [Y |x]f (x) log f (x)dx.

This is actually what we are looking for, hence the final result is achieved. �

The next corollary is an immediate consequence of Theorem 1 and previous
remark.

Corollary 1 With reference to notions and definitions from the beginning of this
chapter, we have,

Iw(fX,Y , fXfY ) = Hw,φ1 (X) + Hw,φ2 (Y ) − Hw(X,Y ),

where φ1(X) = XEY [Y |X] and φ2(Y ) = YEX[X|Y ].
At this point of time, the question that arises is to what extent the use of a variableY

reduces the uncertainty about predicting the outcomes of another random variable X
but even consists the actual value of variable X. We explicitly answer this question
using weighted information provided by an observation Y = y about prediction
outcomes of X. Although in the following remark , an alternative relation for this
measure in terms of general weighted and conditional entropies can be seen.

Remark 2 Assuming X and Y are nonnegative random variables and recalling the
weighted Kullback–Leibler information, we obtain:

Iw(fX|y , fX) = Hw,φ′
(X) − Hw(X|y); φ′(X) = Xf (X|y)

f (X)
, (23.13)

where f (X|y) is the conditional density function.
Moreover, going back to the weighted mutual information, we interpret that this in-

formation can also be obtained by using the weighted Kullback–Leibler information
with the following expression:

Iw(fX,Y , fXfY ) = EY

[
YIw(fX|y , fX)

] = EY

[
Y (Hw,φ′

(X) − Hw(X|y))
]
. (23.14)

Proof From the definition of Iw(f , g), we observe that,

Iw(fX|y , fX) =
∫ ∞

0
xf (x|y) log

f (x|y)

f (x)
dx

=
∫ ∞

0
xf (x|y) log f (x|y)dx −

∫ ∞

0
xf (x|y) log f (x)dx

= −Hw(X|y) −
∫ ∞

0
x
f (x|y)

f (x)
.f (x) log f (x)dx.
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We can see that the last expression is exactly our aim result. Moreover, if we
multiple the final statement in Y and take the expectation with respect to it, we can
obtain the weighted mutual information as,

EY

[
YIw(fX|y , fX)

] = EY

[
Y (Hw,φ′

(X) − Hw(X|y))
]

= −
∫ ∞

0

∫ ∞

0
xyf (x|y)f (y) log f (x)dxdy

+
∫ ∞

0

∫ ∞

0
xyf (x|y)f (y) log f (x|y)dxdy

=
∫ ∞

0

∫ ∞

0
xyf (x, y) log

f (x|y)

f (x)
dxdy

=
∫ ∞

0

∫ ∞

0
xyf (x, y) log

f (x, y)

f (x)f (y)
dxdy

= Iw(fX,Y , fXfY ).

�

In this part of work, it is worthwhile to mention that throughout the chapter, weighted
entropy with positive utility is considered, on the other words, if random variable is
not always nonnegative with support S, then we define weighted entropy as:

Hw(X) = −E
[|X| log f (X)

] = −
∫
S

|x|f (x) log f (x). (23.15)

And moreover,

Iw(f , g) =
∫
S

|x| log
f (x)

g(x)
dF (x). (23.16)

We conclude this section by presenting an example as an application of information,
and comparing two Kullback–Leibler and weighted Kullback–Leiber information
measures due to normal random variables.

Example 1 Among all the statistical models, consider the famous standard normal
distribution for both random variables X and Y . As already we have observed in
this case, the joint density function for the pair of random variables (X,Y ) with the
coefficient correlation ρ is given by,

f (x, y) = 1

2π
√

1 − ρ2
exp

[−(x2 − 2ρxy + y2)

2(1 − ρ2)

]
, (23.17)

where (x, y) ∈ R
2 and |ρ| ≤ 1.

Taking into account all these assumptions, one can conclude that the conditional
random variable X|Y also has the normal distribution N (ρY , (1 − ρ2)).
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Fig. 23.1 Plot A: I (fX|y , fX) and different value y and ρ in normal distribution, Plot B: I (fX|y , fX)
for different value ρ = 1

2 , 1
3 , 1

4 , Plot C: I (fX|y , fX) for different values y = 2, 3, 5

By applying some simple computation for normal distribution with mean μ and
variance σ 2, we can obtain,

H (X) = log
√

2πσ 2 + 1

2
.

Now let us to recall the conditional random variable X|Y = y. It has been seen that
entropy does not depend on mean parameters, hence,

H (X|y) = log
√

2π (1 − ρ2) + 1

2
. (23.18)

On the other side, with straightforward computations, we give the following
expression:∫

R

f (x|y) log f (x)dx = − log
√

2π − 1

2

[
1 − ρ2 + y2ρ2

]
. (23.19)

Thus, it descends directly from (23.18 ) and (23.19) that the Kullback–Leibler
information between fX|y and fX is a quadratic function, so that we have,

I (fX|y , fX) = 1

2
ρ2(y2 − 1) − log

√
1 − ρ2. (23.20)

Here, it is worthwhile noting that when the correlation ρ between X and Y is
increasing for givenY = y, I (fX|y , fX) is also increasing. In fact, the Fig. 23.1 proves
this result. We can see (Plot B) that for different values ofρ, such asρ = 1

2 , ρ = 1
3 and

1
4 , the information discrepancy between the distribution of a random variable X by
different observations forY and marginal distributionX raises. Moreover, with fixing
the value y, the function (23.20) is an increasing function with respect tothe absolute
value of ρ (see Fig. 23.1, Plot C). All this justifies the meaning of information and
coincides with our expectations as when X and Y are more dependent, then having
information about Y increases the distance between fX|y and fX.

Now, the question arises that can we have the same result for Iw(fX|y , fX). For
this reason, by recalling relation (23.16), we compute the weighted Kullback–Leibler
information as follows:

Iw(fX|y , fX) = Hw,φ′
(X) − Hw(X|y). (23.21)
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Note that the general equation (23.15) for the normal random variable X with mean
μ and variance σ 2 yields,

Hw(X) = log
√

2πσ 2

[
2σ√
2π

.e
− μ2

2σ2 + μ
(
F̄z

(
−μ

σ

)
− Fz

(
−μ

σ

))]

+ σ√
2π

(
2 + μ2

σ 2

)
.e

− μ2

2σ2 + μ√
2π

.

(−μ

σ

)
.e

− μ2

2σ2 − μ.
√
π.erf

( −μ√
2.σ

)
.

Hence, consequently we can write,

Hw(X|y) = log
√

2π (1 − ρ2)

[
2
√

1 − ρ2

√
2π

.e
− (ρy)2

2(1−ρ2)

+ ρy

(
F̄z

(
− ρy√

1 − ρ2

)
− Fz

(
− ρy√

1 − ρ2

))]

+
√

1 − ρ2

√
2π

(
2 + (ρy)2

(1 − ρ2)

)
.e

− (ρy)2

2(1−ρ2) + ρy√
2π

.

(
−ρy√
1 − ρ2

)
.e

− (ρy)2

2(1−ρ2)

− ρy.
√
π.erf

(
−ρy√

2.
√

1 − ρ2

)
.

Besides, using (23.10), straightforward computation shows that,

Hw,φ′
(X) =

[
log (

√
2π ) + (ρy)2

2

]
.

[
2
√

1 − ρ2

√
2π

.e
− (ρy)2

2(1−ρ2)

+ ρy

(
F̄z

(
− ρy√

1 − ρ2

)
− Fz

(
− ρy√

1 − ρ2

))]

+ (1 − ρ2).

[√
1 − ρ2

√
2π

(2 + (ρy)2

(1 − ρ2)
).e

− (ρy)2

2(1−ρ2)

+ ρy√
2π

.

(
−ρy√
1 − ρ2

)
.e

− (ρy)2

2(1−ρ2) − ρy.
√
π.erf

(
−ρy√

2.
√

1 − ρ2

)]

+ ρy
√

1 − ρ2

[√
2
√

1 − ρ2

√
π

.

(
−ρy√
1 − ρ2

)
.e

− (ρy)2

2(1−ρ2)

−
√

1 − ρ2.erf

(
−ρy√

2.
√

1 − ρ2

)
+ 2ρy√

2π
.e

− (ρy)2

2(1−ρ2)

]
.

When turning our attention to the influence of dependency between random variables
X and Y , we face the situation that with increasing ρ, the weighted informa-
tion also increases, and what surprises us and is really interesting is the behavior
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Fig. 23.2 Plot A: Iw(fX|y , fX) and different value y and ρ in normal distribution, Plot B:
Iw(fX|y , fX) for different value ρ = 1

2 , 1
3 , −1

3 , −1
2 , Plot C: I (fX|y , fX) for different values

y = −5, −2, 2, 5

of Iw(fX|y , fX), which is almost the same as I (fX|y , fX). On the other hand, the
weighted information is also an even function with respect to ρ and y. Let us note
that in spite of I (fX|y , fX), Iw(fX|y , fX) is not always positive, but as you can see
in Figs. 23.1 and 23.2, in this special case of normal distribution, both the weighted
Kullback–Leilber information and Kullback–Leiber information are positive.

Figure 23.2 shows that the distance between distributions fX|y and fX increases
in terms of different value for ρ such as 1

2 , 1
3 , −1

2 , and −1
3 (see Plot B). Furthermore,

in Fig. 23.2 (Plot C), we present the effect of ρ on weighted information for different
observations Y = y.

This example shows that the weighted Kullback–Leibler information can be a
useful method for analyzing the distance between two distribution functions as much
as the Kullback–Leibler information, although in the next section, we present that in
some cases, weighted information is even more applicable.

23.3 Bayesian Weighted Information Measures

With reference to the notation and the setting outlined in the previous section, we
focus on our main interest, which is a pair of random prospects (Θ ,Y ) that plays
the role of (X,Y ) of the preceding section. Indeed, the second component, Y , is an
observable random variable whose distribution depends on an unknown parameter
θ . Considering Y to be a nonnegative random variable representing a lifetime with
density function fY |θ , we observe the random Y = y and evaluate our prior belief
about a parameter θ with the prior density function, fΘ . Therefore, we obtain the
posterior distribution having density function fΘ|y as the following:

fΘ|Y (θ |y) = fY |Θ (y|θ )fΘ (θ )

fY (y)
; θ ∈ Θ , y ≥ 0.
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Note that the predictive distribution with the density function fY (y) is given by,

fY (y) =
∫

fY |θ (y|θ )fΘ (θ )dθ , y ≥ 0.

The reason of introducing these distribution functions lies in the fact that we want
to find the posterior and predictive information, which is a measure of output
information with the knowledge about measure of input information, prior and like-
lihood information measures. We shall now note that it is possible to compute the
weighted uncertainty for prior and posterior density function, i.e.,H (Θ) andH (Θ|y),
respectively, just by replacing the fΘ (θ ) and fΘ|y(θ |y) in the Eq. (23.7).

Now we present a concept named expected weighted information in the data about
the parameter. This constitutes an improvement of the result found by Lindley [8]
and Ebrahimi et al. [5]. In fact, we can claim that the expected weighted information
precisely is the weighted mutual information of the joint distribution f (θ , y) and the
product distribution f (θ ) f (y).

Definition 3 Let fΘ|y(θ |y), as we defined before, be a posterior density function,
then the expected weighted information is given by,

νw(Θ|Y ) = EY

[
YIw(fθ |y , fθ )

] = EY

[
Y (Hw,φ′

(Θ) − Hw(Θ|Y ))
]

= Hw,φ(Θ) − Hw(Θ|Y ),

where EY denotes the expectation with respect to the marginal density fY , Φ ′(Θ) =
Θf (Θ|y)
f (Θ) and Φ(Θ) = ΘEY [Y |Θ].

Following the authors in [5], we can recall weighted Kullback–Leibler information
in Bayesian analysis, Iw(fΘ|y , fΘ ) as,

νw(Θ|y) = Hw,φ′
(Θ) − Hw(Θ|y).

Next example illustrates applications of the Bayesian information measures for
Weibull lifetime model.

Example 2 Consider Weibull model for random variables Y |θ with known positive
shape parameter c as the following:

f (y|θ ) = cθyc−1e−θyc , y > 0, θ > 0.

Moreover, let the parameter of interest θ has the gamma prior distribution with param-
eters α and β. Obviously, the posterior distribution is given by gamma distribution
with parameters α + 1 and β + yc.

Now, we shall present the Kullback–Leibler information between prior and
posterior distribution by,

H (θ |y) = logΓ (α + 1) − αΨ (α + 1) − log (β + yc) + α + 1,
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Fig. 23.3 Plot A: I (fX|y , fX) and different value y and c in Weibull distribution, Plot B: I (fX|y , fX)
for different value c = 1

2 , 1, 3, 10, Plot C: I (fX|y , fX) for different values y = 1
3 , 1

2 , 5, 10

therefore,

I (fθ |y , fθ ) = α log
(
β + yc

)− logα − α logβ + Ψ (α + 1) + β(α + 1)

(β + yc)
− α − 1.

(23.22)

Following some computations yield the weighted conditional entropy for posterior
distribution as,

Hw(Θ|y) = − α + 1

β + yc
log

[
(β + yc)α+1

Γ (α + 1)

]
− α(α + 1)Ψ (α + 2)

(β + yc)

+ α(α + 1)

(β + yc)
log (β + yc) + (α + 1)(α + 2)

(β + yc)
, (23.23)

where Ψ (α) = d
dα

logΓ (α). Note that with the analogous methodology we obtain,

Hw,φ′
(θ ) = − α + 1

β + yc
log

[
βα

Γ (α)

]
+ (α − 1)(α + 1)

(β + yc)
[Ψ (α + 2)]

+ β
(α + 1)(α + 2)2

(β + yc)2
. (23.24)

By putting the relations (23.23) and (23.24) in (23.13), we can lay the precise value for
the weighted information between posterior and prior distributions as the following,

Iw(fθ |y , fθ ) = α + 1

β + yc
log

[
(β + yc)α+1

αβα

]
+ (α + 1)Ψ (α + 2)

(β + yc)

− (α + 1)

(β + yc)
log (β + yc) − yc(α + 1)(α + 2)

(β + yc)2
. (23.25)

Referring to Figs. 23.3 and 23.4, we explicitly figure out that I (fθ |y , fθ ) is increasing
function in y and also c, hence, for any observation, if we choose a model with
big value of c, then we would have more information between posterior and prior
distributions. As Iw(fθ |y , fθ ) is not monotonic with respect to y and c, so for a
particular observation y, we can choose an appropriate model in the sense of more
information between posterior and prior distributions.
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Fig. 23.4 Plot A: Iw(fX|y , fX) and different values y and c in Weibull distribution, Plot B:
Iw(fX|y , fX) for different value c = 1

2 , 1, 3, 10, Plot C: Iw(fX|y , fX) for different values y =
1
3 , 1

2 , 5, 10

23.4 Final Comments

In this chapter, the weighted Kullback–Leibler information measure and conditional
weighted entropy have been presented for particular use in the Bayesian analysis.
In Sect. 23.2, we have concentrated on the performance of weighted information
for normal distributions in order to evaluate and compare its behavior with other
common information measure as Kullback–Leibler information. However, the main
purpose was to demonstrate that in some cases, such as Bayesian analysis for Weibull
distribution, it is more convenient and appropriate to apply weighted information than
other common information.
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Chapter 24
Classifying the Origin of Archeological
Fragments with Bayesian Networks

Melaine Cristina de Oliveira, Andressa Soreira and Victor Fossaluza

Abstract Classification of archeological fragments is the focus of the present chap-
ter. The fragments were collected from various archeological sites in the state of Mato
Grosso do Sul at Lalima village. They are thought to have originated from three In-
dian tribes: the Guarani (66 %), the Jacadigo (22 %), and the Kadiwéu (12 %).
We use information contained in an archeological researcher’s database. It con-
tains qualitative and quantitative observations obtained from the characteristics of
the pieces. The researcher’s expertise provided a precise classification of about 760
pieces. A supervised model of classification was created to infer the Indian techno-
logical traditions of 2300 pieces of fragments collected from the same sites. Bayesian
nets were the basis for building the model. Bayesian nets are directed acyclic graphs
(DAG) that properly represent the dependency within a set of random covariates.
This kind of network represents the joint probability distribution of these variables
and a particular factorization of it. Our approach provides a robust classification:
it is based on the probabilities of fragment being originated from each one of the
three archeological communities. Also, if the probability of technological tradition
indicates “low probabilities” for all three groups, there could be an indication of the
presence of an additional community. Comparison with alternative methods to build
the networks was also presented.

24.1 Introduction

The presence of Indians in the Brazilian territory is much older than was originally
established by European explorers and the study of archeology allows the reconstruc-
tion of the historical trajectories of populations during their existence. Through the
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Fig. 24.1 Naive Bayes structure for the ceramic database

characteristics of ceramic objects and historical–cultural knowledge, it is possible to
identify which Indian tribes possibly habited a particular region.

Archeological data of ceramic fragments were collected in seven sites from differ-
ent locations of Lalima village, Mato Grosso do Sul, Brazil, through archeological
approaches and with the support of Indians living in that region. Variables relating to
composition, shape, and utility of archeological fragments were observed in order to
characterize and thus determine whether these working pieces came from one of the
following tribes: the Guarani (66 %), the Jacadigo (22 %), or the Kadiwéu (12 %).
About 3000 pieces were observed, and using the researcher’s expertise, a “precise”
classification of 766 pieces into the three technological traditions was accomplished.

The objective of this chapter is to present a model to classify a ceramic fragment
in one of the three technological traditions. The classifier method chosen is based on
the joint distribution of observed variables. Let T = Technological Tradition; S =
Site; IF = Inside Face; OF = Outside Face; MT = Manufacturing Technique;
FM = Frame Material; and SC = Structure Category. The joint distribution of a
model containing these seven variables can be expressed as

P (T , S, FM , MT , SC, IF , OF ) = P (T )P (S|T )P (FM|T , S)P (MT |T , S, FM)

P (SC|T , S, FM , MT )P (IF |T , S, FM , MT , SC)P (OF |T , S, FM , MT , SC, IF ).

If the seven variables chosen are binaries, then dimension of the sample space is
27. In order to reduce dimensionality and have a compact structure of dependence, a
simpler and realistic model is investigated. Since the relationship among the variables
is unknown, we start modeling with a naive Bayes model that has the unobservable
classification variable as the conditioning element that makes the observable variables
mutually conditional independent, as illustrated by Fig. 24.1.

Given the structure of the presented network, a possible factorization of the joint
distribution used here is as follows:

P (T , S, FM , MT , SC, IF , OF ) = P (T )P (S|T )P (FM|T )P (MT |T )

P (SC|T )P (IF |T )P (OF |T )

All the variables are independent given T (unobserved variables). This model
maybe unrealistic for the data collected. Hence, to contemplate other kinds of de-
pendence among the covariates, more complex Bayesian networks were built by
considering the sample fragments already classified by the researcher. The networks
obtained were compared and the selected ones were used to allocate the pieces from
unknown origins.
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Fig. 24.2 Local structures found on a Bayesian network

Formally, Bayesian networks are directed acyclic graphs (DAG) whose nodes
represent random variables, with their conditioning probabilities, in the Bayesian
sense: they may be observable quantities, latent variables, unknown parameters, or
hypothesis spaces. The edges represent conditional dependencies; nodes that are
not connected represent variables that are conditionally independent. Each node is
associated with a probability function that takes as input a particular set of values for
the node’s parent variables and gives the probability of the variable represented by
the node given its parents. Figure 24.2 illustrates the structure of Bayesian network
with few number of arcs.

