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BAYES ESTIMATE OF THE EQUILIBRIUM PARAMETER
IN A MARKOV CHAIN: A MEDICAL APPLICATION

Carlos Alberto de Braganga PEREIRA*
André ROGATKO**

® ABSTRACT: The results of a temporal study of 30 diabetic pregnant women are analyzed using a
Markov Chain model and a Bayesian estimator for the parmeter of interest, the invariant probability
measure, is obtained. [t is shown that cartdiotocography results of a fetus are positively dependent on
the mother's glycemic levels. Then, these levels can be used as a calibration tool for the expensive
cardiotocography exam.
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1 Introduction

Fetal oxygenation is evaluated through cardiotocography — a very expensive
method. In diabetic pregnant women the results of these tests, as well as glycemic
levels, are very unstable and may suffer daily fluctuations. The aim of this study is to
prove that in pregnant women with diabetes the glycemic level in the mother may
affect the cardiotocography result. In more piecise terms, what one wishes to prove
1s that the chance of a fetus having insufficient OXygenation increases when the mother
has an abnormal glycemic level, and decreases when such level returns to normal,

The present study is based on data from 30 patients, diabetic pregnant women,
submitted to weekly simultaneous tests of fetal oxygenation (cardiotocography} and
glycemic level. The data are presented in Section 2 where some details are discussed.

According to the aims above, the paper developes a methodology to estimate,
when selecting a diabetic pregnant women, the probability of finding a concordance
between the results of the twa tests: mother's glycemic level and fetal oxygenation.
Concordance occurs when both levels.are normal or when both are abnomal. When
contrary, the levels are said to be discordant.
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Section 2 describes the data, Section 3 describes the model, Section 4 presents
" the Bayesian numerical analysis, and final remarks are presented in Section 5. The
Appendix presents some interesting analytical expressions.

2 Data description

Tests were performed in 30 diabetic pregnant patients from the Gynecology and
Obstetrics Department, Faculty of Medicine, University of Sdo Paulo, under the
supervision of Doctor Marcelo Zugaib. The tests were done in the consecutive weeks
in which the patients were under treatment. The patient was tested weekly till the
end of or when she abandoned treatment.

Since the sample is not sufficiently large, the time of the beginning of tests was

not controlled. Thus, the periods of pregnancy, as well as times of the year or patients’
age, were not hecessarily coincident. The only pre-fixed factoris a diabetic pregnancy.

Table 1 shows the data by patient, by week. This table includes also the
likelihood factor of each patient. The “status” of the tests are represented by the letters
N, A S and I, where N =normal glycemia, A =abnormal glycemia, 5 = sufficient fetal
oxygenation, and I= Insufficient fetal oxygenation. Consequently, the pregnant
woman after being submitted to the pair of tests is classified in one of the following
ways: NS, NI, AS, and Al The tests are considered concordant, C, if either NS or Al
occurs, and discordant, if NI or AS occurs.

3 Model description

The two possible states of interest for a specific patient in a specific week
ate C= {NS, AI}, the concordant state, and C' = {NI AS}, the discordant state.

Let 7t = P(C) be the probability that the pair of tests concord when applied to a
wornan randemly chosen from a group of pregnant diabetic wemen. In such patient
the weekly transition probabilities are represented by:

p = P(C — C) conditional probability of concordance in a week given that there
was concordance in the previous week;

1~ p = P(C — C") conditional probability of discordance in a week given that
there was concordance in the previous week;

g = P(C" — C") conditional probability of discordance in a week given that there
was disconcordance in the previous week;

1 q=P(C" — C) conditional probability of concordance in a week given that
there was discordance in the previous week.
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Table 1 — Classification of tests per patient/week

EhHens Weeks Numnbet Likelihood Factor
t {5t ond  md g gh g g of Weeks
01 NS NS Al 3 np?
02 NS NI NS Al 4 1 =pX1—qp
03 NS NS NS AS NS 5 (1 — pX1~q)
04 NS NS NS NS NS NS 6 p9oa
05 NS NS NS NS 4 rp’
05 NS NS 2 n
07 NS NI NS NS 4 a1 —p)1-q@p
08 NS NS NS NS NS NS 6 np°
09 NS NS NS ' 3 np?
10 NS NS NS NS 4 2p’
11 NIl NS NS NS NS 5 (1 = x)(1 - g)p?
12 Al Al 2 np
13 NS NS NS NS 4 rp?
14 NS NS NS NS NS NS 6 np®
15 Al Al AL Al 4 a3
16 AS NS NS NS NS 5 (1-m{1—qp?
17 NS NS NS Al Al Al 6 np®
18 Al Al Al NS NS 5 ap?
19 Al Al NS NS NS NS 6 xp°
20 NS NS NS 3 np?
21 NI NI NI 3 (1-mg*
22 NI NI NI NI NI 5 (1 — mq
23 AS AS AS AS 4 (1 -mq
24 AS AS 2 (1-mq
25 NS NS AS AS 4 np(l - p)q
26 Nl NI NI 3 (1 -m)g?
27 NS NI NI NI Al NS 6 ®(1 - p)g(Y — @p
28 Al NI NS NS Al Al NS 7 w1 - pX1 - qp’
29 NI NI NS ' 3 (1=ma(l-q)
0 NI NS NS NS NS 5 (1m0 - qp’
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The model to be considered from now on is a Markov Chain with two states
(Feller, 1968). Each observation is a piece of the process defined by this chain. A
defining condition of a Markov model is that the results of two weeks are conditionally
independent given the result of an intermediate week. Another important restriction
Is to consider p and q as independent of the steps (time) of the pIocess.

