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BAYESIAN DOSIMETRY: RADIATION DOSE VERSUS
FREQUENCIES OF CELLS WITH ABERRATIONS

MARIA REGINA MADRUGA
Instituto de Matemdtica e Estatistica, USP, Sdo Paulo, Brazil

CARLOS ALBERTO DE B. PEREIRA
Universidade de Sdo Paulo, Departamento de Estatistica, IME, Caixa Postal 20,570, CEP 01452-990 - Séo Paulo, Brazil

AND

M. NAZARETH RABELLO-GAY

Laboratorio de Genética, Instituto Butantan, Sdo Paulo, Brazil

SUMMARY

This paper presents a Bayesian analysis of a dose-response experiment in cytogenetic dosimetry. We suggest
an inverse linear model for the log-odds transformation of the frequency of aberration. The regression con-
sidered is between dose and Bayes estimates. The adjustment obtained seems to produce a very small error
thus suggesting that the simple linear and quadratic linear functions usually considered in the literature are
not the ideal models.

KEY WORDS A priori and A posteriori distributions Bayes estimates Binucleated cells
Calibration  Cytogenetic aberrations  Dirichlet distribution
Dose-response model Likelihood Logistic-normal model
Log-ratio transformation ~ Micronuclei frequency

I. INTRODUCTION

The fundamental statistical problem in toxicology is to obtain a functional relationship between
dose and response, where dose refers to the concentration of a damaging agent to which an
individual is exposed and response is the observed phenomenon in the individual following the
exposure. A purpose of determining such a relationship is to evaluate the dose of exposure once
the individual’s response has been measured.

In this paper radiation is the agent under consideration and the response is the frequency of
cells with cytogenetic aberrations. Experimental data from Balasem and Ali! for binucleated cells
will be used.

The functional relationship usually prescribed in the literature is a linear model, either simple?
or quadratic.’ Some reservations, nevertheless, are naturally raised. Some authors'* recommend
these simplistic models only for low doses where a Poisson distribution fits the data, As the
response is a frequency, its domain is limited. Thus, when applying linear models to high doses,
the values of the response fall off the domain of frequency. Such models, however, may be useful
for dose values within the range used in the experiment.

The model introduced here has no such domain restriction. In lieu of a Poisson approximation
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for the raw frequency, we use a normal approximation for a transformation of it — namely the
log-odds — with unlimited domain. Letting 7 be a proportion of cells with aberrations, the log-
odds transformation (log-ratio in Aitchison and Shen) is defined by 0 = log(w/(1 — =)).

The statistical viewpoint of this paper is Bayesian as, for example, in Bender et al.® and Groér
and Pereira.” In these papers Poisson distributions and linear models were considered, since
the interest was on low dose values (and low responses). Here, we deal with both low and high
values of dose response, where the solutions presented in the afore-mentioned papers are not
suitable.

2. CYTOGENETIC BACKGROUND

The classical cytogenetic end-points used for radiation dosimetry are dicentric and centric rings
observed in metaphases obtained from short-term lymphocyte cultures.

The frequency of micronuclei (MN) obtained with the cytokinesis-block assay has been
proposed for measuring in vitro and in vivo exposure.” A linear quadratic model has been used
to fit such data.>® Micronuclei arise from acentric fragments or whole chromosomes not enclosed
in daughter nuclei during cell division. The assay allows observation of MN in binucleated cells,
which were prevented from separating as a result of the action of cytochalasin-B, a drug that
blocks the division of the cytoplasm but not of the nucleus. The presence and frequencies of MN
can be ascertained in mono-, bi- and multinucleated cells.

Since one micronucleus may contain more than one fragment or chromosome, and originate
both from a simple break or from an exchange type of aberrations, we propose instead the use of
frequency of cells with MN - zero, one and two or more — as the response in our model.

3. BAYESIAN STATISTICS BACKGROUND

A unique feature of the Bayesian viewpoint is that the information about an unknown parameter
of interest (here ) is represented by a probability distribution. For instance, when the value of 7
is known, this total information is represented by probability 1 at the true (known) value of the
parameter and zero at all remaining points of the domain. On the other hand, total lack of
information - ignorance about the value of 7 — is represented by a uniform distribution over the
range of the parameter, the parameter space. The application of Bayesian statistics consists in
using the information (about ) contained in the experimental data (represented by the likelihood
function) to calibrate the a priori distribution, in order to obtain the a posteriori distribution, the
main entity of Bayesian analysis.