We say that A influences C if we have an active path between A and C (nonblocked).
If this path is blocked, we say that A and C are d-separated. In the Fig. 24.2a, one
can observe that A influences C through B, however if B is to be known, the path
is blocked by it and (C ⊥ A)|B. This relationship can also be seen in Fig. 24.2b.
Figure 24.2a shows that A is a parent of B and B is parent of C. Figure 24.2b shows
that C is a parent of B and B is a parent of A. In Fig. 24.2d, this relation (A ⊥ C)|D is
equally represented, besides B is the parent of A and C. Afterward, in the Fig. 24.2a,
b, and d, A and C are d-separated given B. In Fig. 24.2c, we can see that A ⊥ C if B
or any of his ancestors is unknown, but given B, A, and C are dependent. This type
of node is known as a collider.

Let X = {X0,X1, . . . ,Xm} be a set of variables. We say that Xi is a parent of Xj ,
i �= j , if there is a link from Xi to Xj . For each i in 0, . . . ,m, the random variables
that are parents of Xi are represented by pa(Xi) and, given pa(Xi), the variable
Xi is conditionally independent of its nondescendent variables in X. A Bayesian
network Bs over a set of variables X is a DAG, which represents a joint probability
distribution

P (X) =
m∏
i=0

P (Xi |pa(Xi)) . (24.1)
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24.2 Methodology: Learning the Bayesian Network

It is difficult to have a full knowledge of conditional independences in the joint distri-
butions of the variables in the study. In these cases, there are some learning algorithms
that can find an appropriate—minimum possible number of arcs—Bayesian network
Bs given a set of observations from the database X.

The dual nature of a Bayesian network divides the learning process of a Bayesian
network in two stages: first, learning the structure of the network, then, learning the
probability tables, P (Xi |pa(Xi)), i = 0, . . . ,m.

There are various ways to learn the representation of the joint probability distri-
butions and to choose one, a quality measure considering the network structure was
calculated. A quality measure considers the number of variables in the net, the edges
between variables, and the model accuracy. Here we consider a quality measure
Q(BS |D) of a network structure BS given the training data D and looking for the
structure that maximizes Q(BS |D).

The quality measure used contains the practical properties of attributing a score
to the whole network that can be decomposed as the sum (or product) of the score of
the individual nodes. This allows for local scoring, which also favors more efficient
local search methods.

To describe the methods, we need to introduce some notation. For i ∈ {0, . . . ,m},
let ri be the cardinality of (i.e., the number of values assumed by) Xi . The cardinality
of the parent set of Xi in BS is denoted by qi , i.e., qi = ∏

{j : Xj ∈pa(Xi )} rj . Note that

pa(Xi) = ∅ implies qi = 1. For j ∈ {1, . . . , qi} and k ∈ {1, . . . , ri}, we use Nijk to
denote the number of records in D for which pa(Xi) takes its j th value and Xi takes
its kth value. So, Nij = ∑ri

k=1 Nijk . We use N to denote the number of records in D.
Let the maximum of the log-likelihood function (sometimes called entropy metric)
H (BS ,D) of a network structure BS and database D be defined as

H (BS ,D) = −N

m∑
i=0

qi∑
j=1

ri∑
k=1

Nijk

N
log

Nijk

Nij

(24.2)

and the number of parameters K as

K =
m∑
i=1

(ri − 1)qi. (24.3)

The quality measures considered in this work are defined below.

Definition 1 The Akaike information criterion (AIC) metric [1] QAIC (BS ,D) of a
Bayesian network structure BS for a database D is

QAIC (BS ,D) = H (BS ,D) + K.
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Definition 2 The minimum description length (MDL) metric [11] QMDL (BS ,D)

of a Bayesian network structure BS for a database D is defined as

QMDL (BS ,D) = H (BS ,D) + K

2
logN.

Definition 3 The Bayesian metric [10] QBayes (BS ,D) of a Bayesian network
structure BS for a database D is

QBayes (BS ,D) = P (BS)
m∏
i=0

qi∏
j=1

Γ (N ′
ij )

Γ (N ′
ij + Nij )

ri∏
k=1

Γ (N ′
ijk + Nijk)

Γ (N ′
ijk)

where P (BS) is the prior on the network structure (taken to be constant here) and
Γ (.) the gamma function. N ′

ij and N ′
ijk represent the priors for the counts, restricted

by N ′
ij = ∑ri

k=1 N
′
ijk . With N ′

ijk = 1 (and thus N ′
ij = ri), we obtain the K2 metric.

In the present work, we will consider two methods to obtain the Bayesian network
structure. The first one is the Hill-Climbing algorithm [4] that adds and deletes arcs
with no fixed ordering of variables. At each iteration, it will adjust a single arc in
BS and determine whether the changes improve the value of Q(BS ,D). Any change
that improves Q(BS ,D) is accepted, and the process continues until no other change
can be found to improve the value of Q(BS ,D). The second method is called TAN
(Tree Augmented Naive Bayes) [6, 8], where the tree is formed by calculating the
maximum weight spanning tree using Chow and Liu algorithm [7]. Both methods
were implemented using the software WEKA [9].

24.3 Results and Discussion

After an intensive descriptive analysis, the variables that best contributed to the
distinction between three classifications of archeological fragments were selected
and their categorizations were defined for the database of 760 pieces. This database
was used to find the best representation for a structure of data (relation of dependency
between the variables). To avoid overfitting, we used 10 % of the data for cross-
validation and the adjustment measures in Tables 24.1 and 24.2 come from this
subsample.

First, a model (saturated) with 13 variables that were shown relevant to infer the
classification of the pieces were constructed. After the modeling process, only the
most relevant variables (6) stay in the final model (reduced). We can perceive looking
at Tables 24.1 and 24.2 that the final model has a similar accuracy to the saturated
model, showing that the more parsimonious model has similar adjustments.

Table 24.1 presents the fit of two implemented Bayesian networks through the
learning method TAN : saturated and reduced model, with the use of four different
quality measures. Similarly, Table 24.2 presents these models implemented through
the Hill-Climbing algorithm.
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Table 24.1 Statistics fit measures for the Hill-Climbing saturated and reduced models (n = 766)

Saturated models Reduced models

Quality measures MDL Bayes AIC Entropy MDL Bayes AIC Entropy

Bayes −5803 −5610 −5619 −5648 −3280 −3176 −3182 −3204

Bdeu −6312 −6934 −6987 −7237 −3445 −3898 −3951 −4251

MDL −6302 −6840 −6881 −7101 −3466 −3845 −3894 −4154

Entropy −5767 −5698 −5699 −5759 −3250 −3230 −3240 −3300

AIC −5928 −6042 −6055 −6163 −3315 −3415 −3437 −3557

Correctly
classified instances

750 749 748 750 757 753 751 750

Kappa statistic 0.96 0.96 0.95 0.96 0.98 0.97 0.96 0.96

Relative absolute
error

6.20 6.17 7.34 7.09 5.88 6.19 7.17 7.00

Guarani (FP) 0.004 0.019 0.015 0.015 0.004 0.019 0.015 0.012

Jacadigo (FP) 0.017 0.013 0.018 0.017 0.013 0.010 0.013 0.018

Kadiwéu (FP) 0.007 0.006 0.004 0.003 0.000 0.003 0.004 0.003

Average FP rate 0.007 0.016 0.015 0.014 0.005 0.015 0.014 0.012

FP false positive rate

Observing the two tables of fitted models, adding the knowledge about the prob-
lem, and having an expected relation between the variables, we decided to use the
reduced model with the MDL metric as the quality measure. Thus, Figs. 24.3 and
24.4 show two Bayesian networks considering the ceramic pieces already classified
by the researcher using the TAN and Hill-Climbing methods, respectively.

Another objective of developing the above models, attributing probabilities be-
longing to one of the three technological traditions (Guarani, Jacadigo, or Kadiwéu),
is to help the researcher understand better the origin of the pieces that (s)he was
unable to classify. As it can be seen, there is no quantitative reason to prefer one of
the two used methods, since both present similar and satisfactory fits. However, the
Bayesian network provides information about dependency and the researcher can
choose the model that best represents reality from the point of view of an expert. We
can observe that some dependency relationships are maintained in both models, but
others differ. Two Bayesian networks are said to be equivalent if their joint proba-
bilities are equal [5]. So, we can say that the Bayesian networks produced through
the methods TAN and Hill-Climbing are not equivalent.

In the Fig. 24.3, we have the following joint distribution:

PTAN (T , S, IF , OF , SC, MT , FM) = P (T )P (S|T )P (IF |MT , T )

P (FM|S)P (OF |MT , T )P (MT |FM , T )

P (SC|MT , T ).
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Table 24.2 Statistics fit measures for the TAN saturated and reduced models (n = 766)

Saturated models Reduced models

Quality measures MDL Bayes AIC Entropy MDL Bayes AIC Entropy

Bayes −5774 −5633 −5650 −5689 −3252 −3186 −3191 −3217

Bdeu −6485 −6994 −6945 −7471 −3581 −3931 −3942 −4259

MDL −6452 −6892 −6834 −7284 −3587 −3876 −3884 −4160

Entropy −5739 −5720 −5711 −5823 −3232 −3222 −3250 −3307

AIC −5954 −6073 −6049 −6263 −3339 −3419 −3441 −3564

Correctly
classified instances

751 750 748 746 758 752 753 748

Kappa statistic 0.96 0.96 0.95 0.95 0.98 0.96 0.97 0.95

Relative absolute
error

6.71 6.66 6.84 7.48 6.06 6.72 6.53 7.44

Guarani (FP) 0.008 0.015 0.015 0.027 0.008 0.019 0.015 0.015

Jacadigo (FP) 0.017 0.015 0.017 0.018 0.010 0.012 0.012 0.020

Kadiwéu (FP) 0.004 0.004 0.006 0.003 0.000 0.003 0.003 0.003

Average FP rate 0.009 0.014 0.015 0.022 0.007 0.016 0.013 0.015

FP false positive rate

For Fig. 24.4, we have the following joint distribution:

PHC(T , S, IF , OF , SC, MT , FM) = P (T )P (S|FM , T )P (IF |T )P (FM|T )

P (OF |T )P (MT |T )P (SC|T ).

To check the dependency relationships presented in Bayesian network, it is necessary
to pay attention to its structure, shown in Figs. 24.3 and 24.4.

• For the Bayesian network built using the Hill-Climbing algorithm (Fig. 24.3), we
can see that:
– Inside face, Outside face, Structural category, Manufacturing technique, and

Frame material are mutually independent, given Technological Tradition;
– Site is independent of all other variables, given Frame material and Techno-

logical Tradition;
• For the Bayesian network built using the TAN method (Fig. 24.4), we can see

that:
– Site depends only on Technological Tradition;
– Inside face, Outside face, and Structural category are mutually independent,

given Manufacturing technique and Technological Tradition;
– Frame material depends only on Site;
– Frame material and Technological Tradition are parents of Manufacturing

technique.
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Fig. 24.3 Reduced Bayesian network model built by TAN method considering the MDL metric.
This Bayesian network was built using the database of ceramic pieces already classified by the
researcher to learning distribution structure

Fig. 24.4 Reduced Bayesian Network model built by Hill-Climbing algorithm considering the MDL
metric. This Bayesian network was built using the database of ceramic pieces already classified by
the researcher to learning the distribution structure
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Table 24.3 Classification by TAN and Hill-Climbing reduced models (n = 2320)

TAN classification

Hill-Climbing
classification

Guarani (%) Jacadigo (%) Kadiwéu (%) NC (%) Total

Guarani 6.6 0.4 2.1 0.0 9.1 %

Jacadigo 0.3 58.3 0.0 0.0 58.5 %

Kadiwéu 3.0 0.0 27.9 0.1 31.0 %

NC 0.0 0.0 1.4 0.0 1.4 %

Total 9.8 58.7 31.4 0.1 2,320

NC nonclassified

Table 24.3 shows that the classification of 2320 fragments from unknown origins
is very similar for both models. There are 93 % of the pieces classified in the same
Technological Tradition. We consider NC (nonclassified) when the model attribute
to the fragment less than 50 % of probability belongs to one of the Technological
Traditions.

Additional Remarks: For the basic theory of Bayesian network, we refer to Barlow
and Pereira [3] and for hypotheses tests that reduce the number of arcs, the reference
could be Andrade et al. [2].
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Chapter 25
A Note on Bayesian Inference for Long-Range
Dependence of a Stationary Two-State Process

Plinio L. D. Andrade and Laura L. R. Rifo

Abstract In this work we propose a Bayesian approach for selecting the range of a
stationary process with two states. The analysis is based on approximate posterior
distributions of the Hurst index obtained from a likelihood-free method. Our empir-
ical study shows that a main advantage of our approach, along with its of simplicity,
is the possibility of obtaining an approximate sample of the posterior distribution on
the Hurst index, thus providing better estimates. Furthermore, there is no need for
Gaussian nor asymptotic assumptions.

25.1 Introduction

The problem of estimating the range of a binary process has been extensively stud-
ied and its application for long-range phenomena can be found in several fields
[6, 10, 15]. The central point is the fact that we are not dealing with a Gaussian
process, and estimates based on this assumption are not accurate. We propose a
simple and intuitive Bayesian approach to estimate such range based on a likelihood-
free methodology. The advantages of our proposal are its simplicity, the fact that it
provides an approximate sample from the posterior distribution on the memory pa-
rameter and, mainly, it can be used straightforwardly in Gaussian and non-Gaussian
long-memory estimation problems.

25.2 Framework

This section defines long-memory and reviews some statistics that will be used in
our analysis.
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Definition 1 Let X = {Xt , t ∈ Z} be a second-order stationary process with auto-
correlation functionρ(n). X is said to exhibit long memory or long-range dependence
if, for some H

lim inf
n→∞

ρ(n)

n2H−2
> 0.

H is called a memory parameter, memory index, or Hurst index (see [7, 21]).
The long-range memory is expressed by values of H such that 0.5 < H < 1, where
H = 0.5 indicates a short-memory process, and as H increases, so does the memory
effect.

In order to estimate H we consider three well-known approaches, the ideas of
which will be given in the next subsections: R/S analysis, the fully extended local
Whittle (FELW) analysis, and the wavelet analysis. We compare these three methods
with our proposed Bayesian method.

25.2.1 R/S Analysis

In this subsection we review a heuristic method to estimate the Hurst index. This
method is recommended to detect long-range dependence rather than concrete
estimation (see the introduction in [7]).

Let us take an observed sample path x = (x1, . . . , xn) from a second-order
stationary time series X = {Xt , t ∈ Z}.

The rescaled range statistic R/S, introduced by [16], is given by

R/S(n) = 1

ŝn

[
max

1≤k≤n

k∑
i=1

(xi − x̄n) − min
1≤k≤n

k∑
i=1

(xi − x̄n)

]
,

where x̄n and ŝ2
n are the sample mean and sample variance, respectively. It is known

that

1

nH
R/S(n)

D→ C
R/S

H (n → ∞),

where C
R/S

H is a nondegenerate random variable and (
D→) means convergence in

distribution. Thus, we have

logR/S(n) ≈ H log n + logCR/S

H .

Therefore, the estimator ĤR/S of H is the linear coefficient of the regression of
R/S(n) on n in loglog scale.



25 A Note on Bayesian Inference for Long-Range . . . 303

25.2.2 Whittle’s Method

Consider a second-order stationary process X = {Xt , t ∈ Z} observed at times
t = 1, . . . , n and assume that the spectral density has the following form

f (λ) = |λ|1−2Hw(λ), λ ∈ [− π ,π ],

where w(λ) → b ∈ (0, ∞), as |λ| → 0.
When the spectral density above is correctly specified by a finite dimensional

parameter θ , that is, w(λ) = w(λ, θ ), then under regularity conditions the parameters
H and θ can be consistently estimated by the parametric Whittle estimator (see [5, 7]
for a detailed exposition). The Whittle estimator is the value η̂ that minimizes

Q(η) =
[(n−1)/2]∑

j=1

I (λj )

g(λj ; η)

where, I (λj ) is the periodogram at Fourier frequencies λj = 2πj/n, [α] denotes
the integer part of α, and g(λ; η) is a renormalization of the spectral density function
f (λ; η) such that

∫ π

−π
log f (λ; η)dλ = 0. When dealing with the increments of the

fractional Brownian motion or fractional-ARIMA(0, d, 0), η is simply the param-
eter H or d = H − 1/2 respectively, and for fractional-ARIMA(p, d, q), η has
autoregressive and moving average parameters.

An empirical study [23] shows that for such processes the Whittle estimator is
the best among several estimators. Such method assumes that the parametric form
of the spectral density is known, which is not common in practice and that is why
some authors consider semiparametric approaches based on the Whittle method.

The local Whittle approach to estimate H requires only the knowledge of f (λ)
near the origin, it is robust with respect to model specification and may be applied to a
wider class of processes. The first relevant work on this topic is due to Robinson [20].
In the simulation study, we consider the FELW estimator detailed in [1]. The FELW
estimator is applicable not only for traditional cases but also for nonlinear and non-
Gaussian processes with long memory, and the variation interval forH is extended to
−1 < H < ∞ in order to make possible its application in some important processes,
which appear in financial econometrics such as stochastic volatility studies.

25.2.3 Wavelet Analysis

The wavelet approach for the estimation of H was first proposed by [2] and several
results concerning this estimator were developed since then (see [3] and references
therein).

Let X = {Xt , t ∈ R} be a stationary long-memory process and X1, . . . ,Xn, a
sample path from this process. We call a mother wavelet any continuous function



304 P. L. D. Andrade and L. L. R. Rifo

ψ : R → R with support on the interval [0, 1] satisfying
∫

R

tpψ(t)dt = 0 (p = 0, 1, . . . , Q − 1)

and ∫
R

tQψ(t)dt �= 0,

where Q ≥ 1 is an integer called the number of vanishing moments. For a scale
a ∈ N

∗, the wavelet coefficient of X is given by

d(a, i) = 1√
a

∫
R

ψ

(
t

a
− i

)
Xtdt ,

for i = 1, 2, . . . ,Na with Na = [n/a] − 1. Now, for (a, b), we can define the
approximate wavelet coefficient of d(a, b) as

e(a, b) = 1√
a

n∑
k=1

ψ

(
k

a
− b

)
Xk.

Under appropriate regularity conditions and large a, it can be shown that
var[d(a, i)] is a power-law function of a with exponent 2H −1. Thus, if we consider
the following statistic

Vn(a) = 1

Na

Na∑
i=1

e2(a, i),

then an estimator ĤWa of H can be obtained by a loglog regression of Vn(a) over a.

