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ABSTRACT
In this paper, we consider a Bayesian mixture model that allows us
to integrate out the weights of the mixture in order to obtain a pro-
cedure in which the number of clusters is an unknown quantity. To
determine clusters and estimate parameters of interest, we develop
an MCMC algorithm denominated by sequential data-driven alloca-
tion sampler. In this algorithm, a single observation has a non-null
probability to create a new cluster and a set of observations may
create a new cluster through the split-merge movements. The split-
merge movements are developed using a sequential allocation pro-
cedure based in allocationprobabilities that are calculated according
to the Kullback–Leibler divergence between the posterior distribu-
tion using the observations previously allocated and the posterior
distribution including a ‘new’ observation. We verified the perfor-
mance of the proposed algorithm on the simulated data and then
we illustrate its use on three publicly available real data sets.
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1. Introduction

Clustering problems occur in many real-world phenomena where the main objective is
to group the observed data into disjoint groups (called clusters). In general, in the clus-
tering methods such as k-means [1] or hierarchical cluster [2], the clusters are determined
according to some predefined distancemeasure such as Euclidean distance orMahalanobis
distance. Besides, these methods require that the number of clusters is known a priori.

Due to its simplicity, these methods are used in many applications. For instance, Sturn
et al. [3] consider the k-means and the hierarchical clustering for analysis of microarray
data, Wride et al. [4] consider the k-means to investigate genes differentially expressed,
Oyelade et al. [5] consider the k-means algorithm for the prediction of Students’ Academic
Performance, Peterson et al. [6] present an hybrid non-parametric clustering approach
based on k-means and hierarchical clustering to identify general-shaped clusters, among
others.

CONTACT E. F. Saraiva erlandson.saraiva@ufms.br

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00949655.2019.1643345

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2019.1643345&domain=pdf&date_stamp=2019-07-17
mailto:erlandson.saraiva@ufms.br
https://doi.org/10.1080/00949655.2019.1643345


2 E. F. SARAIVA ET AL.

However, as discussed by Oh and Raftery [7] ‘these methods are not based on standard
principles of statistical inference and they do not provide a statistically based method for
choosing the number of clusters’. Thus, an alternative is to consider a clustering procedure
using a probabilistic model. In this way, the obtained clusters can be interpreted from a
statistical point of view [8].

Under a probabilistic approach, the main clustering methods are based on the use of
a mixture model, see for example [9–12]. In this model, each component of the mixture
represents a cluster and, in general, clusters are determined by the EM algorithm [13].
However, for the use of the EM algorithm, the number of cluster also need to be known
a priori. For the cases where the number of cluster is unknown, the number of cluster is
determined comparing fitted models with different number of clusters using some model
selection criterion, such as AIC [14,15] or BIC [16]. A similar strategy is adopted in the
Bayesian approach, considering the DIC [17] as a model selection criterion, see Celeux
et al. [18].

This can be seen as a drawback to be overcome, since in practice itmay be very tedious to
fit several models and afterwards compare them according to a model selection criterion.
Also, in these cases, the estimation depends on iterative methods which may not converge
imposing additional difficulties to the process. Therefore, a practical and efficient compu-
tational algorithm to estimate the number of cluster jointly with the component-specific
parameters is desirable. Under this scenario, the Bayesian approach has been success-
ful, in special, due the reversible-jump Markov Chain Monte Carlo (MCMC) algorithm
proposed by Richardson and Green [19] in the context of Gaussian mixture models. How-
ever, one difficulty frequently encountered for implementing a reversible-jump algorithm
is the construction of efficient transitions proposals that lead to a reasonable acceptance
rate.

In this paper, we consider a Bayesian mixture model with a Dirichlet prior distribution
for the weights of the mixture that allows us to integrate them out in order to obtain a pro-
cedure in which the number of cluster is a random quantity. In order to determine clusters
and estimate parameters of interest jointly, we develop anMCMC algorithm denominated
by sequential data-driven allocation sampler (SDAS). In this algorithm, the latent alloca-
tion variables are updated using two steps. In the first one, each observation is allocated
to a cluster via Gibbs sampling algorithm and there is a non-null probability of a single
observation to define a new cluster; and in the second one, a split-merge step is used to
create a new cluster using a set of observations. In this way, increasing the mixing of the
Markov chain in relation to the number of cluster.