The probability 7 defined above is the well known invariant measure of the
process.

Summing up and assuming p and g are neither 0 nor 1, the model adopted here
is a Markov Chain with transition matrix

P:(lﬁq lng B

with the invariant probability measure a solution of the following equation:
(. (1 —m) P={x (1 -mn) ' (5.2
Itis,

. l-g
T (1-@)+(1-p)

satisfying as well

1—g=(1- (3.4)

Each patient studied corresponds to an independent realization of a part of the
chain. Since 30 distinct patients are considered, 30 independent observations of parts
of the chain are obtained.

The likelihcod corresponding to each individual observation is described in the
last column of Table 1. Hence the observations being mdependent the overall
likelihood is given by the product of these functions, that is

L=m(1 - %1 - p)°(1 - 9°¢", ., (35)

‘where 0 < <1, and 0 < g < 1 and 7 satisfie equation (3.3).

From (3.4), we finally have
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Lz, p) = %1 _p)lﬁ{l _ ﬂl;pl} ' (3.6)

1—-=

where0<p<1 and 0<(1-p) (l’jm<lsince0<(1—q)<1.Hence,theparamer

tric space for (w, p) is defined by
Q:{(n,p):0<n<0.5 and O<p<1}u{(7t,p); O.5<n<1and[2—%)<p<1},

that is represented by the left hand side in Figure 1. Figure 2 presents the smallest
region of the likelihood function that contains approximately an area, under the
likelihoed function, of 95% of the total area. Taking the partial derivatives of the
logarithm of the likelihood function (3.6) and using the Broyden System Solver we
obtain the maximum likelihood estimator of the vaector (m, p) as

(%, ) = (0.755857, 0.898571).

The computations of this section, including the set of high likelihood presented
in Figure 2, were obtained by a discretization of function (3.6) where we considered
the variation from 0 to 1 with steps of 0.01 for both parameters x and p.
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FIGURE 1 -~ Parametric space of {x.p) and the maximum likelibood estimate.
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FIGURE 2 - 95% higher likelihood region.

4 Bayesian estimation

Up to this point, a classical procedure of analysis was used. That is, a model is
considered and based on it, the likelihood function is obtained and the maximum
likelihooc stimate is computed. The problermn arises when one needs to describe the
precision ¢. Lie estimate. In a preblem like the one discused here, it is not easy to describe
the sample space since the stopping rule cannct be simply defined. Consequently, the
sample distribution and the moments of the estimaters cannot be simply defined. Hence,
standard frequentist analyses do not apply. Cases like the one described are non-problems
for a Bayesian statisticlan however. Bayesian analysis nedds only the likelithood
function to calibrate the prior probability function that represents the uncerntainty of
the scientist about the parameter involved [{p, @) for instance).

[t should be noted that the “credible” set presented in Figure 2 can be interpreted
as Bayesian if we consider that a priori (x, p) has a uniform distribution over the unit
square. Also the maximum likelihood estimate would be a Bayesian point estimate
since it is the mode of the posterior obtained from this uniform prior calibrated by the
likelihood. This prior however ig not realistic since the support of a distribution for
(r, p) must be contained in the : e presented by Figure 1, that is different from a
unit rectangle. Consequently, © <zt p cannot be independent. Now we describe a
simple Bayesian ccherent estima..; ., the parameter of interest.