25.3 ABC Method

When dealing with a nonstandard posterior distribution, we usually use Monte Carlo
simulation (or, more specifically, Markov chain Monte Carlo (MCMC) methods) to
produce a sample from it.

However, there are cases where the likelihood function is untractable and MCMC
methods cannot be implemented. The class of likelihood-free methods termed Ap-
proximate Bayesian Computation (ABC) addresses this issue as long as we are able
to simulate from the model and a suitable summary statistic is available. The ABC
idea was proposed by [19], among many others.

In our context, given a sample x = (x1, . . . , xn) associated with some distribution
f (· | θ), a summary statistic T , and a prior π for θ , the simplest ABC algorithm is
described as follows:
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ABC rejection sampler

Step 1 generate θj from the prior π ;
Step 2 generate y = (y1, . . . , yn) from f (· | θj );
Step 3 compute the distance |T (y) − T (x)|;
Step 4 accept θj if |T (y) − T (x)| ≤ ε, otherwise go back to Step 1.

The main idea is that the summary statistic T coupled with a small value of ε should
provide a good approximation of the posterior distribution for θ .

The accuracy of this approximation will depend on the choice of the statistic T

and a suitable value of ε (see [14] and the references therein). When T is a sufficient
statistic and ε is small enough, the accepted values will form a sample from the
posterior distribution for θ . Unfortunately, this optimal situation rarely occurs in
practice. Regarding the choice of ε, [14] proposes to choose ε as the 1 % quantile
of the simulated distances by repeating the Step 3 of the ABC algorithm, i.e., we
can previously fix the number of accepted values to Nsim × (1 %), where Nsim is the
number of simulations. We use that value for ε in our simulation study.

When looking for a good statistic to use in the ABC algorithm, we are motivated
by a definition of sufficiency derived from information theory (see [12]).

Definition 2 A function T (X) is said to be a sufficient statistic relative to the family
{f (x|θ ); θ ∈ Θ} if and only if, I (θ ; T (X)) = I (θ ;X), where I (X,Y ) is the mutual
information between X and Y , defined by

I (X;Y ) = EPXY

(
log

PXY

PXPY

)
,

where EP is the expected value over the distribution P , PXY is a joint probability
distribution of X and Y , while PX and PY are their marginals.

In general if T (X) is any function of the sample, we have I (θ ; T (X)) ≤ I (θ ;X).
Definition 2 suggests that a good statistic for the ABC procedure is the one that is
close to sufficiency in an informative sense. In other words, we seek a statistic T (X)
that maximizes the mutual information I (θ ; T (X)). It can be easily shown that

I (θ ; T (X)) = h(θ ) − h(θ |T (X)) , (25.1)

where h(X) is the entropy of X, h(X) = −EPX
( logPX).

From the inequality above and (25.1), we see that maximizing mutual information
I (θ ; T (X)) is equivalent to minimizing h(θ |T (X)). We can use this minimization
criterion to select the nearly optimal statistic from a set of available statistics. The
estimation of entropy is a well-developed field and there are many sample-based
estimators that can be readily applied to the sample obtained by the ABC algorithm
(see [4, 17, 22]).

The ABC procedure is now summarized as follow: Given a set S =
{S1, S2, . . . , Sk} of summary statistics, we replace Steps 3 and 4 in theABC algorithm
by

Step 3’ compute the distances |Si(y) − Si(x)|, i = 1, 2, . . . , k;
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Step 4’ accept Hj in the sample i if |Si(y) − Si(x)| < εi , otherwise go back to step
1, and a new step is added.

Step 5 For each sample i obtained, compute ĥi (i = 1, 2, . . . , k) and choose Sl in S

such that

ĥl = min
1≤i≤k

{ĥi} .

Such a sample provides an approximate sample from the posterior distribution
for θ .

The estimator ĤABC of H obtained from the ABC algorithm will be considered here
as the mean of the approximate posterior distribution.

25.3.1 Summary Statistics

In order to use ABC algorithm, we need to choose a set of summary statistics that
provides some information about the parameters of interest in the posterior analysis.

In the context of memory estimation problems, one can consider the R/S statistic
presented in Sect. 25.2.1. We can see that the statistic logR/S(N )/ log (N ) is related
to the Hurst index H , so that this statistic is a natural candidate to be included in
the set of summary statistics for an ABC algorithm. There are other statistics used
to estimate the memory parameter heuristically [13, 18], but the results obtained are
similar to those with the R/S statistic.

We also consider another set of statistics of the quadratic variations family. Such
statistics are used to estimate the memory index in self-similar processes as proposed
in [9], defined for filtered processes.

Definition 3 A filter f of length l ∈ N and order p ∈ N
∗ is an (l + 1)-dimensional

vector f = {f0, f1, . . . , fl} satisfying

l∑
q=0

fqq
r = 0, for 0 ≤ r ≤ p − 1, r ∈ Z,

l∑
q=0

fqq
p �= 0,

with the usual convention 00 = 1.

Definition 4 Assuming that we observe the process in discrete times {1, . . . , n}, a
filtered process X(f ) is defined as

X(f ) :=
l∑

q=0

fqXi−q , for i = l + 1, . . . , n,
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and the quadratic variation of X(f ) is given by

Sn(f ) = 1

n-l

n∑
i=l+1

[X(f )]2 = 1

n-l

n∑
i=l+1

⎛
⎝ l∑

q=0

fqXi−q

⎞
⎠

2

.

In [8], it is observed that a logarithmic transformation of the summary statistics
can improve the performance of the ABC algorithm. So, in addition to the statistics
considered above, we will consider transformations such as logarithm, square root,
and reciprocal of these statistics, and include them in the set of summary statistics.

25.4 Results

For the simulation study, we obtained a sample from each estimator defined in the
previous section, as follows:

• We considered three nominal values for the Hurst index H , namely 0.5, 0.7, and
0.9.

• For each nominal value of H , we simulated 1000 sample paths with length 1000
of the long-memory stationary two-state process taking values in {0, 1}. The paths
were simulated through a dichotomization of a sample path from the fractional
Brownian motion, obtained using the circulant matrix procedure [11].

• Each method presented previously was applied to each of those data.

For the ABC algorithm, we created a database of 100,000 simulated paths under
a uniform prior distribution over (0, 1). The set of summary statistics, S, includes
logR/S(N )/ log (N ), the quadratic variation statistic based on the finite difference
filters of orders 1–5, as well as the transformations of those statistics (square root,
logarithm, and reciprocal).

For each estimation method, we obtained 1000 estimated values of H , say ĤM =
{Hi , i = 1, . . . , 1000}, where M stands for the method (R/S, FELW, Wavelet, or
ABC). We have computed their mean and standard deviation. The results are given
in Table 25.1.

Figure 25.1 shows the boxplots of the deviations from the nominal value of H
for each estimation method. The letters A, B, C, and D in each graph stand for the
estimators R/S, FELW, Wavelet, and ABC, respectively.

As expected, the performance of the R/S analysis has high variability, sustaining
that heuristic approaches are only recommended as a first visual inspection and
detection of long-range dependence in the data. The performance of theABC method
is remarkable for all nominal values, especially when H = 0.9.

With respect to the minimum entropy criterion, when the nominal value is 0.5,
the quadratic variation statistic with a finite difference filter of order 1 without any
transformation is selected in 98.3 % of all simulations. For H = 0.7, the same
statistic is selected in 98.6 % of the cases, while for H = 0.9, it is selected in 69.1 %
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Table 25.1 Estimates for H using 1000 independent realizations from the stationary 0–1 process
with n = 1000 steps

Estimation method Nominal H 0.5 0.7 0.9

R/S Mean ĤR/S 0.5438 0.6781 0.8269

Std ĤR/S 0.0852 0.1043 0.1303

Fully extended local Whittle Mean ĤFELW 0.4974 0.6563 0.8443

Std ĤFELW 0.0582 0.0596 0.0584

Wavelet Mean ĤWa 0.4816 0.6363 0.8033

Std ĤWa 0.0613 0.0592 0.0649

Posterior mean Mean ĤABC 0.4965 0.6956 0.8989

Std ĤABC 0.0362 0.0316 0.0338
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Fig. 25.1 Boxplots of the deviations from the true value based on 1000 independent realizations
of the long-range dependent two-state process for each H . The letters A, B, C and D stand for the
estimators R/S, FELW, Wavelet and ABC respectively

of all simulations. In 17.9 %, the selected statistic is the quadratic variation with a
finite difference filter of order 2. We see that using a higher than two-order filter
or the R/S statistic does not improve the performance of the ABC algorithm in this
particular case.
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25.5 Discussion

We believe that it is possible to make simple and efficient inferences about the memory
index of a process using Bayesian techniques. We see through simulations that our
proposed approach provides estimates that are pretty close to the nominal values
and have had low variability compared to its frequentist competitors. The approach
presented here can be applied to more general contexts and can be extended to a wider
class of memory estimation problems. The only restriction is the availability of good
statistics and goods models that may be simulated. Moreover, high-order difference
filters as well as wavelet filters could be considered depending on the nature of the
problem.
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Chapter 26
Bayesian Partition for Variable Selection
in the Power Series Cure Rate Model

Jhon F. B. Gonzales, Vera. L. D. Tomazella and Mário de Castro

Abstract In this chapter we present a model of survival with a cure fraction where
a feature of the model is that variable selection is performed by Bayesian partition
model. To this end we consider a orthogonal hyperplane tessellation to obtain a local
structure on space covariates. The proposed model is based on the promotion time
where the number of competitive causes follows a power series distribution.

26.1 Introduction

With a rapid progress in the medical and health sciences, many datasets dealing with
time to relapse now reveal a substantial proportion of patients who are expected to be
non-susceptible to the occurrence of the event of interest (i.e. who are cured). Lifetime
data in which there are sampling units non-susceptible to the occurrence of the event
of interest, which can usually be caused by different latent competing causes, are
common in applications from various areas, such as medical, financial, and industrial
ones. The competing causes are latent in the sense that there is no information about
which factor was responsible for the component failure (or individual death).

The statistical literature for modeling lifetime data in presence of a cure fraction
and latent competing causes is by now vast and growing rapidly. Interested readers
can refer to [3, 4, 12, 14] and [1] among others.

Typically, in medical and epidemiological studies, often interest focuses on
studying nominal qualitative variables with more than two categories or ordinal
qualitative variables. For example, researchers may be interested on study of cancer
of melanoma, where we have important factors as disease stage, tumor size, category
node, among other. In this sense, cure rate models relate to the cure fraction with
the covariates through a (generalized) linear model. However, instead of considering
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a link function to connect the cure fraction to covariates, in this work uses a local
structure generated by a tessellation on covariate space. So, we model the covariate
effect locally in the cure fraction based on methodology of Bayesian partition model
(BPM) proposed by [8].

The aim of this chapter is to present flexible methodologies suited to incorporate
information on nominal qualitative variables with more than two categories or ordinal
qualitative variables and perform variable selection. The cure rate model proposed
assumes that the number of competing causes follow a power series distribution.

The paper is organized as follows. In Sect. 26.2 we present the power series cure
rate model (PSCRM). In Sect. 26.3 we formulate the PSCRM model with BPM
model. In Sect. 26.4 we will apply the proposed model to a real dataset on melanoma
data. This chapter concludes with Sect. 26.5 where we present some final comments.

26.2 The Power Series Cure Rate Model

Let N be a discrete random variable representing the latent number of competing
causes needed to the occurrence of a particular event of interest. We assume that N
has the power series distribution [10] with probability mass function

P [N = k; θ ] = akθ
k

η(θ )
, k = 0, 1, 2, . . . , θ > 0, (26.1)

where ak > 0 and η(θ ) = ∑∞
k=0 akθ

k < +∞. In (26.1), θ and η(.) are called the
power parameter and the series function, respectively. The probability generating
function of N is given by G(s) = η(θs)/η(θ ), where s ∈ (0, 1).

For different series functions η(·), we obtain different results, for example, if
η(θ ) = (1 + θ )K where K is positive integer and ak = (

K

k

)
, then (26.1) defines the

binomial distribution, N∼ Bi(K , θ∗) where θ∗ = θ/(1 + θ ). If η(θ ) = eθ and ak =
1/k!, then (26.1) defines the Poisson distribution, N∼Poi(θ ). If η(θ ) = (1 − θ )−τ ,
θ ∈ (0, 1) where τ is positive integer and

(
τ+k−1
τ−1

)
, then (26.1) defines the negative

binomial distribution, N∼ Nb(τ , θ ). If η(θ ) = − log (1 − θ )/θ , θ ∈ (0, 1) and
ak = 1/(k + 1) then (26.1) defines the logarithmic distribution, N∼ Lg(θ ).

Conditioned on N , let Zv, v = 1, . . . ,N be i. i. d. random variables with cumu-
lative distribution function F (t) and survival function S(t) = 1 − F (t), where Zv

is the time of occurrence of a particular event of interest due to the v-th cause. For
instance, in a biological scenario N may denote the number of carcinogenic cells
which can produce a detectable tumor [16]. The observable time of occurrence of
event of interest is T = min {Z1 . . . ,ZN }. Under this setup, according to [15] and
[13], the survival function for the population is given by

Spop(t) = G(S(t)) = η(θS(t))

η(θ )
, (26.2)

where t ≥ 0.
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The survival function Spop(t) given in (26.2) is not a proper survival function by
the fact that p0 = limt→∞ Spop(t) = a0/η(θ ) < 1, where p0 denotes the cure frac-
tion. So, the improper density and risk functions associated with long-term survival
function in (26.2) are given respectively by

fpop(t) = η′(θS(t))

η(θ )
θf (t) and hpop(t) = η′(θS(t))

η(θS(t))
θf (t), (26.3)

where f (t) denotes the (proper) density function of the lifetime Z.
The PSCRM model considers some particular cases, for instance, if η(θ ) = (1 +

θ )K we obtain the binomial cure rate model Spop(t) = (1 − θ∗ + θ∗S(t))K . If η(θ ) =
eθ we obtain the Poisson cure rate model, Spop(t) = exp (− θF (t)). If N ∼ Nb(τ , θ )
we obtain the negative binomial cure rate model Spop(t) = (

(1 − θ )(1 − θS(t))−1
)τ

.
If N ∼ Lg(θ ) we obtain the logarithmic cure rate model,

Spop(t) = log (1 − θS(t))/S(t) log (1 − θ ).

26.3 Bayesian Partition Modeling for Power Series Cure Rate
Model

The partition models are methods that split some domain of interest X ⊂ R
p (p ≥ 1)

in disjoint regions, and assign the same probability distribution for the response
variable Y in each region of X . So, the BPM model partitioning X by a tessellation
of a structure T defining regions Rm ⊆ X , m = 1, . . . ,M .

One characteristic of the BPM is that assigning conjugate priors within the dis-
joint regions, the marginal likelihood is available for any tessellation structure. The
availability of the marginal likelihood function for the tessellation structure greatly
reduces the space of the models as well as the dimension of the parameter space.

In this paper we consider orthogonal hyperplanes tessellation, the hyperplanes
are defined by split points hj∗ , j ∗ = 1, . . . ,p in each covariate. So, the tessellation
structure is given by hyperplanes h = (h1, . . . , hp) and the number of regions M ,
T = {h,M}.

Considering that we have M regions in X , let Nmj be the number of latent causes
of the event of interest for the j -observation with power series distribution with
parameter θm, j = 1, . . . , nm in the region Rm. So, given Nmj , let Z1

mj , . . . ,Z
Nmj

mj

be times of occurrence of the event of interest with cumulative distribution function
F (·|γ ) = 1 − S(·|γ ), where γ is the vector of parameters.

Let Tmj = min
{
Z1
mj , . . . ,Z

Nmj

mj

}
and Cmj the censoring time. We observe Ymj =

min{Tmj ,Cmj } and δmj be the censoring indicator with δmj = 1 if Ymj = Tmj and
δmj = 0 otherwise. We assume a Weibull distribution with vector of parameters
γ = (α, λ)& for the event time Zmj . The cumulative distribution is given by

F (y|γ ) = 1 − exp (−yαeλ),
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where α > 0 and λ ∈ R. Then, the likelihood function for the complete data under
uninformative censoring is given by

L(γ , θ , T|N , y, δ) =
M∏

m=1

exp

⎛
⎝−eλ

nm∑
j=1

yαmjNmj

⎞
⎠ nm∏

j=1

(
Nmjαe

λyα−1
mj

)δmj
p(Nmj |θm).

where θ = (θ1, . . . , θM )& and N = (N1, . . . ,Nn)& is a vector of latent variables.
Note that in each region Rm the number of causes for the event of interest Nmj has
the same probability distribution ( e.g. Poisson).

26.3.1 Prior and Posterior Distribution

The joint prior distribution for (γ , θ , T) is given by

p(γ , θ , T) = p(γ )p(θ , T) = p(γ )p(θ |T)p(T),

and we assume that the parameters of the Weibull distribution being independent, so
p(γ ) = p(α)p(λ) where α ∼ Gamma(μα , σα) and λ ∼ N(μλ, σ 2

λ ), where μα , σα ,
μλ, and σλ are hyperparameters. Considering that the parameters between regions
of X are independent, we have p(θ |T) = ∏M

m=1 p(θm|T). Moreover, we assume a
geometric distribution for M , M ∼ Geo(ψ).

To sample from posterior distribution p(γ , θ , T|y, δ), we introduce the latent
variables Nmj

p(γ , θ , T, N |y, δ) ∝
M∏

m=1

exp

⎧⎨
⎩eλ

nm∑
j=1

yαmjNmj

⎫⎬
⎭

nm∏
j=1

(
Nmjαe

λyα−1
mj

)δmj
p(Nmj |θm)

× p(γ )p(θ , T).

Therefore, we need to sample from the full conditional distributions
(θ , T|N , γ , y, δ), (N |θ , T, γ , y, δ), and (γ |θ , T, N , y, δ). So, note that to sample
from (θ , T|γ , y, δ) we consider the full conditional distributions given by

p(θ , T|N , γ , y, δ) = p(T|N , γ , y, δ)p(θ |T, N , γ , y, δ).

In the BPM model supposes the parameters between each region of X are
independent and so the full conditional distribution for (T|N , γ , y, δ) is given by

p(T|N , γ , y, δ) ∝
∫

p(N |θ , T)p(θ |T)p(T)dθ = p(N |T)p(T).

In order to obtain a closed form for p(N |T) it is important to assign a conjugate
prior for θ . However depending on the series function, η(θ ), we have different
distributions for N and so the prior distributions for θ are also different.
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Thus, if N ∼ Bi(K , θ∗) we choose a beta prior, θ∗
m ∼ Beta(a0, a1).

Therefore

p(N |T) =
n∏

i=1

(
K

Ni

) M∏
m=1

B(
∑nm

j=1 Nmj + a0,Knm −∑nm
j=1 Nmj + a1)

B(a0, a1)
, (26.4)

the full conditional distribution for θ∗
m and Nmj are given respectively by

θ∗
m|N , T ∼ Beta

⎛
⎝ nm∑

j=1

Nmj + a0, nm −
nm∑
j=1

Nmj + a1

⎞
⎠ ,

and

Nmj |T, y, δ ∼ Bi

{
K − δmj ,

θ∗
mS(ymj |γ )

θ∗
mS(ymj |γ ) + 1 − θ∗

m

}
+ δmj .