The split-merge movements are developed using a sequential allocation procedure
based on allocation probabilities that are calculated according to the Kullback–Leibler
divergence [20] between the posterior distribution of a specific parameter using the obser-
vations previously allocated and this posterior distribution including a ‘new’ observation.
The advantage of using the Kullback–Leibler divergence is that it allows to calculate the
allocation probabilities using the effect of the ‘new’ observation in the posterior dis-
tribution for the component parameter. Using an augmented parametrization through
the introduction of densities linking [21,22], the acceptance probability for these both
movements are given by the Metropolis–Hastings acceptance probability. Conditional on
the allocation of the observations, the parameters of the clusters are updated from their
conditional posterior distributions.
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In order to verify the performance of SDAS, we developed a simulation study consider-
ing that clusters are generated from amixture of univariate normal distributions. Following
Saraiva et al. [23], we present the performance of SDAS in terms of posterior probability
for the number of clusters, convergence, mixing and autocorrelation.

To illustrate the use of the SDAS algorithm we apply it to three real datasets. The first
real data set is the benchmarkGalaxy data, while second and third are the publicly available
data set on Enzyme and Acidity, respectively.

The remainder of the paper is structured as follows. In Section 2, we describe the
Bayesian mixture model for data clustering. In Section 3, we develop the SDAS algorithm.
In Section 4, the proposed sampler is applied to simulated data sets to access its perfor-
mance and to real data sets to illustrate its use. Section 5 concludes the paper with final
remarks. Additional details are provided in the supplementary material, denoted by prefix
‘SM’ when referred to in this paper.

2. Bayesianmixturemodelling for data clustering

Consider a population composed by k subpopulations, such that, the sampling units are
homogeneous with respect to the characteristic under study within the subpopulation and
heterogeneous among the subpopulations. Let w1, . . . ,wk be the relative frequencies of
each subpopulation in relation to the overall population, for 0 ≤ wj ≤ 1 and

∑k
j=1 wj = 1.

Assume that each subpopulation j is modelled by a probability distribution F(θj) indexed
by parameter θj (scalar or vector), for j = 1, . . . , k.

Suppose that the sampling process from this population consists of choosing a subpopu-
lation jwith probabilitywj and then sample aYi value of this subpopulation, for j = 1, . . . , k
and i = 1, . . . , nwhere n is the sample size. Then we can represent each sample unit by the
pair (Yi, ci), where ci is an indicator variable that assume a value of the set {1, . . . , k} with
probabilities {w1, . . . ,wk}, respectively. Therefore, we have that

(Yi|ci = j, θj) ∼ F(θj) and P(Ci = j|w) = wj,

where w = (w1, . . . ,wk), for i = 1, . . . , n and j = 1, . . . , k.
However, in many practical problems such as clustering problems, the indicator vari-

ables are non-observable (also denominated by latent variables). Thus, the probability of
i-th observation coming from subpopulation j is wj and the marginal probability density
function for Yi = yi is given by

f (yi|θk,w) =
k∑

j=1
wjf (yi|θj), (1)

where f (yi|θj) is the probability density function of F(θj), θk = (θ1, . . . , θk) is the whole
vector of parameters and w = (w1, . . . ,wk) are the weights, for i = 1, . . . , n and j =
1, . . . , k.Model (1) is denominated in the literature by finitemixturemodel, see for example
McLachlan and Basford [9], McLachlan and Peel [11] and Fruhwirth-Schnatter [24].

As one can note, the finite mixture model is a natural probabilistic approach for data
clustering. However, as the model in (1) is a population model, then given an observed
sample y = (y1, . . . , yn) not all k components may have observations in the sample and we
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may have empty components. In this case, we have that the number of clusters (i.e. non-
empty components) is smaller than the number of components k. Besides, under the data
clustering framework, themain interest is in the configuration c due this define the clusters
and the number of clusters; hereafter denoted by kc.