Let the uncertainty about the 1: nsition probabilities, p and g, be represented by
two independent Beta distributions with pararmeters (@ + 1, b+ 1) and (c+ 1, d+ 1),
respectively. This independence restriction is adequate as the parameters p and g are
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related to two different subpopulations. It is not difficult to see that the posterior
density for (p, q) is proportional to

a+68(1 _ p)qume(l _ q)d+30
[(1-p)+ (1=

f(p. q) =~ 0<p g<1. - @

Looking at the parameter of interest, 1, we consider the following parametrization:

___1-g
a9+ -p

ancd 0=(1-q)+(1-p) (4.2)

whose Jacoblan is equal to 8. We obtain the posterior density of (m, 8) by a
transformation of (4.1). The result is a joint density that is proportional to the following
function: :

g(n‘ G) - nd‘\‘-30(1 N J_c)b+159b+d+16(1 _ en)c—i-lﬁ[l _ 9(1 . Tt)]a+68, (43)
whose supportis Q = {(m, 8); 0 < (1 —m)1if 0 << 05and 0 < w-1if 0.5 < < 1).

This set is displayed in Figure 3.

To illustrate the procedure that will follow after obtaining the joint density (4.3),
we consider the uniform (over the unit square) prior distribution for (p, g), that is,
a=h=g=g=0
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FIGURE 3 ~ Mode and support of the posterior density with the mode of this distribution
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To estimate the parameter of interest we may consider the mode of the density
{4.3) using the same method we have used to obtain the maximurn likelihood estimates
given in Section 3. The posterior mode for the uniform prior is

(rr', 07) = (0.7683, 0.4383). ' (4.4)

By a simple numerical (Romberg's) method, we obtain the posterior marginal
density of &, the parameter of principal interest. This density is presented in Figure 4.
The mode of this density is also 0.76, that agrees with the joint mode (4.4). An exact
method to obtain this marginal is described in Appendix.
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FIGURE 4 - Postenor marginal distribution of mt.

Another common estimate is the posterior mean that, in our case is E(r | data)
= (.75. The postericr standard deviation is 0.05916. The following credible intervals are
also of same interest:

95.4% credible interval {0.64: 0.8%:
99% credible int=rval (0.60; 0.87)

Another impor: - ¢ fact that we can cbtain from the postericr density is that the
cupport of this dens - 13 (almost curely) in the upper half of the unit interval. That is,
the two kinds of m.dical evaluation, glycemia and cardiotocography, agree with
probability greater than 0.60.
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5 Final remarks

The Bayes estimate of 7 is 0.75 and the 95.4% credible interval is (0.64; 0.85).
This is a strong evidence that the value of p is greater than 0.5. Translating into the
language of the medical problem, it means that the probability of concordance in the
pair of tests is high. Thus, if a patient shows abnormal glycemia, at a given time, the
fetal oxygenation at that moment has a high probability of being insufficient. On the
other hand, a normal glycemia indicates, with high probability, normal results in
cardiotocography, which reflects the fetal oxygenation.

A better schedule for collecting the samples, a larger number and a stricter
control of patients would contribute to a better evaluation of the probabilities. This
paper, however, emphasizes the fact that the clinician should be concerned with the
well-being of the fetus whenever the mother shows an abnormal glycemia.
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» RESUMO: Os resultados de um estudo temporério com tinta mulheres gravidas e diabdéticas sdo
analisados usando um modelo de Cadeia de Markov e uma estimativa bavyesiana para os parémetios
de Interesse, a medida mvanante de probabilidade ¢ obtida. Mosiramos que os resultados da
cardictocografia do feto é positivamente dependente do nivel de glicernia da mae. Assim, esses niveis
podem ser usados como um instrumento de calibragio para a cardiotocogralia, que € uIn exame caro.

-# PALAVRAS-CHAVE: Probabilidade de transi¢do; medida invariante de probabilidade; regido de mdxima
verossimilhanga.
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Appendix
* Analytical expression for the posterior marginal of ©

To obtain the marginal distribution of n we first obtain the.jcint posterior
distribution of (x, p). We note first that the Jacobian for the transformation of (p, q)
into (x, p) Is

}=p
(1-m

Using now function (4.1} we obtain the posterior density of (®, p) which is
proportional to the following function whose demain is presented in Figure 1:

a(m, p) = (1 — 1) Bx¥%(1 — p)y'e[(1 — 270) + pr)'®. (A1)

Using properties of the Beta tunction and expression (2.3.3) of Zacks (1981), we
obtain the desired function, f(m|data). This posterior marginal density of @ Is
proportional to the following function:

ol - 2m)"° 2n) B(63 +k: 1) &
(i) = ——=2— ST 2_: & Bas 179 (=17 0<m<0.5,

f(n) =<
30 16 16 —1 B+
o (1—2n) B{(E9 + k; 1) (n -DBE-7 )
- _ 1.
() 1—1:)18 z k Blk; 17) 2 JB(86+}(—1 3] Lhh
where B(a; b) is the Beta function evaluated at point {(a, b).
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