In case that N ∼ Poi(θ ), we assign a gamma distribution as prior to θm, θm ∼
Gamma(b0, b1). So

p(N |T) =
M∏

m=1

1∏nm
j=1 Nmj !

b
b0
1

Γ (b1)

Γ (
∑nm

j=1 Nmj + b0)

(nm + b1)
∑nm

j=1 Nmj+b0
,

and the full conditional distribution for θm and Nmj are given respectively by

θm|N , T ∼ Gamma

⎛
⎝ nm∑

j=1

Nmj + b0, nm + b1

⎞
⎠ ,

and

Nmj |γ , θ , T, y, δ ∼ Poi
{
θmS(ymj |γ )

}+ δmj .

If N ∼ Bn(τ , θ ), we choose a beta prior, θm ∼ Beta(c0, c1), so

p(N |T) =
n∏

i=1

(
τ + Ni − 1

τ − 1

) M∏
m=1

B(τnm + c0,
∑nm

j=1 Nmj + c1)

B(c0, c1)
,

the full conditional distribution for θm and Nmj are given respectively by

θm|T, N ∼ Beta

⎛
⎝ nm∑

j=1

Nmj + c0, τnm + c1

⎞
⎠ ,

and

Nmj |γ , θ , T, y, δ ∼ Nb
{
τ + δmj , θm exp

(−eλyαmj
)}+ δmj .
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If N ∼ Lg(θ ), we assign the beta distribution as prior to θm, θm ∼ Beta(d0, d1).
Next, we do not have a closed form for p(N |T) and so we use numerical integration.

The full conditional for θm is given by

p(θm|N , T) ∝ θ
nm+∑nm

j=1 Nmj+d0−1
m (1 − θm)d1−1

{− log (1 − θm)}nm .

If δmj = 0 the conditional distribution for Nmj is

Nmj |γ , θ , T, y, δ ∼ Lg(θmS(ymj |γ )).

If δmj = 1 then

p(Nmj |γ , θ , T, y, δ) ∝ Nmj

Nmj + 1
{θmS(ymj |γ )}Nmj .

Summarizing the hyperpameters for different priors on θm are a0, a1, b0, b1, c0, c1, d0

and d1.
The full conditional distributions for the parameters of the Weibull distribution

are

p(λ|α, N , T, y, δ) ∝ edλ exp

(
−eλ

n∑
i=1

Niy
α
i

)
exp

(
− (λ − μλ)2

2σ 2
λ

)
,

p(α|λ, N , T, y, δ) ∝ αd

(
n∏

i=1

y
δi
i

)α

exp

(
−eλ

n∑
i=1

Niy
α
i

)
p(α|μα , σα),

where d = ∑n
i=1 δi .

26.3.2 Computational Strategy

The strategy computational for numerical and dichotomous predictors is given in [7].
Generally, categorical predictors are not necessarily dichotomous therefore the algo-
rithm has to be modified to handle with qualitative predictors but in general form. In
this context, let XT a categorical covariate with CT categories, XT ∈ {1, 2, . . . ,CT},
and suppose that ρ is a partition of XT and Mρ the number of cluster(subsets) for
partition ρ of XT. The partition ρ is unknown, we need to assign it as a prior prob-
ability p(ρ). We assume that p(ρ) is a discrete uniform distribution on {1, . . . , nρ}
where nρ is the number different partitions of XT. So, a natural relationship among
the number, the total numbers nρ of partitions, and scale of XT. In the case that XT

has a nominal scale the number nρ is much greater than when XT is ordinal scale.
So, we denote by I the index set of predictor variables I = {1, . . . ,p}, and IT

is the index set of predictor variables present in the tessellation T. Considering that
M = 1 (i.e., IT = ∅) then starting the algorithm with initializing the tessellation
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structure, T, with just one randomly drawn predictor variable and choose a split point.
In each iteration of the algorithm and when 1 < M < n, we try with probability 1/3,
the first three moves. The first two moves concern the selection of covariate. The last
three moves involve the categorical predictor with more than two categories.

• Add. A new partition can be added to the tessellation structure T by choosing
a new splitting point of a predictor variable in I. The splitting point is selected
from the empirical distribution of the predictor variable chosen.

• Delete. A hyperplane can be eliminated by choosing a random predictor variable
r∗ present in the tessellation, r∗ ∈ IT.

• Move. A hyperplane can be changed by selecting a new splitting point of the
empirical distribution of the selected variable in IT.

• Merge. The number of clusters in the covariate XT is decreased, by merging two
subsets.

• Split. The number of clusters in the covariate XT is increased, by splitting up one
subset into two new subsets.

• Alter. The partition ρ for XT is altered, but the number of subsets being equal.

The new tessellation T′ proposal is accepted with probability:

α(T′, T) = min

{
1,

p(N |T′)p(T′)
p(N |T)p(T)

}
. (26.5)

[7] proposed the first three moves. In this chapter, added the last 3 moves, which
only concern qualitative covariate and are the main novelty of our approach. Details
of the movements of Markov chain Monte Carlo (MCMC) sampler can be found in
[11].

26.4 Application

The data set for illustrating our methodology was extracted from a melanoma study
(the melanoma is a type of malignant cancer). The objective of this study is to evaluate
the effectiveness of applying a high dosage of interferon alfa-2b as a way to prevent
the recurrence of cancer. Patients were included in the study between 1991 to 1995,
and follow-up was conducted until 1998. The response variable Y represents the
time from patient to death or time of censoring. The original sample comprises 427
patients, 10 of whom were removed from analysis, since their tumor thickness data
are missing. Therefore we haven = 417 patients, with 56% of censored observations.
The variables include y: time (in years); x1: treatment (0: observation, n = 204; 1:
interferon, n = 213); x2: age(in years); x3: nodule category(1,n = 82; 2,n = 87;
3,n = 137; 4,n = 111); x4: sex (0: male, n = 263; 1: female, n = 154); x5:
performance status(PS) means patient’s functional capacity as regards his/her daily
activities (0: fully active, n = 363 1: other, n = 54) and x6: tumor thickness (in
mm). For more details related to the melanoma data [9] may be consulted.
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Table 26.1 Probability of splitting for covariates for different models

Model x1 x2 x3 x4 x5 x6

Binomial (K = 10) 0.001 0.123 0.999 0.001 0.002 0.020

Poisson 0.018 0.307 1.000 0.025 0.024 0.102

Negative binomial (τ = 1) 0.020 0.256 1.000 0.019 0.017 0.092

Logarithmic 0.010 0.133 1.000 0.012 0.009 0.131

We consider hyperparameters μα = σα = 0.1 for the gamma distribution of the
parameter α and the normal distribution with mean μλ = 0 and variance σ 2

λ = 100
for the parameter λ. The hyperparameters for beta distribution are a0 = a1 = c0 =
c1 = d0 = d1 = 1 and for gamma distribution we assume b0 = b1 = 0.1. For
number of regions M we assume that, M ∼ Geo(0.1).

Considering these prior densities we generated two parallel independent runs
of the MCMC sampler with size 700, 000 for each parameter, disregarding the first
300, 000 iterations to eliminate the effect of the initial values and, to avoid correlation
problems, we consider a spacing of length 100, obtaining a sample of size 4000 in
each chain. To monitor the convergence of the MCMC sampler we resorted to the
methods recommended by [5]. Consider in the first chain initial values for λ and
α equal to −5 and 5 respectively in the second chain were 5 and 9, in both chains
initiate the algorithm with N = (1, . . . , 1).

In the data set x1, x4, and x5 are binary variables then the division of any of
these variables follows as, if it occurs will result in two groups, for example, the
variable x4 which represents sex will be divided in male and female. In the case of
the covariate x3 with four categories x3 ∈ {1, 2, 3, 4}, the idea of partition of x3 was
made considering the Sect. (26.3.2) except that the choice of partitions has an order.

We tried different binomial and negative binomial models by taking K =
1, 2, 7, 10 and τ = 1, 3, 7, 13 respectively. For the binomial model, the best fit is
when K = 10. In the negative binomial model the best fit was when τ = 1 i.e. the
geometric model.

Table 26.1 presents the probability of splitting for each of the covariates for each
model. We note that the ordinal covariate x3 is almost always in the tessellation, so
the tessellation by orthogonal hyperplanes identifies that x3 has a significant effect
in the models. One consequence is that the splitting probability of x3 is very close
to 1. Also, the variables x2 and x6 have a minor effect in the models. For the other
covariates, the probability of splitting is close to zero which means that they are
noninformative.

Moreover, the partition with largest posterior probability for x3 is the partition
formed by {{1, 2, 3}, {4}} for binomial (0.639), Poison (0.766), and negative binomial
(0.340) models. Nevertheless, in the logarithmic model the partition {{1, 2}{3, 4}}
have larger posterior probability.

To asses the goodness of fit of the models, we use the logarithm of pseudomarginal
likelihood (LPML) given in [9, Chap. 6]. LPML is a well-established Bayesian model
comparison criterion based on the conditional predictive ordinate (CPO) statistics,
which is particularly suitable for the cure rate models.
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Table 26.2 Posterior summaries for the parameters of the Weibull distribution

Model LPML Parameter Mean SD 95% HPD

Binomial† −521.775 α 1.599 0.109 (1.394; 1.820)

λ −1.295 0.125 (−1.532; −1.050)

Poisson −521.482 α 1.721 0.116 (1.495; 1.947)

λ −1.645 0.135 (−1.920; −1.388)

Geometric −519.892 α 1.869 0.125 (1.624; 2.105)

λ −2.069 0.125 (−2.390; −1.757)

Logarithmic −519.004 α 2.044 0.136 (1.766; 2.293)

λ −2.454 0.213 (−2.890; −2.071)

†K = 10
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Fig. 26.1 a K-M curves stratified by nodule category for the clusters {{1, 2, 3}, {4}} (lower curve)
for geometric model. b Estimates of the survival function according with cluster {{1, 2}, {3, 4}} for
logarithmic model

Table 26.2 gives LPML, posterior means, standard deviations (SD), and 95 %
highest posterior density (HPD) interval for the parameters of Weibull for all models.
Also, we calculated the estimated potential scale reduction R̂ [6] for the parameters
of Weibull distribution, which for all parameter is close to 1, indicating good con-
vergence. We also note from Table 26.2 that, based on the LPML statistics the
logarithmic model is deemed as the best fitting model. Note that, the SD of posterior
estimates of parameter λ in the binomial, Poisson and negative binomial are close,
but in the logarithmic model is larger than the others models.

Figure 26.1a shows the Kaplan-Meier(K-M) estimates of survival function and
estimates obtained from negative binomial model considering the partition
{{1, 2, 3}, {4}} and in the Fig. 26.1b display the K-M estimates of survival func-
tion and estimates of logarithmic model considering the partition {{1, 2}, {3, 4}} for
covariate x3.
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26.5 Discussion

In this paper, we proposed the power series cure rate based in the Bayesian partition
modelling. The model proposed is a extension nonparametric for the power series
cure rate [2].

We propose a strategy computational that considers quantitative, dichotomous,
and also qualitative covariates with two more categories and order. Moreover, the
partition of ordinal covariates is performed respecting an order and this is novelty.

Thus, the methodology proposed extend the model proposed by [7].
Considering the hyperplane orthogonal tessellation in this modeling the variable

selection is performed. In this sense, each hyperplane divides the data set in only one
covariate and thus the hyperplanes are included when the covariate affects the fit of
the model.
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Chapter 27
Bayesian Semiparametric Symmetric Models
for Binary Data

Marcio Augusto Diniz, Carlos Alberto de Bragança Pereira and Adriano Polpo

Abstract This work proposes a general Bayesian semiparametric model for bi-
nary data. Symmetric prior probability curves as an extension for discussed ideas
from Basu and Mukhopadhyay (Generalized Linear Models: A Bayesian Perspective,
pp. 231–241, 1998) are considered using the blocked Gibbs sampler, which is more
general than the Polya urn Gibbs sampler. The Bayesian semiparametric approach
allows us to incorporate uncertainty around theF distribution of the latent data and to
model heavy-tailed or light-tailed distributions. In particular, the Bayesian semipara-
metric logistic model is introduced, which enables one to elicit prior distributions for
regression coefficients from information about odds ratios; this is quite interesting
in applied research. Then, this framework opens several possibilities to deal with
binary data in the Bayesian perspective.

27.1 Introduction

The binary data modeling is a recurring challenge in several applied research areas
considering that the logistic regression popularized by Cox [10] and the Probit model
introduced by Bliss [6] are the strategies adopted often.

These models are obtained when the probability curve of success is defined as
a distribution function F evaluated on some covariables in the case of logistic and
normal distributions.

The distribution function F usually is symmetric with mean μ = 0 and precision
τ = 1; thereby, the probability of success for a binary response approximates to the
value zero with the same rate that it approximates to value one. Furthermore, the
distribution F could be a scale mixture of a G distribution by a H distribution.
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In the Bayesian parametric approach, a binary random variable is treated byAlbert
and Chib [1] as a discretization of a latent variable with the F distribution. In this
context, a scale mixture of distributions is considered such that G is defined as
the normal distribution and H as the gamma distribution, resulting in F as the t
distribution. Consequently, this structure makes available the t, Cauchy, and normal
distributions for describing the probability curve of success.

The Kolmogorov–Smirnov test statistic distribution for H was suggested by Chen
and Dey [8] in the Bayesian parametric approach, resulting in the logistic distribution
for describing the probability curve, which is deeply desired since it allows one to
elicit prior distributions for β, the vector of regression coefficients, discussing about
the odds ratios that imply a great impact on applied research.

Bayesian nonparametric approach through the Dirichlet process, proposed by
Ferguson [14], allows as a more flexible alternative to previous modeling approaches
because it excludes the necessity to defineH mixture distribution, which means that it
is possible to model heavy-tailed or light-tailed distributions than that prior proposed.

A semiparametric model based on the same structure created by Albert and Chib
[1] was introduced by Basu and Mukhopadhyay [4]. Nonetheless, the H mixture
distribution is not known and treated as a random quantity such that Dirichlet process
is considered as the distribution for H .

The computational implementation is based on Polya urn Gibbs sampler algorithm
developed by Escobar [12] that is constructed by Dirichlet process definition from
[5]. Thus, the work presented in [4] resulted in the t, Cauchy, and normal distributions
as options for the prior expected distribution of the probability curve of success as
well as [1].

This work proposes a Bayesian semiparametric general model for binary data.
Symmetric probability curves are considered as an extension to the ideas discussed
in [4] for logistic prior expected distribution through the blocked Gibbs sampler. The
blocked Gibbs sampler was introduced by Ishwaran and Zarepour [15] such that it
is more general and easy to implement than the Polya urn Gibbs sampler.

Section 27.2 defines the modeling and presents some concepts about the Bayesian
nonparametric approach; in Sect. 27.3, the Gibbs sampler is established. Finally, the
beetle data from [6] are revisited in Sect. 27.4. Concluding remarks are given in
Sect. 27.5.

27.2 The Model

The problem can be described when considering Yil|pi ∼ B(pi) as independent
binary random variables when pi = F (x′

iβ|μ, τ ) for i = 1, . . . , n and l = 1, . . . , ni
such that F is a distribution function of a scale-location family F = {F (.|μ, τ ) : μ ∈
1, τ > 0}, x′

i is ap×1 covariables vector from i th subject, and β is ap×1 parameter
vector. In order to simplify the notation, a specific F (.|μ = a, τ = b) distribution
will be indicated by only F (.|a, b).
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Following [1],

Yil|Wil = 1l(Wil>0), (27.1)

where Wil|β, τ ∼ F (.|xi ′β, τ ) for i = 1, . . . ,L, because

pi = E(Yil)

= P (Yil = 1) = P (Wij > 0)

= P (Wil − x′
iβ > −x′

iβ)

= 1 − F (− x′
iβ|0, τ )

= F (x′
iβ|0, τ ), (27.2)

if F is symmetric around zero.
Usually, it is assumed τ = 1, although, it is possible to attribute more flexibility

to the modeling of W when the F distribution is defined as a mixture of G symmetric
distributions in a scale-location family G, that is,

f (W |β,H ) =
∫

g(W |x′β, τ )dH (τ ). (27.3)

In a hierarchical perspective,

Wil|β, τi
ind∼ G(Wil|xi ′β, τi) for i = 1, . . . ,L e l = 1, . . . , ni , (27.4)

τ1, ...τL|H i.i.d.∼ H. (27.5)

On the Bayesian paradigm, prior distributions should be attributed to the unknown
quantities,

β|τβ ∼ Np(0, τβIp), (27.6)

H |α ∼ P (α,H0), (27.7)

α ∼ γ (c1, c2).

P (α,H0) being the Dirichlet process introduced in [14] such that H0 is a distribution
that indicates the expected distribution for H and α is the parameter that indicates
the dispersion around H0 in relation to the sample size n. Also, α can be seen as a
function of the expected value of the number of clusters of τ ,

C(α, n) =
n∑

i=1

α

α + i − 1
. (27.8)

Notice that the H0 distribution should be chosen from the prior expected distri-
bution for W denoted by F0. In this way, it is important to point out the work of
Andrews and Mallows [2], who discussed scale normal mixtures and presented the
relations used in [1] and [8].
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Another point to be highlighted is that the posterior distribution for H is not a
simple Dirichlet process, but it is a mixture of Dirichlet processes defined in [3].

Computational implementation of a mixture of Dirichlet processes had been enor-
mously difficult until the Polya urn algorithm was presented in [12], since the previous
algorithms could not sample from H posterior distribution adequately.

The Polya urn algorithm is based on the representation of the Dirichlet process
introduced by Blackwell and McQueen [5]. In spite of the algorithm being appropri-
ate in several situations, it is limited for situations where there is conjugacy between
H0 and G distributions, and it suffers from slow mixing because of the one-at-a-time
updates. Solutions for these limitations were presented by Escobar and West [13],
MacEachern [16], and MacEachern and Müller [17], among others.

An alternative algorithm was developed by Ishwaran and Zarepour [15] based on
the stick-breaking representation introduced by Sethuraman [19],

P (.) =
∞∑
k=1

qkδτk (.), (27.9)

where δτk is a discrete probability measure concentrated on τk such that τk ∼ H0 and
qk are independent random variables of τk which is given by,

q1 = V1,

qk = (1 − V1)(1 − V2) × · · · × (1 − Vk−1)Vk for k ≥ 2,

∞∑
k=1

qk = 1, (27.10)

when Vk for k = 1, 2, . . . are independent random variables and identically
Beta(1,α)-distributed.

The algorithm considers an approximation for the Dirichlet process by truncating
the sum in Eq. (27.9) for a finite sum until N . The quality of this approximation also
is established in [15]:

||f (W) − fN (W)||1 ≤ 4n exp (−(N − 1)/α), (27.11)

then, the number of components of Dirichlet process, N , should be chosen from the
sample size n and the dispersion parameter α.