Without loss of generality, consider that clusters are labelled from 1 to kc and that θkc =
(θ1, . . . , θkc) are the component parameters associated to the kc clusters. Our interest is to
estimate kc and θkc in a joint way.

Before we proceed, some remarks about the label switching are necessary. Note that, the
cluster labels j = 1, . . . , kc are not uniquely determined and a permutation of the labels
would lead to the same model. Since our interest lies in inferences on clusters, the non-
identifiability of labels would cause a problem in posterior computation and allocation
probabilities are useless for partitioning the observations [25]. Thus, following Richardson
and Green [19] and Saraiva et al. [23], we impose restrictions on the class of component
means of the clusters to get identifiability, i.e. we assume that μ1, . . . ,μkc are the compo-
nent means for clusters and thatμ1 < . . . < μkc . However, it does not prevent theMCMC
algorithm described in the next Section for being applicable to another labelling criterion.
For further discussion and additional references about label switching, see Stephens [25],
Jasra [26] and their references.

2.1. Bayesian approach

In order to estimate kc and c jointly with component parameters θkc , we assume a Bayesian
approach. For this, let (y, c) be the complete data, where y = (y1, . . . , yn) is the vector of
independent observations and c = (c1, . . . , cn) is the vector of latent indicator variables,
with y and c being paired. We then model the complete data (y, c) using the following
hierarchical Bayesian model

Yi|ci = j, θ , k ∼ F(θj),

ci|w, k ∼ Discrete(w1, . . . ,wk),

θj ∼ G(ηj),

w|γ , k ∼ Dirichlet
(γ
k
, . . . ,

γ

k

)
,

(2)

where G(ηj) is the prior distribution for component parameters θj, ηj (scalar or vector) are
the hyperparameters, for j = 1, . . . , k, andDirichlet(γ /k, . . . , γ /k) represents theDirichlet
distribution with parameter γ /k, γ > 0, and probability density function

π(w|γ , k) = �(γ )

[�(γ )]k

k∏
j=1

wγ−1
j . (3)

From the second line of model (2), we have that

π(C = c|w, k) =
k∏

j=1
wnj
j , (4)

where nj is the number of observations assigned to component j, for j = 1, . . . , k.
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Taking the product of densities in Equations (3) and (4) and integrating out the mixing
proportions, we can write the joint probability of c as

π(C = c|γ , k) = �(γ )

�(n + γ )

k∏
j=1

�
(
nj + γ

k

)
�
(γ
k

) . (5)

Besides, using the Dirichlet integral, the conditional probability for a single indicator
variable ci given all others, denoted by c−i = (c1, . . . , ci−1, ci+1, . . . , cn), is given by

π(Ci = j|c−i, γ , k) =
nj,−i + γ

k
n + γ − 1

, (6)

where nj,−i is the number of observations assigned to component j excluding the i-th
observation, for i = 1, . . . , n and j = 1, . . . , k.

As our main interest lies in the number of clusters kc, we then eliminate the number of
components k from analysis by considering k → ∞. Thus, the Equations in (5) and (6) are
now given by

π(C = c|γ ) = �(γ )

�(n + γ )

kc∏
j=1
�(nj) (7)

and

π(Ci = j|c−i, γ ) = nj,−i

n + γ − 1
(8)

for i = 1, . . . , n and j = 1, . . . , kc, where kc is the number of clusters defined by config-
uration c. Under this approach, there exist the probability of the i-th observation to be
allocated to one of the others infinite components, which is given by

π(Ci = j|c−i, γ ) = γ

n + γ − 1
. (9)

This equation is the probability of the i-th observation to define a new cluster, for i =
1, . . . , n. Equations in (8) and (9) define amodel equivalent to theDirichlet processmixture
model, see for example, Ferguson [27], Antoniak [28] and Jain and Neal [29].

From the first line ofmodel (2) and Equation in (7), the joint probability of the complete
data (y, c) is given by

P(Y = y,C = c|θkc , γ ) =
kc∏
j=1

⎛
⎝∏

Dj

f (yi|θj)
⎞
⎠π(C = c|γ ), (9a)

where Dj = {yi; ci = j} is the set of observations allocated to component j, for i = 1, . . . , n
and j = 1, . . . , kc.