Bayesian methods for biological experiments have been widely used, e.g. Groér and Pereira
and Groér e al’ For more detailed information on the subject see Bender er al.® The data
analysed in this paper, from Balasem and Ali,' consist of frequencies of binucleated cells
partitioned in three categories, namely cells with zero MN, one MN and two or more MN,
Ten experiments of this kind, corresponding to ten different dose levels of radiation - 5, 10, 25,
50, 100, 200, 300, 400, 500, 600 cGy (centigray) — were considered.

The observed data, for a particular dose /(i =0,1,...,9), consist of a vector of three
components y; = ( ¥n, ¥a1, ¥iz), where p;o is the number of cells with zero MN, y;; is the number
of cells with one MN, and y,, is the number of cells with two or more MN. Hence, the statistical
model for any particular dose i is assumed to be a trinomial distribution with parameters
(ni; mo, my, m2) Where m; = yio +yi + yo, To+7ma + 72 =1and 0 < m; <1, j=0,1,2. That

7
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is, the sampling probability function (the likelihood) is given by

= ni: o g a
yolyulya! 0 R
where m; = (mg, Ty, ) is the unknown parameter of interest for dose i. mp,m; and 7 are,
respectively, the populational frequencies of cells with zero MN, one MN and two or more MN.
The statistical model for the whole data set, since we have independent experiments among
doses, is the product of the corresponding sampling probability functions of the ten doses. That
is,

Pilyi | ™)

9
Syl m) = H pilyi | ™),
i=0
where y = (yo,---,Y¥g), and = (m, ..., 7).

The class of prior distributions usually considered for multinomial models is the Dirichlet
family (for its interesting properties see Basu and Pereira'®). This class, besides being rich in
shapes, is also a conjugate class of distributions for multinomial likelihoods. This allows
representation of most prior opinions by members of the class. Conjugate means that the a
posteriori distribution is also a member of the class. For more on these topics, se¢ Irony."'

Suppose now that the a priori distribution for m; is chosen in this class. That is,
n; ~ Ds(ay,a;,as), which means that m, is distributed as a Dirichiet of order 3 with parameter
a; = (an,a;1,a,) where ag > 0, a; > 0 and a > 0. After having observed y;, the a posteriori
distribution of =, is D3(A;), where A; = a; +y, = (4j0, 4, A). Also for simplicity we will
denote a; =ag +ay +ap and A4; = Ay + Ay + Ap. Hence, if m; ~ Ds(a;) a priori, then
m,|y; ~ D3(A)) a posteriori. Representing the gamma function by I'(.), we write the a posteriori
Dirichlet density as

. I'(4;) Ap An An
f(’rl l YI) - F(Am)F(A“)F(Aiz) To ™ T2 -
To obtain a point estimation of r;, we consider here the quadratic loss function as usual. Hence,
the Bayes estimator of r;, the posterior mean, is given by

. i e s ]
7 = (i, i, fig) = = (Ao, Air, Ai)
A;

and the posterior variance-covariance matrix is

1 [ Fo(l—fe)  —of —yfe
21\ e fa(l =)  —Fafp |-
E — T ~faftn ol —7p)

Since the prior parameters a; can be chosen in order to describe a natural stochastic ordering of
the ;, we consider the r; as mutually independent a priori. Consequently, owing to the statistical
independence of the y;, the =, are also independent a posteriori. The a posteriori joint density of
the r; is therefore given by

9
H J(mi|yi)
i=0
Table I presents data of Balasem and Ali' and the parameters of the a priori (a posteriori)
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Table I. Data and parameters of the a priori (a posteriori) distribution

Data Prior (posterior) parameters

Dose
(cGy) ; ‘ : n ap(Ay) a; (4y) an(4n) a;.(4;)

5 2 500 12 (493) 2 (19) 1(3) 15 (515)
10 4 500 11 (488) 2 21) 1(5) 14 (514)
25 5 500 10 (481) 2 (26) 1(6) 13 (513)
50 6 500 9 (459) 2 (46) 1(7) 12 (512)

100 10 500 8 (439) 2 (61) 1(11) 11 (511)
200 140 21 500  7(346) 2 (142) 1 (22) 10 (510)
300 132 64 500  6(310) 2 (134) 1 (65) 9 (509)
400 189 72 S0L  5(245) 2(191) 1(73) 8 (509)
500 197 129 500  4(178) 2 (199) 1 (130) 7 (507)
600 173 211 506  3(125) 2 (175) 1(212) 6 (512)

~
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Dirichlet distributions. Table I presents the Bayes estimates and the posterior variances of the
;. Table III presents the posterior covariances multiplied by 1000. Recall that, between doses,
the covariances are null.