The implementation of the algorithm requires that the model presented in
Eqs. (27.4)–(27.8) be rewritten by considering τi = ZKi

such thatKi for i = 1, . . . ,L
are classification variables to identify the variable Zk associated with each τ . Then,
the model can be described as,

Wil|β, Z, K
ind∼ Φ(Wil|x′

iβ,ZKi
) para i = 1, . . . ,L and l = 1, . . . , ni ,

β|τβ ∼ Np(0, τβIp),

Zj |v i.i.d.∼ H0(v) para j = 1, . . . ,N ,



27 Bayesian Semiparametric Symmetric Models for Binary Data 327

K|q ∼ Multinomial(L, q1, . . . , qN ),

q|α ∼ GDN (α, 1), (27.12)

where GD is the generalized Dirichlet distribution discussed in [9].
Finally, it is possible to present the algorithm from the model.

27.3 Blocked Gibbs Sampler

In this structure, the sampling of H posterior distribution is simplified and divided in
the sampling of Z|K, W,β, v, K|q, Z, W,β, q|α, K and α|q, c1, c2. Moreover, there
is the sampling of W|Z, K,β, Y, X and β|W, Z, K.

The sampling of the posterior complete conditional distribution Z|K, W,β, v is
divided in two parts,

Zk

i.i.d.∼ h0(Zk|v) for k ∈ {1, . . . ,N} − K∗, (27.13)

Zk

ind∼ h0(Zk|v)
∏

{i:Ki=k}

ni∏
l=1

φ(Wil|x′
iβ,Zk) for k ∈ K∗, (27.14)

where K∗ = {K∗
1 , . . . ,K∗

m} consists in the set of unique values of K vector.
For the sampling of K|q, Z, W,β, each component Ki follows the multinomial

distribution with probabilities given by,

qi,k ∝ qkτ (Zk)ni/2 exp

{
−τ (Zk)

2

ni∑
l=1

(Wil − x′
iβ)2

}
, (27.15)

for i = 1, . . . ,L and k = 1, . . . ,N .
The generalized Dirichlet conjugates with multinomial distribution of K follow-

ing [20]; thus, q|α, K also is a generalized Dirichlet distribution with parameters,

aWk = 1 + mk ,

bWk = α +
N∑

j=k+1

mj . (27.16)

mk being the number of Ki equal to k for k = 1, . . . ,N − 1.
The α|q, cW1 , cW1 also takes advantage of the conjugacy such that the posterior

distribution is still gamma with parameters,

cW1 = N + c1 − 1,

cW2 = c2 + ln(qN ). (27.17)
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Similarly, in the Bayesian linear regression with normal errors, β|W, Z, K is
given by the normalp

(
μW , ΣW

)
distribution such that,

μW = (
τβIp + X′ΣX

)−1
X′ΣW,

ΣW = (
τβIp + X′ΣX

)
. (27.18)

where Σ is a diagonal matrix such that the i-th element corresponds to τ (ZKi
).

The sampling of W|Z, K,β, Y corresponds to the sampling of the φ(W|Z, K,β)
distribution truncated by Y as defined in (27.1). Considering [18], it is easy to
generate univariate truncated normal,

π (W|Z, K,β, Y, X) ∝
L∏
i=1

ni∏
l=1

φ(Wil|x′
iβ,ZKi

)1l(Yil=1l(Wil>0)). (27.19)

The algorithm that samples the posterior distribution W,H ,β|Y, X distribution
is defined by,

1. Define initial values for W, Z, K, q, α, and β;
2. Generate H from π (H |β, W) by parts,

a) Z ∼ π (Z|K, W,β, v) defined in (27.13) and (27.14);
b) K ∼ π (K|q,α, Z, W,β) detailed in (27.15);
c) q ∼ DGN (aW, bW) with parameters defined in (27.16);
d) α ∼ gamma(cW1 , cW2 ) with parameters given in (27.17);

3. Generate β ∼ Np

(
μW , ΣW

)
with parameters presented in (27.18);

4. Generate W ∼ π (W|Z, K,β, Y, X) expressed in (27.19).

The next two sections will present the scale normal mixture with gamma distribution
for the scale parameter as an alternative version of the work present in [4] and the
Kolmogorov–Smirnov distribution in order to provide the logistic distribution for
the prior expected distribution of the Dirichlet process. Other distributions can be
constructed since the algorithm is general enough.

27.3.1 Gamma Distribution

If τ (Z) = Z such that Z ∼ gamma(v/2, v/2) with density,

h0(Z) = (v/2)
v
2

Γ (v/2)
τ

v
2 −1 exp

{
− v

2
Z
}

1l(Z>0), (27.20)

it follows that F0 is the tv(0, 1) distribution. If v = 1, F0 is a Cauchy(0, 1) distribu-
tion, while, if v → ∞, F0 is a normal(0, 1) distribution. Notice that the t-student
distribution is already considered a reasonable approximation to normal distribution
with v > 30.
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Then, the posterior distribution calculated in (27.14) is the gamma distribution
with parameters,

vW1 = v/2 + mk/2,

vW2 = 1

2

∑
{i:Ki=k}

ni∑
{l=1}

(Wil − x′
iβ)2 + v

2
. (27.21)

27.3.2 Kolmogorov–Smirnov Distribution

If τ (Z) is defined as

τ (Z) =
(

1

2Z

)2

such that Z ∼ Kolmogorov–Smirnov, (27.22)

with Kolmogorov–Smirnov distribution following [11],

h0(Z) = 8
∞∑
k=1

(− 1)n+1n2Z exp {−2n2Z2}1l(Z>0), (27.23)

it follows that F0 is a logistic(0, 1) distribution.
It is not simple to evaluate the Kolmogorov–Smirnov distribution since the sum-

ming limit is not finite, although it is possible to generate these random variables
following Devroye [11], who presented an algorithm based on the alternating series
algorithm.

Unlike the last section, it is preferable to consider the random variable Z to
calculate the posterior distribution which results in,

π (Z|K, W,β) ∝

∞ 8
∞∑
k=1

(−1)n+1n2Z exp {−2n2Z2}
(

1

4Z2

)mk/2

×

× exp

⎧⎨
⎩− 1

8Z2

∑
{i:Ki=k}

ni∑
{l=1}

(Wil − x′
iβ)2

⎫⎬
⎭. (27.24)

This posterior distribution is not known. Here, the Blocked Gibbs sampler in-
troduced in [15] becomes extremely interesting because a Metropolis–Hastings step
can be added without difficulties to sample from (27.24).

In the Bayesian parametric approach, a proposal distribution for the same distri-
bution in (27.24) is suggested by Chen and Dey [8]. They considered the empirical
relation between tv and logistic distributions discussed in [1].



330 M. A. Diniz et al.

In this way, the proposal distribution is defined by Z2 ∼ inverse gamma with the
parameters,

vW1 = v/2 + mk/2,

vW2 = 1

8

⎡
⎣ v

b2
+

∑
{i:Ki=k}

ni∑
{l=1}

(Wil − x′
iβ)2

⎤
⎦ , (27.25)

with acceptance probability of Z∗ generated from proposal distribution,

λ = h0(Z∗)/ha0(Z∗)

h0(Z∗)/ha0(Z∗)
, (27.26)

where ha0 denotes the proposal distribution.
It is necessary to evaluate the Kolmogorov–Smirnov distribution to calculate the

acceptance probability; therefore, Chen and Dey [8] presented a limit to truncate the
infinite sum.

The limit is based on the decomposition of the density in an alternating series,

h0(Z) = cfd (Z)
∞∑
n=0

(−1)nan(Z),

where c is a constant, fd is an easily generating density, and an is a monotone
decreasing series.

The first decomposition is as follows,

cfd (Z) = 8Z exp{−2Z2},
an(Z) = (n + 1)2 exp {−2Z((n + 1)2 + 1)}, (27.27)

such that an ↘ 0 for Z >
√

1/3, while, the second decomposition is given by,

cfd (Z) =
√

2ππ2

4Z4 exp

{
− π2

8Z2

}
,

an(Z) =
⎧⎨
⎩

4Z2

π2 exp
{
− (n−1)2π2

8Z2

}
if odd n,

(n + 1)2 exp
{
− ((n+1)2−1)π2

8Z2

}
if even n,

(27.28)

with an ↘ 0 for Z < π/2. Observe that the convergence interval of both series
intersects. Then, we choose Z = 0.75 can be chosen as a cutoff to evaluate each
series as well as [11].

The limit to truncate the sum in (27.23) is as follows,

n∗ = inf {n : cfd (Z)an(Z) < δ}, (27.29)

where δ is the precision of approximation.
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27.4 Predictive Distribution

A direct by-product of the blocked Gibbs sampler is the predictive distribution for a
new observation W(n+1)l and, consequently, Y(n+1)l for l = 1, . . . ,L. See,

f (W(n+1)l|Y, X) =
∫

φ(W(n+1)l|x′
(n+1)β, τ )dπ (β, τ |Y, X)

=
∫ ∫

φ(W(n+1)l|x′
(n+1)β, τ )dπ (τ |H )dπ (H ,β|Y, X). (27.30)

Considering H ∼P (α,H0), the internal integral of Eq. (27.30) can be approxi-
mated by,

∫
φ(W(n+1)l|x′

(n+1)β, τ )dπ (τ |H ) ≈
N∑
k=1

qkφ(W(n+1)l|x′
(n+1)β, τ (Zk)). (27.31)

The approximated predictive distribution f (W(n+1)l|Y, X) follows,

1

b

B∑
b=1

N∑
k=1

q
(b)
k φ(W(n+1)l|x′

(n+1)β
(b), τ (Z(b)

k )), (27.32)

such that (q(b), Z(b),β(b)) is the bth element of the sample generated by Gibbs sampler.
From Eqs. (27.30) and (27.31), the predictive distribution for Y(n+1)l is given by,

P (Y(n+1)l = 1|Y, X) ≈ 1

b

B∑
b=1

N∑
k=1

q
(b)
k Φ

(
x′

(n+1)β
(b)|0, τ (Z(b)

k )
)
. (27.33)

27.4.1 Conditional Predictive Ordinate

The ith conditional predictive ordinate (CPO) is constructed on Si = ∑ni
l=1 Yil which

follows binomial(ni ,pi) distributed with pi = F (x′
iβ).

Let S[i] the vector of variables S1, . . . , SL excluding Yi , then,

CPOi = P (Si = si |S[i]) = 1

1

b

B∑
b=1

[
P (Si = si |p(b)

i )
]−1

, (27.34)

with

p
(b)
i =

N∑
k=1

q
(b)
k Φ(x′

(n+1)β
(b)|0, τ (Z(b)

k ). (27.35)

Then, the sum of the logged CPOs (SLCPO) can be an estimator for the logarithm
of the marginal likelihood of the model.
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Table 27.1 Beetle
data—Markov chain Monte
Carlo (MCMC) conditions for
the Bayesian models

Model Burn in Thin

Normal BP 2400 11

Normal BSP fixed α 5125 21

Normal BSP random α 3000 22

Logistic BP 4420 20

Logistic BSP fixed α 15,542 81

Logistic BSP random α 13,829 82

BP Bayesian parametric, BSP Bayesian semiparametric

27.5 Beetle Data

A study of beetle mortality after 5 h of exposure to gaseous carbon disulphide is
reported in [6]. It is a classical data set which was originally fitted through a normal
model.

The Bayesian parametric (BP) and Bayesian semiparametric (BSP) approaches
were considered for fixed α = 1 and random α ∼ gamma(4, 2), which confirms that
the degree of faith about F0 is minimum or the expected number of clusters from
Eq. (27.8) is 6.75 for τ and 11.51 for fixed and random α, respectively. In this way,
the normal and logistic models were considered to fit the data.

The β prior distribution is defined as normal(0, 1/1000) and the number of com-
ponents for the approximation of Dirichlet process is N = 100 such that the quality
of approximation is verified through Eq. (27.11) in both cases.

The convergence of Markov chain Monte Carlo (MCMC) was evaluated for β

considering the statistic introduced by [7] with a thin corresponding the autocor-
relation function smaller than 0.2. From this strategy, the MCMC conditions are
presented in Table 27.1. The estimates for β and its 95 % credibility intervals for the
models are presented in Table 27.2.

It is possible to see that the Bayesian semiparametric approach requires more
computational effort than the Bayesian parametric approach, which is expected since
the former is a more general modeling. Moreover, the logistic models demand greater
burn-in and thin than normal models.

The estimates are very similar for each class of models independent of the ap-
proach, but the credibility intervals are larger for Bayesian semiparametric models.
There is no significant difference between the semiparametric models with fixed and
random α parameters.

Finally, the Bayesian semiparametric models present smaller SLCPO in both
classes of models. In particular, the logistic models take more advantages of the
semiparametric approach, as can be seen in Figs. 27.1, 27.2, and 27.3.
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Table 27.2 Beetle data—Estimates for the Bayesian logistic models

Model Estimate 95 % CI SLCPO

Normal BP −19.126

β0 −8.683 (−10.246 ; −7.252)

β1 0.146 (0.122 ; 0.171)

Normal BSP fixed α −18.482

β0 −8.699 (−10.669 ; −6.977)

β1 0.146 (0.118 ; 0.180)

Normal BSP random α −18.558

α 0.541 (0.135 ; 1.268)

β0 −8.753 (−10.764 ; −7.078)

β1 0.147 (0.119 ; 0.181)

Logistic BP −22.846

β0 −12.028 (−14.481 ; −9.933)

β1 0.202 (0.166 ; 0.240)

Logistic BSP fixed α −18.618

β0 −12.236 (−16.526 ; −8.607)

β1 0.206 (0.145 ; 0.278)

Logistic BSP random α −18.410

α 0.577 (0.146 ; 1.402)

β0 −12.335 (−16.869 ; −8.665)

β1 0.208 (0.146 ; 0.284)

CI confidence interval, SLCPO sum of the logged conditional predictive ordinate, BP Bayesian
parametric, BSP Bayesian semiparametric

Fig. 27.1 Normal and logistic Bayesian parametric models
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Fig. 27.2 Normal and logistic Bayesian semiparametric with fixed α models

Fig. 27.3 Normal and logistic Bayesian semiparametric with random α models

27.6 Concluding Remarks

This work presents a Bayesian semiparametric model for binary data that is more
interesting than the one in [4] because of the use of blocked Gibbs sampler, which
provides a more general framework than previous works based on the parametric
approach or using the Polya urn Gibbs sampler.

The semiparametric approach allows us to incorporate the uncertainty around the
F distribution of latent data and to model heavy-tailed curves. The logistic Bayesian
semiparametric model allows one to elicit prior distribution for regression coefficients
through odds ratios information without losing the flexibility of modeling heavy-
tailed or light-tailed distributions.

Further work should be to expand the modeling to encompass asymmetric
distributions.
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Chapter 28
Assessing a Spatial Boost Model for Quantitative
Trait GWAS

Ian Johnston, Yang Jin and Luis Carvalho

Abstract Bayesian variable selection provides a principled framework for incorpo-
rating prior information to regularize parameters in high-dimensional large-p-small-
n regression models such as genomewide association studies (GWAS). Although
these models produce more informative results, researchers often disregard them in
favor of simpler models because of their high computational cost. We explore our
recently proposed spatial boost model for GWAS on quantitative traits to assess the
computational efficiency of a more representative model. The spatial boost model
is a Bayesian hierarchical model that exploits spatial information on the genome to
uniquely define prior probabilities of association of genetic markers based on their
proximities to relevant genes. We propose analyzing large data sets by first applying
an expectation–maximization filter to reduce the dimensionality of the space and then
applying an efficient Gibbs sampler on the remaining markers. Finally we conduct a
thorough simulation study based on real genotypes provided by the Wellcome Trust
Case Control Consortium and compare our model to single association tests.

28.1 Introduction

Unique sequences of genetic markers called single nucleotide polymorphisms (SNPs)
in a sample of a person’s DNA define a fingerprint that reveals information about
that person’s physical traits. In genomewide association studies (GWAS) researchers
collect DNA samples and data about traits from many individuals and apply statistical
methods to identify which markers may affect traits of interest related to human
health. By knowing which markers significantly affect a particular trait, researchers
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are able to understand more about that trait and possibly discover ways to control it,
for instance, through the use of specialized drugs.

Since successful studies could lead to cures for diseases or even personalized
medicine, GWAS is a popular and relevant topic in statistical genetics; however, the
search for significant markers is challenging because the number of SNPs for each
individual, p, is usually much larger than the sample size, n. Researchers have tried
modeling these data jointly by using techniques like penalized regression or Bayesian
variable selection to regularize the model parameters (for instance, see [5, 12] and
the references therein), but it is computationally intensive to fit these models and
thus to search for the optimal penalty term(s) or prior distribution(s).

Although these models offer a better representation of the trait as a function of
all of the markers, researchers still most commonly avoid the computational burden
of fitting them jointly by instead fitting a simple regression model to each SNP
separately and computing a measure of genomewide statistical significance using
a multiple testing correction procedure. However, in addition to the problem of
ignoring joint effects of markers when applying these single SNP analyses, the
threshold for genomewide significance may differ across studies based on the number
of markers in each data set, and so it is difficult to compare different sets of results.
Ideally, we would like to have a fast way of fitting a representative model to GWAS
data that produces informative results which are communicable across studies.

In this work we strive toward that ideal and explore the computational efficiency
of our recently proposed pipeline for efficiently analyzing GWAS data using the
spatial boost (SB) model on quantitative traits in a simulation study based on real
SNP data provided by the Wellcome Trust Case Control Consortium. As a special
case of Bayesian variable selection, our model uniquely defines the prior probability
of association of each SNP as a function of its proximity to relevant genes. We define
our model in Sect. 28.2, outline our method of conducting inference in Sect. 28.3,
describe the setup for our simulation study in Sect. 28.4, discuss our results in
Sect. 28.5, and then offer some concluding remarks in Sect. 28.6.

28.2 Spatial Boost Model

We model the expected value of the ith individual’s quantitative trait, E[yi], as a
linear combination of the number of alleles present at a set of p SNPs encoded
in x&

i ∈ {0, 1, 2}p, and model the phenotypic variation that is not attributed to the
genotypes as τ 2. Given a vector of coefficients, β, we thus have:

y|β, τ 2 ∼ N(Xβ, τ 2In). (28.1)

We consider a continuous version of the spike-and-slab prior distribution [6] for β
to derive a simpler expectation–maximization (EM) algorithm that we use to reduce
the dimensionality of a data set by sequentially filtering out SNPs that have relatively
low posterior probability of being associated with the trait. Each βj conditional on
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an indicator variable, θj , a random variance term σ 2, and a tuning parameter, κ , is a
priori independently distributed with the following normal distribution:

βj |θj , σ 2 ∼ N(0, σ 2[θjκ + 1 − θj ]). (28.2)

We set κ to be a large number, e.g., κ = 103, to enforce a separation between
the variances of the spike and the slab components of this prior distribution. We
could also consider choosing κ by controlling a metric such as the Bayesian false
discovery rate. In practice, we may add additional covariates to the model; however,
we currently only add an intercept column to X with coefficient β0 ∼ N(0, σ 2κ).