From the third line of model (2), the joint prior distribution for component parameters
of the kc clusters is given by π(θkc |η) = ∏kc

j=1 πG(θj|ηj), where πG(θj|ηj) is the probability
density function of the prior distribution G(ηj) and η = (η1, . . . , ηkc), for j = 1, . . . , kc.
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Using the Bayes theorem, the joint posterior distribution upon which inference is based
is given by

π(θkc , c|y, γ ) ∝ P(y|c, θkc)π(c|γ )π(θkc |η),

where P(y|c, θkc)π(c|γ ) = L(θkc |y, c) is the complete-data likelihood function for compo-
nent parameters θkc , which is equal to the sampling distribution given in (9a) , regarded as
a function of the unknown parameters θkc .

2.2. Conditional posterior distributions

Updating Equation (8) by f (yi|θj), the conditional probability for Ci = j, for some compo-
nent j, so that nj,−i > 0, is

πij = π(Ci = j|yi, θj, c−i, γ ) = nj,−i

n + γ − 1
f (yi|θj), (10)

for i = 1, . . . , n and j = 1, . . . , kc−i , where kc−i is the number of cluster excluding the obser-
vation yi. At this point, it is important to note that, if an observation yi is allocated in a
component j, ci = j, and nj > 1, then nj,−i ≥ 1 and kc−i = kc. But, if ci = j and nj = 1,
then nj,−i = 0 and kc−i = kc − 1.

We need now to define the probability of an observation yi to create a new cluster j∗,
for j∗ = kc−i + 1. For this, we integrate parameters out. Thus, the conditional posterior
probability for Ci = j∗ is

πij∗ = π(Ci = j∗|yi, c−i, γ , ηj∗) = γ

n + γ − 1

∫
f (yi|θj∗)πG(θj∗ |ηj∗)dθj∗ (11)

for i = 1, . . . , n.
Conditional on a configuration c, we have kc clusters. The conditional posterior distri-

bution for θj is given by

π(θj|y, c, k) ∝ L(θj|Dj)πG(θj|ηj), (12)

where L(θj|Dj) = ∏
Dj

f (yi|θj) is the likelihood function for component j, for i = 1, . . . , n and

j = 1, . . . , kc.
Thus, we update parameters of interest according to Algorithm 1.
Although Algorithm 1 is visually attractive it may be inefficient in situations where

clusters have near means. This happens because the algorithm updates only one latent
indicator variable at a time and a new cluster may be created based on only one obser-
vation, according to Equation in (11). Consequently, it may lead to a poor exploration
of observation clusters and the algorithm may be trapped in local modes. Therefore,
in order to avoid these problems and increase the mixing of the Markov chain in rela-
tion to the number of clusters, we introduce a data-driven split-merge step within this
algorithm.
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Algorithm 1 Let the state of the Markov chain consist of c = (c1, . . . , cn) and θkc =
(θ1, . . . , θkc). For l-th iteration of the algorithm do as follows. For i = 1, . . . , n:
(1) remove ci from current state c, obtaining c−i and kc−i ;
(2) generate an auxiliary variable Zi = (Zi1, . . . ,Zikc) ∼ Multinomial(1,Pi), where Pi =

(πi1, . . . ,πikc−i
,πij∗) for πij given in (10) and πij∗ given in (11), for j = 1, . . . , kc−i and

j∗ = kc−1 + 1;
(3) If Zij = 1, for j ∈ {1, . . . , kc−i}, set up ci = j and do nj = nj,−i + 1;
(4) If Zij∗ = 1 do nj∗ = 1 and kc = kc−i + 1. Generate a value for the component param-

eter θj∗ of the new cluster from the posterior distribution π(θj∗ |yi). Relabel the kc
clusters in order to maintain the adjacency condition. If the component mean μj∗ of
the new cluster is so that:
(a) μj∗ = min1≤j≤kc μj, then do j∗ = 1 and relabel all other clusters doing j + 1;
(b) μj∗ = max1≤j≤kc μj, then do j∗ = kc and keep all other clusters labels;
(c) μj < μj∗ < μj+1, for j 
= {1, kc}, then do j∗ = j + 1 and relabel all other clusters

j′ ≥ j + 1 doing j′ = j′ + 1.
(5) Conditional on configuration c update the cluster parameters θkc = (θ1, . . . , θkc).