With the figures of Tables 11 and 111, usual inferences about the parameters of interest ;, can
be obtained. Note also that as the posterior distribution is completely described, credible sets may
be numerically computed. The prior parameters, chosen in Table I, reflect the biologist’s belief

Table 11. Estimates and posterior variances (x 1000) of the 7,

L) e P V(mp) V(my) V(np)

.

09573  0.0369  0.0058 0.0792 0.0689  0.0112
0.9494  0.0409  0.0097 0.0933 0.0762  0.0186
09376  0.0507 0.0117 0.1138 0.0936  0.0225
0.8965  0.0898 0.0137 0.1809 0.1593 0.0263
0.8591 0.1194 0.0215 0.2364 0.2053 0.0411
0.6784  0.2784 0.0431 0.4269 0.3931 0.0807
0.6090  0.2633 0.1277 0.4669 0.3803  0.2184
0.4813 03752  0.1434 0.4895 0.4596  0.2408
0.3511 0.3925 0.2564 0.4485 0.4694  0.3753
0.2441 0.3418 0.4141 0.3597 04385  0.4729

VWO NMEWN—O

Table ITI. Posterior covariances (x 1000)

i (0> ™) (mio» 7i2) (m, m)
0 -0.0684 —0.0108 -0.0004
l —0.0754 ~0.0179 -0.0008
2 -0.0925 —-0.0213 —~0.0011
3 —0.1569 —0.0239 —-0.0024
4 -0.2003 —0.0361 —0.0050
5 -0.3696 —0.0572 —0.0235
6 03144 —-0.1525 —-0.0659
7 -0.3541 —0.1353 ~0.1055
8§ -02713 ~0.1772 —0.1981
9 -0.1626 ~0.1970 -0.2759
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that the 7, decrease with dose levels, while the 7;, and =, increase. Also, as low doses are more
natural than high doses, the a; decrease with dose values in order to reflect the fact that
information is more precise for low doses. Note that prior variances decrease whenever the a;’s
increase. The next section introduces the transformation model.

4. LOGISTIC-NORMAL MODEL

Up to this point, the dose value has been controlled, the responses, y;, have been observed and,
based on the response, the parameters of interest, 7;, were estimated. In practice, however, one
may have an opposite question: having observed a response yp, the scientist is asked to ‘estimate’
which unknown dose level 9 has produced that response. To answer this question the scientist
must consider a functional relationship between dose and the parameter 7, that is involved in the
distribution of yg. Note that y, is conditionally (on ) distributed as a trinomial with parameter
75 and sample size n.

The difficulty in relating the parameter 7 to the dose 8 is that 8 is a positive real number (with
unknown upper limit) and # is a vector with components in the unit interval. That is, & > 0 and
0 < m; < 1, where m; is any component of m,. In order to solve this problem, we consider a
transformation of 7y suggested by Aitchison and Shen,’ known as the log-ratio transformation:

W.
0] = log—i,
o
where m, is the proportion of cells with no MN. The inverse transformation, forj = 1, 2,

_ exp{6;}
T + exp{6; } icxp{oz} ’ (1)

is known as the logistic transformation.

The very interesting property of the log-ratio transformation is that 8 = (6,,6,) is bivariate
normal whenever 7 is Dirichlet.’ To obtain the mean and the variance-covariance matrix of 6 we
follow the same steps as Percira and Pericchi.'?> We introduce the subscript i to indicate that the
posterior parameters of the normal distribution are related to the doses used in Table 1. Hence,
0, = (0;1,0:) is the new parameter corresponding to the ith dose. Its a posteriori distribution is
bivariate normal with the following parameters:

my = E{8;} = ¥(4y) - ¥(4n)
2 = var{6,} = ¥/(4;) + ¥/ (4x)

¢; = cov{b,y,6,) = ¥'(4p)

where 1(.) and ¢/(.) are the digamma and trigamma functions, respectively. Table [V presents the
values of these posterior parameters. Section 5 is devoted to the dose-response model
adjustment.

5. DOSE-RESPONSE MODEL

In this section we propose a functional relationship between doses and ¢. Recall that
6; = m; + €;, where the £; are the normal errors associated with the ith dose. Letting D;
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Table IV. Parameters of the a posterior distribution
of (61, 0)

my; mp 5.?1 Szrz ¢

-~

-3.28 -528 006 040 0.0020
-3.17 —-4.68 005 022 0.0020
~2.93 —-446 004 0.18 0.0021
-2.31 -426 002 0.6 0.0022
—1.98 -373 002 0.10 0.0023
-0.89 -2.77 001 0.05 0.0029
-0.84 -1.56 0.01 0.02 0.0032
-0.25 -1.22 001 0.02 0.0041

0.11 -032 0.1 0.01 0.0056

0.34 0.53 0.01 0.01 0.0080

WO~ ARWN~D

denote the ith dose level, the dose—response model proposed here is

) ()

-my = aj + —
y / /i + Dl
where o;, 3; and v; are real numbers.