For each of the p genotypes, we assign a unique prior distribution to the indicator
variable, θj , based on the proximity of the j th SNP to relevant genes as measured in
weights given by w&

j (φ) and relevances given by r:

θj ∼ Bern(logit−1[ξ0 + ξ1 · w&
j (φ)r]). (28.3)

Given the genomic position of the j th SNP, sj , and the transcription start and end sites
of the gth gene, gl and gr respectively, we compute the gth gene’s weight afforded
to the j th SNP as follows:

wj ,g =
∫ gr

gl

1√
2πφ2

exp[− 0.5 · (x − sj )2/φ2] dx. (28.4)

We normalize all gene weights so that maxj ,g{wj ,g} = 1 to enforce consistency
in the meaning of ξ1 across models as the maximum increase in the log odds of a
SNP being associated to a trait due to the gene hierarchy. We set ξ0 to be a value
that encodes our prior belief about the percentage of SNPs that are likely to be
associated with a particular trait without any gene boost. Researchers have observed
that biological phenomena like linkage disequilibrium lead to an inverse relationship
between the average correlation between two SNPs and the distance between them
[1]. We therefore recommend choosing φ by minimizing the mean squared error
between the magnitudes of the sample pairwise correlations and pi,j where

pi,j = 2 ·
∫ ∞

|si−sj |
1√

2πφ2
exp[− 0.5 · x2/φ2] dx. (28.5)

Each pi,j aims to capture an inverse relationship between the genomic distance and
the strength of the correlation between the ith and j th SNPs.

In practice we may choose r to be informative; however, for this chapter we
simply set r to be the noninformative vector 1. Finally we assign independent inverse-
gamma prior distributions for τ 2 and σ 2 with respective hyperparameters ν1, λ1 and
ν2, λ2. We recommend choosing ν1 and λ1 so that τ 2 has a noninformative prior
distribution and choosing ν2 and λ2 so that σ 2 has an informative prior distribution
that is concentrated around a small value, e.g., 10−4.
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28.3 Inference

We want to use the centroid estimator [4] to conduct inference on θ and so we must
compute P(θj = 1|y). However, to speed up the analysis of large data sets, we
first treat the θj as latent variables and derive an EM algorithm to obtain estimates
β∗
j , σ 2∗, τ 2∗ and approximate P(θj = 1|y) ≈ P(θj = 1|β∗

j , σ 2∗, τ 2∗, y). We then

filter SNPs by ranking P(θj = 1|β∗
j , σ 2∗, τ 2∗, y) in descending order and removing

the bottom quartile. We repeat this process until we either reach a desired smaller
number of SNPs or until the predictive accuracy of our model deteriorates beyond a
certain point. Finally, we compute estimates of P(θj = 1|y) for the remaining SNPs
using a Gibbs sampler.

28.3.1 Expectation–Maximization Filter

Our algorithm is similar to a recently proposed EM approach to Bayesian variable se-
lection [10]. Omitting the superscripts (t) to denote the t th iteration of the algorithm,
in the E-step we compute E[θj |βj , σ 2, τ 2, y] = logit−1(Sj ) where:

Sj = ξ0 + ξ1 · w&
j (φ)r + 0.5 · β2

j (κ − 1)/[σ 2κ] − 0.5 · log(κ). (28.6)

In the M-step we optimize the other random variables in the model using the
complete data log likelihood and the current values of σ−2

θj
= [logit−1(Sj )/κ + 1 −

logit−1(Sj )]/σ 2. Letting Σ−1
θ = Diag(σ−2

θj
), we update β as follows:

β = (Σ−1
θ + τ−2X&X)−1(τ−2X&y). (28.7)

We update τ 2 and σ 2 using the modes of their respective posterior distributions:

τ 2 = (λ1 + 0.5 ·
n∑

i=1

(yi − x&
i β)2)/(ν1 + n/2 + 1), (28.8)

σ 2 = λ2 + 0.5 · (β2
0/κ +∑p

j=1 β
2
j [logit−1(Sj )/κ + 1 − logit−1(Sj )])

ν2 + p/2 + 1
. (28.9)

We exploit a truncated singular value decomposition (SVD) to speed up the com-
putation in (28.7) by replacingXwith an approximation

∑k
l=1 u(l)d(l)v&

(l). By applying
the Kailath variant matrix inverse identity, we can substitute the inversion of ap-by-p
matrix with the inversion of an k-by-k matrix.



28 Assessing a Spatial Boost Model for Quantitative Trait GWAS 341

28.3.2 Gibbs Sampler

We derive the conditional posterior distributions of β, τ 2, and σ 2 as follows:

β|θ , σ 2, y ∼ N[(Σ−1
θ + τ−2X&X)−1(τ−2X&y), (Σ−1

θ + τ−2X&X)−1], (28.10)

τ 2|y,β ∼ IG(ν1 + n/2, λ1 + 0.5 ·
n∑

i=1

[yi − x&
i β]2), (28.11)

σ 2|β, θ ∼ IG(ν2 + p/2, (28.12)

λ2 + 0.5(β2
0/κ +

p∑
j=1

β2
j [logit−1(Sj )/κ + 1 − logit−1(Sj )])).

We then use Eq. (28.6) to compute P (θj = 1|βj , σ 2, τ 2, y) and derive the condi-
tional posterior distribution of each θj :

θj |βj , σ 2 ∼ Bern[logit−1(Sj )]. (28.13)

After initializing the values for β, τ 2, σ 2, and θ , we draw samples sequentially
from (28.10), (28.11), (28.12), and (28.13) until we have reached a desired total num-
ber of samples for each random variable. In practice, we generate several chains of
posterior samples and assess convergence using the Brooks and Gelman scale reduc-
tion factor [3] on the complete data log likelihood. We compute our final estimates of
P(θj = 1|y) for each SNP usingN posterior samples as P̂(θj = 1|y) = ∑N

t=1 θ
(t)
j /N .

28.4 Simulation Setup

We generate 100 matrices of size n = 102 and p = 103 by randomly selecting
contiguous blocks of genotypes from an overall list of 29,711 SNPs on chromosome 2
in 3503 individuals in a data set provided by the Wellcome Trust Case Consortium.
We only consider common variants in our analyses, i.e., SNPs with minor allele
frequency > 0.05 and variants that do not statistically significantly deviate from
Hardy–Weinberg equilibrium [11]. We choose φ using (28.5), and set r = 1. After
normalizing the gene weights given in (28.4) so that the maximum value in each
data set is 1, the distribution of all gene weights is heavily left-skewed with 97.2 %
of the values occurring below 0.5. In our first simulation study we start by setting
σ 2 = 10−4 and τ 2 = 102 and then sample values for θ , β, and y for all 100 data
sets under 6 different gene boost and heritability combinations. For each replicate
s, we highlight the effect of the gene boost by considering both a boostless model
with ξ0 = logit(10/ps) and ξ1 = 0 as well as a model with ξ0 = logit(1/ps) and
ξ1 = −logit(1/ps) where ps is the number of SNPs in the sth data set. We enforce
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consistency in the number of true positives across data sets by sampling values for θ
such that

∑ps
j=1 θj = 10. Heritability, h2, is the proportion of variation in a trait that

is explained by the variation in the genotypes. Assuming that Xi,j ∼ Binom(2,πj )
independently where πj is the minor allele frequency of the j th SNP, we consider
an approximation for h2 as follows:

h2 ≈
EX

[
κσ 2∑

j :θj=1 X
2
i,j

]

EX

[
κσ 2

∑
j :θj=1 X

2
i,j + σ 2

∑
j :θj=0 X

2
i,j + τ 2

] . (28.14)

We select κ for each data set in our simulations using Eq. (28.14) to ensure
a desired level of h2 ∈ {0.1, 0.5, 0.9}. In our study this corresponds to choosing
average values of κ ∈ {1.5×104, 1.4×105, 1.3×106} respectively. After simulating
values for β and y we first apply our EM filtering algorithm to reduce the number
of SNPs in each data set to a consistent 300 and then run our Gibbs sampler on the
retained set of markers to obtain final estimates of P (θj = 1|y) using N = 1500.
In the EM filtering step we try using X as well as three different truncated SVD
approximations to X where the mean squared error (MSE) tolerance is either 1, 10,
or 25 %. For comparison we run the usual association tests on our simulated data
using the PLINK [9] software.

Since κ explicitly controls the difference in variability ofβj |θj , σ 2 and thus greatly
influences our variable selection, we investigate the sensitivity of our model to mis-
specifications of κ when all other model tuning parameters are ideally set. We use
the first 300 consecutive SNPs in each data set and define σ 2 = 10−4, τ 2 = 102,
ξ0 = logit(1/300), and ξ1 = −logit(1/300) and again sample θ such that we have
ten true positives. We consider true values of κ ∈ {103, 105} and compute estimates
of P(θj = 1|y) for each SNP after running our Gibbs sampler for N = 1500 iterations
in 7 different models where we set κ ∈ {101, 102, . . . , 107}.

Moreover, since ξ1 determines the strength of the influence of neighboring genes
on θj , we also investigate the sensitivity of our model to misspecifications of it. We
use the same setup as above but instead set κ = 103, consider true values of (ξ0, ξ1)
∈ {(logit(10/300), 0), (logit(1/300), −logit(1/300))}, and fit seven different models
where we set ξ1 ∈ {0, 1, . . . , 6}. In each of our simulation studies, we set ν1 = 1.1,
λ1 = 10, ν2 = 101, and λ2 = 10−2 and assess the model performance by computing
the area under the receiver operating characteristic (ROC) curve, or area under the
curve (AUC) [2], using our knowledge of the true and false positives.

28.5 Results

In our first simulation study we observe in Fig. 28.1 that the SB model outperforms
the single SNP tests across all heritability profiles when there is a gene boost using
either X or one of three SVD approximations to X with MSE tolerances of 1, 10, and
25 %. When there is no gene boost, our model suffers due to the potential sequential
loss of true positive weak signals during the EM filtering step, and thus achieves an
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Fig. 28.1 These boxplots depict the performance of the single SNP tests (SS) and the SB model
across 6 different gene boost and heritability combinations and 100 different genotype patterns. The
percentages indicate the tolerance on MSE that we required when replacing X with an approxima-
tion. For each set of SB model results, we present a boxplot (left) for the AUC values based on the
final estimates of logit−1(Sj ) after running the EM filter and a boxplot (right) for the AUC values
based on the final estimates of P(θj = 1|y) after running the Gibbs sampler

average performance similar to the single SNP tests across all heritability profiles
when using eitherX or an approximation with an MSE tolerance of 1 %. Moreover, as
expected, the performance deteriorates when using a coarser approximation for traits
with moderate and high heritabilities since the variation in the genotypes explains
more of the variation in y. Interestingly, we can achieve roughly the same level of
performance by computingAUC using the final estimates of logit−1(Sj ) after running
the EM filter in place of the final estimates of P(θj = 1|y) after running our Gibbs
sampler. Based on the running times for each aspect of the SB model and the single
SNP tests across several different configurations of n and p given in Table 28.1, we
see that after computing the SVD of X, it is often faster to run a single pass of our
EM filter on a coarse approximation to X (MSE tolerance of 25 %) than to fit the
single SNP tests. For the largest data size we considered (n = 103, p = 104), we see
reductions in the time it takes to run the EM filter 5 times by 33.2, 80.7, and 97.3 %
when using MSE tolerances of 1, 10, and 25 % respectively. In a few cases, it takes
slightly longer to run the EM filter when using a fine approximation to X, e.g., MSE
tolerance of 1 %, possibly due to the extra memory needed to store three matrices
instead of one.
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Table 28.1 We give the mean running times and corresponding standard deviations (in parentheses)
in minutes for the SB model and the single SNP tests in R using ten replicates

Task (n,p) : (102, 103) (102, 104) (103, 103) (103, 104)

Compute SVD with irlba [7] 0.35 (0.00) 3.43 (0.08) 1.16 (0.00) 124.90 (4.51)

EM filter on X after running
the first pass after retaining
25 % of p

0.02 (0.00)
0.04 (0.00)

10.36 (0.03)
17.81 (0.03)

0.12 (0.00)
0.39 (0.01)

31.23 (0.25)
91.26 (0.49)

EM filter on SVD (1 % MSE)
after running the first pass
after retaining 25 % of p

0.03 (0.00)
0.15 (0.00)

1.99 (0.01)
3.64 (0.04)

0.13 (0.00)
1.27 (0.01)

33.88 (0.12)
60.95 (1.28)

EM filter on SVD (10 %
MSE) after running the first
pass after retaining 25 % of p

0.01 (0.00)
0.02 (0.00)

0.77 (0.00)
1.64 (0.01)

0.01 (0.00)
0.04 (0.00)

7.66 (0.00)
17.57 (0.33)

EM filter on SVD (25 %
MSE) after running the first
pass after retaining 25 % of p

0.00 (0.00)
0.01 (0.00)

0.28 (0.01)
0.83 (0.02)

0.00 (0.00)
0.01 (0.00)

1.47 (0.01)
2.48 (0.01)

Gibbs sampler on X with
N = 1500

9.00 (0.03) 6626.99
(33.98)

9.32 (0.04) 7612.43
(94.71)

Single SNP tests 0.05 (0.00) 0.53 (0.01) 0.07 (0.00) 0.73 (0.02)

SVD singular value decomposition, EM expectation–maximization, MSE mean squared error, SNP
single nucleotide polymorphism
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Fig. 28.2 These boxplots depict the performance of the SB model in our second simulation study
where we vary κ and fit our model to 100 data sets simulated from 2 different models where κ = 103

(left) and κ = 105 (middle). The blue boxplots show the results when all parameters are ideally set.
In the right plot, we explore the distribution of ROC curves that generated the AUC values for the
first and last boxplots in the middle plot

In our second simulation study, we observe better performances from our model
in Fig. 28.2 when we choose κ ≤ 104 even if the true value of κ is larger. This is
likely due to the difficulty in detecting both weak and strong signals simultaneously
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Fig. 28.3 These boxplots depict the performance of the SB model in our third simulation study
where we vary ξ1 and fit our model to 100 data sets simulated from 2 different models where ξ1 = 0
(left) and ξ1 = −logit(1/300) (middle). The blue boxplot shows the results when all parameters
are ideally set. In the right plot, we explore the distribution of ROC curves that generated the AUC
values for the first and last boxplots in the middle plot

when using a large value for κ . By selecting a relatively smaller value for κ we opt for
sensitivity rather than specificity. When viewing the quartiles of the distribution of
points on all 100 ROC curves for the two special cases when we select κ ∈ {101, 107}
in data sets where κ = 105, we do not see any benefit from being more specific in
the early part of the curve by choosing κ = 107. In our third simulation study, we
observe in Fig. 28.3 that the SB model is robust to misspecifications of ξ1 when there
is no gene boost, but is sensitive to misspecifications otherwise.

28.6 Conclusions

We find that in a variety of gene boost and heritability configurations, our pipeline
for analyzing GWAS data sets using the SB model is an efficient way of fitting a
representative model to SNPs jointly that exploits proximities to relevant genes to
uniquely define prior probabilities of association. Although it takes an impractical
amount of time to run our Gibbs sampler, we achieve the same level of performance
at a reasonable fraction of that computational cost by settling for the final estimates
of logit−1(Sj ) after running our EM filter in place of the final estimates of P(θj =
1|y) after running the Gibbs sampler. Computing the SVD of X is the next largest
computational cost when using our model; however, researchers may already perform
such a computation when they apply principal components analysis to genotype data
for instance to adjust for population stratification [8] before any subsequent analysis.
To maintain a competitive edge when analyzing whole genomes in the future, we
may further benefit from analyzing chromosomes in blocks defined based on genomic
distance or linkage disequilibrium.
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Chapter 29
The Exponential-Poisson Regression Model for
Recurrent Events: A Bayesian Approach

Márcia A. C. Macera, Francisco Louzada and Vicente G. Cancho

Abstract In this chapter, we introduce a new regression model for recurrent event
data, in which the time of each recurrence is associated to one or multiple latent causes
and no information is provided about the cause responsible for the event occurrence.
This model is characterized by a fully parametric rate function and it is based on the
exponential-Poisson distribution. The time of each recurrence is then given by the
minimum lifetime value among all latent causes. Inference aspects of the proposed
model are discussed via Bayesian inference by using Markov Chain Monte Carlo
(MCMC) method. A simulation study investigates the frequentist properties of the
posterior estimators for different sample sizes. A real-data application demonstrates
the use of the proposed model.

29.1 Introduction

Recurrent event data are often encountered in longitudinal studies involving multi-
ple subjects. This type of data can be observed in several areas such as biomedicine,
public health, engineering and reliability, demography, politics, economics, among
others. Recurrent events are predominant in a wide variety of situations, and so inno-
vative probabilistic models and appropriate statistical inference procedures should be
developed for analyzing this kind of data. In this regard, several models and methods
have been proposed for the analysis of recurrent event data, particularly methods
based on counting process [5].

In the literature, two types of time scale are often used to analyze recurrent
event data, namely time-to-events (total time) [10, 12] and time-between-events (gap
time) [1, 5]. Models that analyze time-to-events data were studied based on point
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process models, more specifically under a Poisson-type process assumption [3]. In
this context, a variety of methods have been proposed, we can refer to [13, 15, 19, 21].
On the other hand, methods that analyze gap-time data are in general based on renewal
processes [10, 16]. More general models than the renewal process also have been
developed to analyze gap times of recurrent events (see e.g., [5, 8, 10]).

In this chapter, we propose a model for recurrent event data characterized by a
fully parametric baseline rate function. The proposed model aims to analyze gap
times between consecutive recurrences of an event of interest, and it is based on the
two-parameters exponential-Poisson (EP) distribution introduced by [11], namely the
distribution of the minimum among a random number (truncated Poisson distributed)
of exponential times. Assuming this specific form, our model is stated on a competing
risk scenario, and the time of each recurrence is then given by the minimum lifetime
value among all latent causes. Hereafter, we will call it as the EP regression model
for recurrent events or simply EPre model.

This chapter is organized as follows. The proposed model is described in
Sect. 29.2. The inferential procedure based on a full Bayesian approach is presented
in Sect. 29.3. Section 29.4 includes the results of a simulation study performed to
assess the frequentist properties of the estimation procedure. A real-data analysis
on a muscle soreness data set is presented in Sect. 29.5. Section 29.6 concludes the
chapter.

29.2 Model Formulation

Suppose that an unit under study may experience consecutive recurrences of a single
type of recurrent event. Let T1 < T2 < . . . < Tj < . . . , j = 1, 2, . . . be the
ordered event times, which are measured from the start of the follow-up time. We
are interested on the gap times Wj = Tj − Tj−1, for j = 1, 2, . . . and T0 = 0.

For continuous recurrent event processes, the rate function of recurrences is
defined as [5, p. 12]

h(t) = lim
�t→0

Pr{N (t + �t) − N (t) = 1}
�t

, (29.1)

where N (t) denotes the number of occurrences in (0, t]. In addition, the cumulative
rate function is given by H (t) = ∫ t

0 h(s)ds.
Following the idea of [20], in which the recurrent events follow a nonhomogeneous

Poisson process, the general form of the rate function for our model is expressed as

h(w|tj−1) = h0(w + tj−1), (29.2)

where h(w|tj−1) is the rate function for the recurrence process up to time w + tj−1

and h0(tj ) is a deterministic function describing the general behavior of an unit over
time, where tj = w + tj−1.