For this, generate θj from its posterior distribution, π(θj|y, c, γ ) given in (12), for
j = 1, . . . , kc;

(6) Accept the updated values, θupdatedkc , only if adjacency condition for component param-

eters of the clusters is met, i.e. ifμupdated
1 < . . . < μ

updated
kc . Otherwise, keep θ

updated
kc =

θkc .

3. Data-driven split andmergemovements

In this section, we describe as to insert within the MCMC Algorithm 1 a split-merge
procedure. This procedure is data-driven and changes the number of clusters in the
neighbourhood kc + 1 ou kc − 1.

As the maximum number of the cluster that we can have is n, kc = n, then to maintain
the detailed balance equation when we propose the split-merge movements, consider the
following alternative parametrization obtained by augmenting θkc to

θn = (θ1, . . . , θkc︸ ︷︷ ︸
θkc

, θkc+1, . . . , θn︸ ︷︷ ︸
θ0

) = (θkc , θ0),

where θ0 are component parameters of n − kc empty components, labelled kc + 1, . . . , n,
which can be viewed as ‘potential’ components to be used as cluster locations. Also, assume
that (θkc+1, . . . , θn) ∈ θ0 are a priori independent of one another and also of θkc , i.e.
π(θ0|kc) = ∏n

j=kc+1 πG(θj|ηj). This ‘prior’ for the parameters θ0 is called by Carlin and
Chib [30] as pseudo-priors and by Godsill [21] and Dellaportas et al. [22] as densities
linking.

Under this augmented parametrization, the full posterior distribution is given by

π(θn, c|y, γ ) ∝ P(y|c, θn)π(c|γ )π(θkc |η)
⎛
⎝ n∏

j=kc+1

πG(θj|ηj)
⎞
⎠ ,
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where L(θn|y, c, γ ) = P(Y = y|c, θn)π(C = c|γ ) is the complete-data likelihood function
for θn, which remains equals to Equation (9a) , regarded as a function of the unknown
parameters θn, due the components kc + 1, . . . , n to be empty components.

Thus, let � = (θkc , θ0, c, kc) be the current state of the MCMC algorithm and denote
the split andmerge proposals by�sp = (θkspc

, θ sp0 , c
sp, kspc ) and�me = (θkme

c , θme
0 , cme, kme

c ),
respectively; where

kspc = kc + 1, kme
c = kc − 1,

θkspc
=
(
θ
sp
1 , . . . , θ spkc , θ

sp
kc+1

)
, θkme

c =
(
θme
1 , . . . , θme

kc−1

)
θ
sp
0 =

(
θ
sp
kc+2, . . . , θ

sp
n

)
, θme

0 =
(
θme
kc , . . . , θ

me
n

)
.

As the dimension of the parametric space of the component parameters θn = (θkc , θ0) do
not change when we propose a split or a merge movement, then the acceptance probability
for both movements is given by the Metropolis–Hastings acceptance probability [31], i.e.
�[�∗|�] = min(1,A∗), where

A∗ = P(y|c∗, θk∗
c , θ

∗
0)

P(y|c, θkc , θ0)
π(c∗|γ )
π(c|γ )

π(θk∗
c |η)

π(θkc |η)

∏n
j=kc∗+1 πG(θj|ηj)∏n
j=kc+1 πG(θj|ηj)

q[�|�∗]
q[�∗|�]

, (13)

where ‘∗’ means either a split or a merge, q[·] is the transition proposal which is obtained
by a split or a merge depending on the type of proposal.

Once given the mathematical expression for the acceptance probability for the split-
merge movements, consider

Psp|kc =

⎧⎪⎨
⎪⎩
0, if kc = n;
0, 5, para 1 < kc < n
1, if kc = 1;

and Pme|kc =

⎧⎪⎨
⎪⎩
1, if kc = n;
0, 5, para 1 < kc < n,
0, if kc = 1

(14)

be the probabilities of proposing a split and a merge movement, respectively, with Psp|kc +
Pme|kc = 1.