With the data presented in Table IV and using the non-lincar regression procedure, NLR, of
the SPSS package, we obtain

Q) = —1.79, y = -12.01 (3)
B, = 1303.35, B, = 22033.86 4)
1 =254.15, 7, =1298.50. (5)

Table V presents the adjusted values #1; and the corresponding observed errors,

To obtain a function which relates dose values to 7, we use relation (1) taking m; for ;. Hence,
by replacing my by its adjusted function (2), we obtain the estimated functional relationship
between doses and frequencies 7. That is,

o exp{—(q; +:,l_—£z",7,)}
771+ exp{~(e1 + = 25)} + exp{— (o2 + 325)}

Table VI presents the adjusted values #;; and the corresponding observed errors £;;. Note that

Table V. The adjusted log-ratios and their
respective errors

~.

m; €1 mp €2

~3.24 0.04 —4.89 -0.39
-3.14 -0.03 -4.83 0.15
—2.88 ~0.05 —4.64 0.18
-2.49 0.18 -4.33 0.07
-1.89 ~0.09 -3.74 0.01
—1.08 0.19 —2.69 —-0.08
-0.56 -0.28 -1.77 0.21
-0.20 -0.05 ~0.96 —-0.26

0.06 0.05 -0.24 -0.08

0.26 0.08 0.40 0.13

VNNV BN —O
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Table VI. The adjusted frequencies and their respective errors

T € il €y i €2

-

0.95 0.01  0.04 -0.01 001 0.00
0.95 0.00 0.04 0.00 0.0l 0.00
0.94 0.00 0.05 0.00 0.1 0.00
0.91 -0.01  0.08 0.01 0.1 0.00
0.85 0.01 0.1} -0.01  0.02 0.00
0.7 -0.03 024 0.04 005 -0.01

0.57 004 033 -0.07 0.10 0.03
0.45 003 037 0.01 0.17 ~0.03
0.35 000 037 002 0.28 -0.02
0.26 -0.02 034 0.00 039 0.03

VeI bW - O

100 200 300 400 500 600
Dose level

Figure 1. One MN log-ratio

100 200 300 400 500 600
Dose Jevel

Figure 2, Two MN log-ratio
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Figure 3, Zero MN frequency
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Figure 4. One MN frequency

#iip = ) — @;; — 7. Figures 1 and 2 illustrate how well the model is adjusted. Figures 3, 4 and 5
illustrate the adjustment for the original proportions w. Note that there is a drop at the end of
Figure 4. This is expected since, for high dose levels, the number of cells with more than one MN
increases (Figure 5). Consequently, the number of cells with only one MN decreases.

6. FINAL REMARKS

The scoring of cells with or without MN is made in preparations obtained from blood cultures
exposed to different levels of radiation. The presence of MN in a cell depends on the cell division,
in culture. When the nucleus divides, cytochalasin-B prevents the division of the cytoplasm and
the two daughter nuclei are enclosed in the same cytoplasm forming a binucleated cell.
Fragments or dicentrics induced by radiation also remain in the cytoplasm, originating one or
more MN. Some cells, however, escape the process and mononucleated cells with MN may occur.
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0.45 T T T T T
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0.35
0.3
0.25
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100 200 300 400 500 600
Dose level

Figure 5. Two MN frequency

In a pilot experiment where samples of mononucleated cells were considered, we have applied
the procedure introduced in this paper, also with a good fit of the model to the data. We could,
however, discard the independent parameter ay; that is, in this case a; = 0.

To exemplify a potential practical situation where our method could be adequate, consider a
fictitious nuclear accident where a worker suffered an exposure to an unknown radiation dose 9.
In order to estimate the dose to which this individual was exposed, a calibration experiment is
designed. Blood cultures from other workers from the same occupational environment, but who
did not suffer the same accident, are exposed to different levels of radiation and the values of the
respective responses y are obtained. Assume that the values observed for the exposed individual
were y5 = (230, 190, 80) and that the data from the calibration experiment are those in Table I.
The estimated constants of the dose-response model are those in (3), (4) and (5). Suppose that the
posterior parameter of the Dirichlet distribution for the frequency of cells with zero MN, one
MN and two or more MN is Ay = (236, 193,81). With these figures applied to function (2) using
the adjusted constants (3), (4) and (5), we conclude that the dose d is a number in the interval
(385, 401).
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