Now, we consider a study with n independent units. Assume that the follow-
up time is subject to independent right censoring time τi , which is noninformative
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about the Tij and represents a stopping time as described in [2]. For each unit, we
define the variable Ki = max{k ∈ Z

+
0 | Tik ≤ τi}, where Z

+
0 = {0, 1, 2, . . . } and

P(Ki < ∞) = 1. The variable Ki denotes the number of event occurrences over
the monitoring period [0, τi]. We note that for the ith unit the quantity τi − TiKi

is
the right-censored value of the gap time Wi,Ki+1. For the ith unit, we assume that
the recurrence process Ni(w + ti,j−1) is a nonhomogeneous Poisson-type process
with a rate function defined by (29.2). The exponential-Poisson model [11] is used
to parametrize the function of time h0(w + ti,j−1).

We assume that the covariates are directly related to one of the model parame-
ters. In addition, the covariate effect is assumed to be a linear combination of fixed
variables and is defined by

X&γ = γ0 +
r∑

p=1

Xp γp. (29.3)

With a exponential-Poisson form for h0(w + ti,j−1) and the covariates related to a
particular parameter by adopting the exponential link function, we have the following
rate function for the recurrence process Ni(w + ti,j−1) of unit i

hi(w|ti,j−1, xi) = λβie−βi (w+ti,j−1)

1 − e−λe−βi (w+ti,j−1) , (29.4)

where λ is a positive parameter, βi = exp (x&
i γ ) incorporates the covariate infor-

mation with x&
i γ defined by (29.3) and γ is the parameter vector associated to the

observed covariates xi . The proposed model incorporates a special submodel as a
particular case in the survival literature. The EPre model reduces to the classical
homogeneous Poisson process (HPP) as λ approaches to zero.

The cumulative rate function over (ti,j−1, ti,j−1 + w] is defined as

H (ti,j−1, w) = H (w + ti,j−1) − H (ti,j−1) =
∫ w

0
hi(s|ti,j−1, xi)ds

=
∫ w

0
h0(s + ti,j−1; θ )ds =

∫ ti,j−1+w

ti,j−1

h0(s; θ )ds, (29.5)

where θ = (λ, γ ).
Since the rate function hi(w|ti,j−1, xi) in (29.4) is deterministic and integrable

over (ti,j−1, ti,j−1 + w], and H (ti,j−1, w) is continuous, the partial survivor function
of gap times Wij = Tij − Ti,j−1 conditional on previous recurrences is given by

S(w|ti,j−1) = exp
{−H (ti,j−1, w)

}

= 1 − exp (λe−βi (w+ti,j−1))

1 − exp (λe−βi ti,j−1 )
. (29.6)

The gap times (wij )j≥1, i = 1, . . . , n, are simulated using the iterative inverse

transform algorithm [18]. Thus, the conditional distribution function F (w|ti,j−1) =
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1 − S(w|ti,j−1) can be used for inversion. For a fixed covariate vector xi , the gap
time between (j − 1)st and j th recurrent events occurring during the subinterval
(ti,j−1, ti,j−1 + w] is calculated as

wij = log (λ) − βiti,j−1 − log [ log{uij + (1 − uij )eλe
−βi ti,j−1 }]

βi
, (29.7)

where βi = exp (x&
i γ ) and (uij )j≥1 are sequences of independent realizations of a

uniform (0, 1) random variable. The data are then simulated by subsequent iterations,
and the recurrent times (tij )j≥1 can be simulated by tij = ti,j−1 + wij , with ti0 = 0.

29.3 Statistical Inference

For statistical inference, we adopt a full Bayesian approach. The likelihood function,
the prior distributions for the model parameters and the details of the Markov Chain
Monte Carlo (MCMC) method are described as follows.

29.3.1 Likelihood Function

Suppose that we have n units, with the ith unit being observed over the time interval
[0, τi], i = 1, . . . , n. Moreover, suppose that an unit under study experience Ki

consecutive events at times 0 < ti1 < . . . < tiKi
≤ τi . Let wij = tij − ti,j−1 (j =

1, . . . ,Ki and ti0 = 0) be the observed gap times and wi,Ki+1 = τi − tiKi
, which

is possibly censored. We assume a noninformative censoring mechanism and so,
we define a censoring indicator, δij , which is equal to zero if the gap time is right-
censored and equal to one if the gap time is completely observed, i = 1, . . . , n, j =
1 . . . ,Ki +1. Then, the likelihood function for the vector parameter θ = (λ, γ ) from
n independent units is given by

L(θ ) =
⎧⎨
⎩

n∏
i=1

Ki+1∏
j=1

hi(wij |ti,j−1, xi)δij

⎫⎬
⎭ exp

⎧⎨
⎩−

n∑
i=1

Ki+1∑
j=1

∫ wij

0
hi(s|ti,j−1, xi)ds

⎫⎬
⎭ ,

(29.8)

where hi( · | · ) is the unit’s individual failure rate process, and the log-likelihood
function is given by

�(θ ) =
n∑

i=1

Ki+1∑
j=1

log
{
hi(wij |ti,j−1, xi)δij

}−
∫ wij

0
hi(s|ti,j−1, xi)ds. (29.9)
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Adapted to the rate function given by (29.4), the log-likelihood function (29.9)
can be expressed as

�(θ ) =
n∑

i=1

Ki+1∑
j=1

δij
[
log (λβi) − βi(wij + ti,j−1)

]+ λe−βi (wij+ti,j−1)

+ (1 − δij ) log (1 − e−λ exp (−βi (wij+ti,j−1))) − log (eλ exp (−βi ti,j−1) − 1).

(29.10)

29.3.2 Sampling-Based Inference

The Bayesian method is an alternative statistical approach for the proposed model
parameters estimation, θ = (λ, γ ), besides, it allows the incorporation of the previous
knowledge of the parameters through a prior distribution. The target distribution for
inference is the posterior of the parameters of interest. For this, we need to obtain
the marginal posterior densities of each parameter, which are obtained by integrating
the joint posterior density with respect to each parameter. We consider a proper
joint prior distribution for the model parameters, in order to ensure that the joint
posterior distribution is a proper distribution [9]. However, independent of the prior
distribution chosen, the joint posterior for the parameters of the proposed model is
analytically intractable. Thus, we consider the use of MCMC methods, for example,
Gibbs sampling and Metropolis–Hastings algorithm [4].

For simplicity, we assume that the parameters are independent a priori and they
have prior distribution according to the parametric space of each one. It means that

π (λ, γ ) = fΓ (λ|aλ, bλ) ×
r∏

p=0

fN (γp|0, σ 2
γp

), (29.11)

where fΓ (y|a, b) ∝ ya−1e−by , y > 0 is the density function of a gamma distribution
with shape parameter a > 0, scale parameter b > 0, mean a/b and variance a/b2;
fN ( · |0, σ 2) is the density function of a normal distribution with mean 0 and variance
σ 2. The hyperparameters of the prior distribution (29.11) are assumed to be known.

Based on the log-likelihood function (29.9) and the prior specification (29.11),
the joint posterior distribution for λ and γ is proportional to

π (λ, γ | ·) ∝ exp{�(θ )} × fΓ (λ|aλ, bλ) ×
r∏

p=0

fN (γp|0, σ 2
γp

). (29.12)

In order to generate our samples of λ and γp, we implemented a Metropolis–
Hastings algorithm. We start with θ (0) = (λ(0), γ (0)

0 , . . . , γ (0)
r ) and generate a

candidate θ∗ from a jumping distribution q(θ∗, ν), mapping θ∗ to ν such that ν ←
θ∗ + σ z, with z ∼ N (0, 1) and σ a scalar. We generate u from a uniform distribution
U (0, 1) and then make the following comparison: if u ≤ min{1,π (θ∗| ·)/π (θ (0)| ·)},
then update θ (1) by θ∗. Otherwise, stay with θ (0), i.e., θ (1) = θ (0). We repeat the
algorithm steps until a stationary sample can be obtained.
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Table 29.1 Summary of the simulated means and respective standard errors of the estimators for
λ, γ0, and γ1

λ γ0 γ1

n μ̂E Mean SD RSE Mean SD RSE Mean SD RSE

λ = 0.5

30 3.91 0.438 0.166 0.281 0.988 0.096 0.014 −1.005 0.144 0.042

50 3.94 0.438 0.165 0.261 0.994 0.078 0.009 −1.007 0.128 0.028

100 3.94 0.450 0.161 0.256 0.996 0.060 0.004 −0.994 0.104 0.016

λ = 2.0

30 4.72 1.985 0.182 0.022 0.987 0.098 0.014 −0.995 0.147 0.042

50 4.71 1.990 0.181 0.020 0.989 0.082 0.010 −1.001 0.133 0.031

100 4.67 1.977 0.174 0.019 0.997 0.063 0.006 −1.004 0.107 0.017

μ̂E is the observed mean number of events per unit in all 1, 000 replications

29.4 Simulation Study

This section presents the results of a simulation study performed in order to verify the
frequentist properties of the estimation procedure based on resamples. To examine
the frequentist properties, we focus on the relative square error (RSE), standard error
(SD) and on the coverage probability of the 95 % credible intervals (CI) for different
samples sizes, n = 30, 50 and 100. The rate function of the recurrence process is of
the form (29.4), and covariates are linked to the occurrence time of each cause in terms
of a binary covariate, i.e., βi = exp (γ0 + γ1xi), i = 1, . . . , n. The vector parameter
to be estimated is given by θ = (λ, γ0, γ1).The simulated parameter combinations are
γ0 = 1, γ1 = −1, and λ ∈ {0.5, 2}.The values of the fixed covariate xi are generated
from a Bernoulli distribution with parameter 0.5. The follow-up time τi is generated
for each unit from a uniform distribution U (0, a), where a is chosen through a trial-
and-error method, such that no unit is allowed to experience more than 20 events.
This results in a mean number of events experienced by a unit of approximately four
for λ = 0.5 and five for λ = 2. For each simulated data set, we obtain the posterior
summaries of the parameters. The gamma distribution Γ (0.4, 0.2), with mean 2 and
variance 10, is considered as the prior distribution of λ. A normal distribution with
mean 0 and variance 100 is considered for γ0 and γ1.We simulated a chain of 10, 500
iterations for each parameter, disregarding the first 500 iterations to eliminate the
effect of the initial values. The remaining ones were selected using thinning by 10
to avoid a series correlation, obtaining a sample of size 1, 000.

For each set-up, we conducted 1, 000 replicates. For these replicates, we averaged
the estimates of parameters and calculated the RSE and SD. Also, we have calculated
the coverage of the lower CI bound (L), the coverage of the upper CI bound (U ),
and the coverage of the 95 % CI (C) for λ, γ0, and γ1. The results are summarized in
Tables 29.1 and 29.2.
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Table 29.2 Frequentist coverage of 95 % CI for λ, γ0, and γ1, where L, U , and C denote the
coverage probabilities of the lower CI bound, upper CI bound, and 95 % CI, respectively

λ γ0 γ1

n L U C L U C L U C

λ = 0.5

30 0.087 0.201 0.712 0.053 0.073 0.874 0.086 0.104 0.810

50 0.083 0.086 0.831 0.062 0.056 0.882 0.036 0.055 0.909

100 0.037 0.038 0.925 0.041 0.048 0.911 0.029 0.033 0.938

λ = 2.0

30 0.123 0.131 0.746 0.055 0.079 0.866 0.097 0.085 0.818

50 0.052 0.090 0.858 0.031 0.041 0.928 0.037 0.039 0.924

100 0.027 0.029 0.944 0.030 0.032 0.938 0.020 0.024 0.956

The empirical RSE and SD decrease as the sample size increases, and the differ-
ences between the average estimates and the true values are almost always smaller
than one empirical SD.

Also, for large samples, we can observe a balance between lower and upper
credible interval bounds. The empirical coverage probabilities for the parameter
λ are below 80 % for small sample sizes. However, for the sample size 100, the
coverage probabilities are close to the nominal level, with a range from 91 to 96 %
for all parameters.

29.5 Muscle Soreness Data

In this section, the methodology is illustrated in a real-data set.1 We consider the
study of two treatment modalities to reduce the occurrence of muscle soreness among
middle-aged men beginning weight training [7]. The data set provides the gap times
between successive soreness episodes of n = 400 participants who joined a health
club for the specific purpose of weight training. Subjects were randomized into one
of the two programs designed to prevent muscle soreness. The control treatment
consisted of the standard written brochures and instructions used by the health club
to explain proper technique. The new method includes 1 h with a personal trainer as
well as the brochures. The subjects were followed and the dates on which muscle
soreness limited the prescribed workout were recorded. The dates were converted
into the number of days between soreness episodes. The variables are ID (1-400),
AGE (years), TREAT (0=new, 1=control), TIME0 (day of the previous episode),
TIME1 (day of new episode), CENSOR (1=muscle soreness episode occurred at

1 The data can be found on http://www.umass.edu/statdata/statdata/data

http://www.umass.edu/statdata/statdata/data
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Table 29.3 Posterior means and corresponding 95 % credible intervals (in parentheses)

Parameter

Model λ γ0 γ1 γ2

EPre 2.507 0.218 0.292 0.032

(1.778; 3.102) (0.109; 0.346) (0.162; 0.407) (0.025; 0.038)

HPP 0.273 0.351 0.044

(0.129; 0.413) (0.278; 0.435) (0.040; 0.048)

TIME1, 0=subject left the study or the study ended at TIME1), and EVENT (1-4
muscle soreness episode). The maximum number of episodes per subject was 4 and
a total of 1296 records have been observed, with almost 28 % of censoring. Muscle
soreness can be caused by excessive amount of exercise, lactic acid buildup in the
muscles during strenuous workouts where the oxygen supply in the body is depleted,
ultrastructural disruptions of myofilaments, amongst others, which can be regarded
as latent competing causes.

Then, the EPre model fitted the data in the sampling-based approach. In addition,
we compared the proposed EPre model with its particular case (the HPP model). The
covariates xi1 : TREAT and xi2 : AGE are directly linked to the occurrence time
of each cause as βi = exp (γ0 + γ1xi1 + γ2xi2), i = 1, . . . , n. We considered as
prior distributions: λ ∼ Γ (1, 0.01) with E(λ) = 100 and Var(λ) = 10, 000; γ0 ∼
N (0, 100), γ1 ∼ N (0, 100), and γ2 ∼ N (0, 100) with E(γ0) = E(γ1) = E(γ2) = 0
and Var(γ0) = Var(γ1) = Var(γ2) = 100. The hyperparameter values were chosen
ensuring noninformativeness. A chain of 100, 000 iterations were considered. The
first 20, 000 were ignored to avoid the influence of the first values. The remaining ones
were selected using thinning by 40 to avoid a series correlation. The convergence of
the chain was monitored using the method proposed by [6]. The MCMC computations
were implemented in R system [17]. Table 29.3 shows the posterior means and the
corresponding 95 % credible intervals (in parentheses) of the parameters.

From Table 29.3, the covariates treatment (γ1) and age (γ2) are associated with
an increased risk of occurrence of muscle soreness, because have positive values for
the mean. The parameter λ is associated to the average number of latent causes, and
for the muscle soreness data this average number is equals 2.73. The estimate of γ1

gives evidence that the new method to prevent muscle soreness is beneficial.
A comparison between the EPre model and its particular case (HPP model) is

accomplished with the Akaike information criterion (AIC) and Bayesian information
criterion (BIC) [14]. The AIC and BIC criterion values for EPre model are given
by −2279.82 and −2259.15, respectively, whereas for HPP model are given by
−2205.77 and −2190.27, respectively. The results provide positive evidence for the
EPre model, showing the importance of considering a latent competing risk structure
acting in the lifetime.
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29.6 Remarks

In this chapter, we proposed the EPre model, which is an application of the
exponential-Poisson model proposed by [11], for a recurrent event data structure,
more specifically for gap time data. Conditional distributions of gap times were ob-
tained from the hazard rate function, which is an attractive formulation for recurrent
event data with direct interpretations. We discuss parameter Bayesian inference via
MCMC, including a straightforward modeling comparison procedure. Simulation
results suggest that the proposed method is accurate. The proposed model can also
incorporate event counts and frailty, which may be further investigated by using
another appropriate prior distributions.

Acknowledgements This work was partially funded by the Brazilian institutions FAPESP,
CAPES, and CNPq.
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Chapter 30
Conditional Predictive Inference for Beta
Regression Model with Autoregressive Errors

Guillermo Ferreira, Jean Paul Navarrete, Luis M. Castro
and Mário de Castro

Abstract In this chapter, we study a partially linear model with autoregressive beta
distributed errors [6] from the Bayesian point of view. Our proposal also provides a
useful method to determine the optimal order of the autoregressive processes through
an adaptive procedure using the conditional predictive ordinate (CPO) statistic [9].
In this context, the linear predictor of the beta regression model g(μt ) incorporates
an unknown smooth function for the auxiliary time covariate t and a sequence of
autoregressive errors εt , i.e.,

g(μt ) = x&
t β + f (t) + εt ,

for t = 1, . . . , T , where xt is a k × 1 vector of nonstochastic explanatory variable
values and β is a k × 1 fixed parameter vector. Furthermore, these models have a
convenient hierarchical representation allowing to us an easily implementation of a
Markov chain Monte Carlo (MCMC) scheme. We also propose to modify the tradi-
tional conditional predictive ordinate (CPO) to obtain what we call the autoregressive
CPO, which is computed for each new observation using only the data from previous
time periods.
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30.1 Introduction

The beta distribution is a flexible and useful distribution for modeling data on a
bounded interval. In particular, rates and proportions have been successfully rep-
resented by a beta random variable on the unit interval (0, 1). Many authors have
studied regression models with the response variable following a beta distribution,
including Kieschnick and McCullough [11], Ferrari and Cribari-Neto [6], and Es-
pinheira et al. [5], among others. More recently, Figueroa et al. [8] introduced beta
regression models with mixed effects under the Bayesian approach. In this approach,
the linear predictor is considered as a linear function both in the fixed effects and
random effects. However, in practice, the assumption of linearity in the covariates
is often violated. In this context, a very good solution to the lack of linearity in the
covariates is to consider partially linear models [2, 7]. These models are usually seen
as semiparametric models, since they contain both a parametric linear term and a
nonparametric component. In fact, in these types of models it is assumed that the
linear predictor is linearly dependent on some covariates, whereas its relation to
other additional variables is characterized by nonparametric functions. Weihua et al.
[17] proposed a partially linear single-index beta regression model and a penalized
likelihood function have been employed in order to estimate the parameters. On the
other hand, for time series data, some models based on the beta distribution were
proposed by Vermaak et al. [16], Rocha and Cribari-Neto [13], da Silva et al. [4],
and recently by Jara et al. [10].

The main goal of this chapter is to develop a Bayesian framework to deal with
time series data on the unit interval by means of a partially linear beta model with
autoregressive (AR hereafter) errors in the linear predictor, i.e.,

g(μt ) = x&
t β + f (t) + εt , for t = 1, . . . , T , (30.1)

where g : (0, 1) → R is a twice differentiable strictly monotonic link function, μt

is the linear predictor [6], x&
t = (xt ,1, . . . , xt ,k) is a 1 × k vector of nonstochastic

regressors (the first element of xt is usually taken as 1 to allow an intercept), β =
(β1, . . . ,βk)& is a vector of regression coefficients, f is an unknown smooth function
and εt is an order p AR process.

The chapter is organized as follows. In Sect. 30.2 we present the partially linear
beta regression model with AR errors and some of its properties. In Sect. 30.3 the
Bayesian implementation of the model is presented. Model selection measures such
as CPO statistic, deviance information criterion (DIC), expected Akaike information
criterion (EAIC), and expected Bayesian information criterion (EBIC) are discussed
in Sect. 30.4. Finally, in Sect. 30.5 a simulation study illustrating the performance
of the proposed method is proposed.
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30.2 Partially Linear Beta Autoregressive Model

In this section, we introduce the partially linear regression model for the linear pre-
dictor of the beta regression model. This model assumes that the relation between the
expected value of the response variable and the explanatory variables is represented
by (30.1) and that the error term follows an AR model.

30.2.1 The Model

The situations in which data are collected sequentially over a bounded interval,
such as rates or proportions, the beta distribution provides a convenient way to
model them instead of using transformations, such as the additive log-ratio and
Box-Cox transformations, among others. Here, we considered a response variable
taking values on the unit interval (0, 1). Situations where the response is limited to a
known interval (c, d) are also accommodated through the well-known transformation
y�t = (yt − c)/(d − c).

The conditional distribution of the variableyt , for t = 1, · · · , T , given the previous
information Ft−1, follows a beta distribution, parameterized in terms of its mean μt

and a precision parameter φ, with density function given by

f (yt |Ft−1) = Γ (φ)

Γ (μtφ)Γ ((1 − μt )φ)
y
μtφ−1
t (1 − yt )

(1−μt )φ−1, 0 < yt < 1,

(30.2)

where 0 < μt < 1, φ > 0 andΓ (·) denotes the gamma function. Here, E(yt |Ft−1) =
μt and V ar(yt |Ft−1) = μt (1 − μt )/(1 + φ).

The specification of a beta regression model requires a transformation of the mean
μt of yt that maps the interval (0, 1) onto the real line. A convenient and popular link
function is the logit link. Consequently, it is then assumed that log{μt/(1 − μt )} =
x&
t β+f (t)+εt . Other choices also can be used, such as the probit or complementary

log-log link. It is important to stress that for the model in (30.2), all the observations
have the same dispersion parameter φ. However, it is possible to incorporate a
regression structure to model the dispersion parameter. Following [17], we assume
that the varying dispersion φt can be modeled by

φt = φ m(ω&
t , δ), (30.3)

where ω&
t = (ωt ,1, . . . ,ωt ,q) is a 1 × q vector of covariates, δ& = (δ1, . . . , δq) is a

1 × q vector of unknown regression coefficients and m(·, ·) is a known differentiable
weight function. In general, although not necessary, ωt is a subset of xt . In this
chapter, we restricted our attention to the case when m(·, ·) is a loglinear function,
i.e., m(ω&

t , δ) = exp (
∑q

j=1 δjωt ,j ). In a forthcoming study, we will deal with the
general case in detail.



360 G. Ferreira et al.

To incorporate a dependence structure in the errors, we follow [13] considering
an AR(p) process for {εt }. In order to do that, first let ξt = g(yt )−x&

t β −f (t). Then,
{ξt } is represented as

ξt =
p∑
i=1

ϕiξt−i + rt , (30.4)

where {rt } denotes a random error, satisfying E(rt |Ft−1) = 0.
Let ϕ& = (ϕ1, . . . ,ϕp) be the 1 × p AR parameter vector. Furthermore, {ξt−i} is

Ft−1-measurable and E(ξt |Ft−1) ≈ εt . Therefore, taking conditional expectations
with respect to the σ -algebra Ft−1 in (30.4) and replacing {εt } in (30.1), we obtained
the following general model for the mean μt :

g(μt ) = x&
t β + f (t) +

p∑
i=1

ϕi{g(yt−i) − x&
t−iβ − f (t − i)}, (30.5)

for t = 1, · · · , T .

30.2.2 The Likelihood Function

From (30.2), the likelihood function for the model is given by

L(θ |Ft0:T ) =
T∏

t=t0

Γ (φt )

Γ (μtφt )Γ (1 − μt )φt

y
μtφt−1
t (1 − yt )

(1−μt )φt−1, (30.6)

where θ = (φ, δ, ϕ, β)&, Ft0:T = {yt0 , · · · , yT }, and t0 = p + 1. Notice that we
consider an approximated likelihood, since we assume that the observations start in
t = p + 1, so that the first p observations on yt are discarded. Moreover, in the
following, we will assume that the first p initial values of the process are known.

30.3 A Bayesian Approach

To represent the model given by the Eq. (30.1) in the semiparametric context, we
proceed as in [14] by considering a mixed model representation of a qth-degree
spline, i.e.,

g(μt ) = w&
t Λ + z&

t b + εt ,

where wt = (x&
t , t&)& and Λ = (β&, α&)&, with α = (α0, · · · ,αq)& and t =

(1, t , . . . , tq)&, includes the fixed and polynomial component of the model, z&
t b =
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∑K
s=1 bs(t−κs)

q
+ includes the spline basis functions and {εt } represents the AR error.

From Sect. 30.2, we can represent the expected value of the response variable as

μt = g−1

(
ηt +

p∑
i=1

ϕi
[
g(yt−i) − ηt−i

])
, t = t0, . . . , T ,

where ηt = w&
t Λ + z&

t b.
Therefore, the Bayesian beta regression model is defined as follows:

yt |Λ, ϕ,φt , Ft−1, b ∼ beta(μtφt , (1 − μt )φt ), for t = t0, . . . , T , (30.7)

b|σ 2
b ∼ NK (0, σ 2

b IK ), (30.8)

where log (φt ) = log (φ) + ω&
t δ. Before we begin, it is important to note that for

t = 1, . . . , t0 − 1, the conditional distribution of yt given Λ, φt and b is
beta (μtφt , (1 − μt )φt), with μt = g−1(η1:t0−1).

30.3.1 Prior Distributions

To complete the Bayesian specification of the beta regression model with AR errors,
elicitation of prior distributions for all unknown parameters is required. Multivariate
normal prior distributions are typically considered for the regression coefficients
involved in the mean, i.e., we propose β ∼ Nk(β0,Ω0) and ϕ ∼ Np(ν,Υ ) as
prior distributions for the parametric components, and α ∼ Nq+1(0,Σ0) as prior
distribution for the nonparametric components. In addition, multivariate normal prior
distributions are considered for the regression coefficients δ involved in the precision
submodel, i.e., we propose δ ∼ Nq(δ0,Ψ0). In the Bayesian context under the model
with constant dispersion (φt = φ), a natural choice for the prior distribution of φ
and σ 2

b would be an inverse gamma distribution. If a slightly informative prior is
required, it can be assumed that φ and σ 2

b ∼ IG(ε, ε) with a small fixed positive
value for ε. However, Figueroa et al. [8] suggest a less informative prior distribution
for φ and σ 2

b , given by

φ
d=σ 2

b

d=(aB)2 and B ∼ beta(1 + ε, 1 + ε),

where
d= represents equality in distribution, with a positive value for a and a small

positive value for ε. In the case of a varying dispersion parameter φt as in (30.3)
we have specified a convenient prior for φ given by the log-normal distribution, say
φ ∼ LN (μφ , σ 2

φ ).
After the prior distributions for the unknown parameters have been specified, the

next step is to combine the likelihood function (30.6) with the prior information in
order to get the posterior distribution. This procedure is implemented by means of a
MCMC scheme using WinBUGS through the R2WinBUGS package in R.
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30.4 Model Comparison Tools and Diagnostics

One of the most used methods to compare several competing models fitted to a given
data set is derived from the CPO statistic [9]. Let y = (y1, y2, · · · , yT ) be the full data
and y(i) = (y1, y2, . . . , yi−1, yi+1, . . . , yT ) denote the data with the ith observation
deleted. For the ith observation, the CPO is defined as

CPOi = f (yi |y(i)) =
∫
Θ

f (yi |θ , y(i))π (θ |y(i))dθ ,

The CPO is a cross-validation predictive approach, i.e., it is based on predictive
distributions conditioned on the observed data with a single data point deleted. In
this chapter, we propose to modify the CPO in order to obtain what we call the beta
autoregressive CPO, that is computed for each new observation using only the data
from previous time periods. Therefore, the CPO at each time period is given by

CPOt = f (yt |Ft−1) =
∫
Θ

f (yt |θ , Ft−1)π (θ |Ft−1)dθ .

We use the conditional density (yt |θ , Ft−1) from (30.7), for t = t0, · · · , T , whereas
for t = 1, · · · , t0 −1, we use the conditional density in (30.2) withμt = g−1(η1:t0−1).

Since for the proposed model a closed form of the CPOt is not available, a Monte
Carlo estimate of the CPOt is obtained by using the output of the Gibbs sampler.
Let θ1, . . . , θQ be a sample of size Q drawn from π (θ |y) after the burn-in period. A
Monte Carlo approximation of CPOt is given by the following expression:

ĈPOt =
⎛
⎝ 1

Q

Q∑
q=1

f (yt−1|θq)

f (yT |θq)

⎞
⎠

−1⎛
⎝ 1

Q

Q∑
q=1

f (yt |θq)

f (yT |θq)

⎞
⎠ ,

where y� = (y1, y2, . . . , y�) is the data vector at time point �. In addition, a
summary statistic of the CPOt ’s is the log-pseudo marginal likelihood (LPML),

defined by LPML=
T∑
t=1

log (ĈPOt ). Models with greater LMPL values indicate a

better fit. Other Bayesian measure of goodness-of-fit and complexity for model
selection is the DIC proposed by [15]. This criterion is based on the posterior

mean of the deviance and it can be approximated by D =
Q∑
q=1

D(θq)/Q, where

D(θ ) = −2
T∑

t=t0

log [f (yt |Ft−1, θ )]. The DIC criterion can be estimated using the

MCMC output by D̂IC = D+%(θ ) = 2D−D̂, where %(θ ) is the effective number of
parameters, which is defined as E{D(θ )}−D(E{θ}), where D(E{θ}) is the deviance
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evaluated at the posterior mean. Finally, D(E{θ}) can be estimated as

D̂ = D

⎛
⎝ 1

Q

Q∑
q=1

βq ,
1

Q

Q∑
q=1

δq ,
1

Q

Q∑
q=1

φq ,
1

Q

Q∑
q=1

αq ,
1

Q

Q∑
q=1

ϕq

⎞
⎠ .

Given the comparison of two alternative models, the model that better fits a data set
is the model with the smallest value of the DIC. Note that it is important to integrate
out all latent variables in the deviance calculation as this yields a more appropriate
penalty term %(θ ) [12]. It is important to stress that for all these criteria, the evaluation
of the likelihood functionL(θ |y) is a key aspect. However, for our beta autoregressive
partial linear model, this function can be easily computed from the result given in
Sect 30.2.2.

Finally, the EAIC and the EBIC can be estimated by means of ÊAIC = D+2%(θ )
and ÊBIC = D + %(θ ) log (T ) [1].

30.5 Simulation Studies

30.5.1 Frequentist Properties

In this section, we study through some simulation experiments, the behavior of
the Bayesian estimates, based on the frequentist bias squared error (MSE) and the
frequentist mean (Mean). We performed the simulation with partially linear beta
autoregressive model for different scenarios. For each scenario we consider different
values for the parameters and different autoregressive orders.

We assume the following predictor linear structure

g(μt ) = x&
t β + f (t) +

p∑
i=1

ϕi[g(yt−i) − x&
t−iβ − f (t − i)],

where f (t) = −0.15t+0.5 sin (t+ t2 + t3)−0.15 log (t+ t2)−0.15 cos (t+ t2 + t3),
β = (β1,β2), and t = 1, 2, ..., 200.

The covariates xt1 and xt2 are simulate from a random sample Uniforme as
xt1 ∼ U (0, 0.5) and xt2 ∼ U (0.1, 0.3). The parameter vector ϕ used in this study
are given in Table 30.1. Once 100 Monte Carlo generated data sets, and once the
data are simulated we fit a beta regression model with autoregressive errors. The
following independent priors are considered to perform the Gibbs sampler. (a) para-
metric component, βk ∼ N (0, 1.0−6), for k = 1, 2, φ ∼ U2, with U ∼ U (1, 20)
and ϕ ∼ Np(ν,Υ ), where ν = (p + 1)−1� (� being the unit vector of dimension
p + 1), Υ = 100Ip, with Ir denotes the r × r identity matrix for p = 1, 2, 3.; (b)
non-parametric component, b ∼ N15(0, σ 2

b I15), σb ∼ IGamma(0.001, 0.001) and
αq+1 ∼ N (0, 106), for q = 0, 1, 2, 3. For each generated data set we simulate one
chain of size 10,000 for each parameter, disregarding the first 2000 iterations to elim-
inate the effect of the initial values and to avoid correlation problems, we consider a
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Table 30.1 The parameter settings employed in the MCMC experiments, AR(3) = {β1 = 0.5,β2 =
0.5,φ = 50,ϕ0 = 0.1,ϕ1 = 0.25,ϕ2 = 0.35,ϕ3 = 0.15}, AR(2) = {β1 = 0.5,β2 = 1.5,φ =
20,ϕ0 = 0.2,ϕ1 = 0.3,ϕ2 = 0.25}, AR(1) = {β1 = 1,β2 = 0.45,φ = 10,ϕ0 = 0.25,ϕ1 = 0.15}

Parameter estimates

Model β̂1 β̂2 φ̂ ϕ̂0 ϕ̂1 ϕ̂2 ϕ̂3

AR(3) MC mean 0.502 0.332 46.233 0.263 0.220 0.303 0.179

MC sd 0.155 0.339 4.650 0.085 0.056 0.055 0.055

RelBias 0.004 −0.335 −0.075 1.632 −0.118 −0.135 0.197

MSE 4.6e-06 2.8e-02 1.4e+01 2.7e-02 8.8e-04 2.2e-03 8.7e-04

AR(2) MC mean 0.498 1.381 19.738 0.318 0.291 0.338

MC sd 0.212 0.580 1.956 0.092 0.052 0.054

RelBias −0.003 −0.080 −0.013 0.589 −0.031 0.350

MSE 2.9e-06 1.4e-02 6.8e-02 1.4e-02 8.9e-05 7.7e-03

AR(1) MC mean 0.934 0.512 9.759 0.337 0.185

MC sd 0.348 0.791 1.026 0.127 0.088

RelBias −0.066 0.138 −0.024 0.348 0.233

MSE 4.3e-03 3.8e-03 5.8e-03 1.1e-03 1.0e-03

spacing of size 40, obtaining a effective sample of size 200 upon which the posterior
inference is based on. We compute the MSE and the “Relative Bias” (RelBias) as fol-
lows: RelBias(θ ) = 1

200

∑200
i=1

(
θ̂ i/θ − 1

)
and MSE(θ ) = 1

200

∑200
i=1

(
θ̂ i − θ

)2
,

where θ = (β1,β2,φ, ϕ) and θ̂ i is the posterior estimates of θ for the ith sample.
From Table 30.1, it is observed that, the model indicates that it is efficient in the
Bayesian estimation of the parameters. Observe that, φ plays the role of a precision
parameter, then the larger value of φ, the smaller variance of the response variable y
for a fixed μ. Therefore, in a forthcoming work we should study the behavior of the
estimates θ̂ for different values either of φ as sample size T in order to check which
are the values that minimize RealBias.

30.5.2 Model Selection

In this section, we study the efficiency of the CPO in the model selection for autore-
gressive processes for up to order p = 5. We assume the following autoregressive
partial linear model of order p = 2 for the linear predictor μt

g(μt ) = x&
t β + f (t) + ϕ1[g(yt−1) − x&

t−1β − f (t − 1)]

+ ϕ2[g(yt−2) − x&
t−2β − f (t − 2)],

where f (t) = sin (t + t2 + t3) + 0.15 log (t + t2 + t3) − t + 0.2t2 + t3, β =
(0.5, 1.5) and t = 1, 2, ..., 200. The covariates xt1 and xt2 are simulate from a random
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Table 30.2 Comparison of autoregressive models. MC indicate the arithmetic average of the
respective criterion

Model MC LPML MC DIC MC EAIC MC EBIC

AR(1) 161.3318 −1002.510 −321.8012 −305.3096

AR(2) 168.2525 −1043.162 −333.1018 −313.3119

AR(3) 167.1811 −1041.854 −330.4004 −307.3122

AR(4) 166.4065 −1039.243 −327.3144 −300.9278

AR(5) 166.2056 −1039.446 −325.1673 −295.4824

sample Uniforme as xt1 ∼ U (0, 0.5) and xt2 ∼ U (0.1, 0.3).Once 100 Monte Carlo
generated data sets, and once the data are simulated we fit a beta regression model
with autoregressive errors.

The MCMC computations were done in a similar way to those given in the last
section. In order to monitor the convergence of the Markov chains we have used
some of the methods recommended by Cowles and Carlin [3].

Table 30.2 presents the arithmetic mean of the measurement used for model com-
parison, i.e., LPML, DIC, EAIC, and EBIC for each autoregressive model with
p = 1, 2, 3, 4, 5. We notice that all these measures favored the AR(2) model for our
simulated data showing the ability of these Bayesian selection methods to detect an
obvious departure from regression beta with autoregressive errors.
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Appendix

The R-project code for the calculating CPO is presented below.

out<- bugs(); V<-out$sims.array
Q_mu<-matrix(rep(0,n*length(V[,,1])),ncol=n,nrow=length(V[,,1]))
for(i in 1:n){
Q_mu[,(i)]<-V[,,i]
}
Q_phi<-V[,,n+p]
Y<-matrix(rep(0,n*length(V[,,1])),ncol=n,nrow=length(V[,,1]))
for(i in 1:n){
for(j in 1:length([,,1])){

Y[j,i]<-(dbeta(simulate[i],Q_mu[j,i]*Q_phi[j],
(1-Q_mu[j,i])*Q_phi[j] )) }}
FN=matrix(0, ncol=n, nrow=length(V[,,1]))
FN[,n]<-1/Y[,n]
for(k in 2:n){
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for(i in 1:M){
FN[i,k-1]<-1/prod(Y[i,k:n])}
}
GN=matrix(0, ncol=n, nrow=length(V[,,1]))
for(k in 1:n){

for(i in 1:M){
GN[i,k]<-1/(prod(Y[i,k:n]))}
}
CPO<-apply(FN,2,mean)/apply(GN,2,mean); LPML<-sum(log(CPO))
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