3.1. Split movement

Given the choice of a splitmovement, select at randoma clusterDj composed by at least two
observations. For this, generate an auxiliary vector I = (I1, . . . , Ikc) ∼ Multinomial(1,P),
where P = (P1, . . . ,Pkc) for Pj = 1/κ2 if nj ≥ 2 and Pj = 0 otherwise, in which, κ2 is the
number of clusters with nj ≥ 2, for j = 1, . . . , kc. If Ij = 1, then propose a split of the cluster
Dj as follows:

(i) Do Dj1 = {min(Dj)}, Dj2 = {max(Dj)} and nj1 = nj2 = 1;
(ii) In a sequential way, allocate all other observations yi ∈ Dj to Dj1 or Dj2 through the

following steps:
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(a) Calculate the allocation probability

Pj1(yi) =
KL(D∗

j2 ,Dj2)

KL(D∗
j1 ,Dj1)+ KL(D∗

j2 ,Dj2)
,

where D∗
m = Dm ∪ {yi} and KL(D∗

m;Dm) is the Kullback–Leibler divergence
between π(θm|D∗

m) and π(θm|Dm), for m = j1, j2. The KL divergence is used to
quantify the effect of the observation yi in the posterior distribution for θm. Thus,
ifKL(D∗

j2 ;Dj2) > KL(D∗
j1 ,Dj1)meaning that yi is more similar to the observations

allocated to Dj1 .
(b) Generate Ii ∼ Bernoulli(Pj1(yi)). If Ii = 1, then do Dj1 = {Dj1} ∪ {yi}, nj1 =

nj1 + 1 and cspi = j1. Otherwise, doDj2 = {Dj2} ∪ {yi}, nj2 = nj2 + 1 and cspi = j2.

The probability of configuration Dj1 and Dj2 is

Pspalloc =
∏

yi∈Dj1

Pj1(yi)
∏

yi∈Dj2

Pj2(yi).

In order to obtain the configuration csp = (csp1 , . . . , c
sp
n ), we consider the following rela-

belling procedure:

(i) if ci = j′ for j′ < j, then maintain cspi = ci;
(ii) if ci = j′, for j′ > j, then do cspi = ci + 1;
(iii) if cspi = j1, then do j1 = j and cspi = j;
(iv) if cspi = j2, then do j2 = j + 1 and cspi = j + 1;

for i = 1, . . . , n and j ∈ {1, . . . , kc}.
Conditional on configuration csp we have kspc = kc + 1 clusters. The new vector of

parameters is given by θ
sp
n = (θkspc

, θ sp0 ), where θ
sp
j′ = θj′ ∀ j′ < j and θ spj′ = θj′−1 ∀ j′ > j,

for θj′ ∈ θ and j′ ∈ {1, . . . , n} \ {j1, j2} with j1 = j and j2 = j + 1. For the two new clus-
ters generate candidate-values θ spj1 and θ spj2 from posterior distributions π(θj1 |Dj1 , ηj1) and
π(θj2 |Dj2 , ηj2), respectively.

At this point we must check if the adjacency condition is met, i.e. if μsp
j1−1 < μ

sp
j1 <

μ
sp
j2 < μ

sp
j2+1. In the case where it is not, the proposal is rejected because the movement

may not be reversible by the merge proposal.
If the adjacency condition ismet, the transition probability for the split proposal is given

by

q[�sp|�] = Psp|kcPj|κ2P
sp
allocπ(θ

sp
j1 |Dj1 , ηj1)π(θ

sp
j2 |Dj2 , ηj2), (15)

where π(θm|Dm, ηm) is the posterior density for θm, form ∈ {j1, j2}.

3.2. Mergemovement

Consider now the reverse move of the split movement, the merge movement. That is, let
	sp be the current state and we want to return to the initial state 	. For this, we need to
merge the adjacent clusters Dj1 and Dj2 in a single cluster Dj.
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Firstly, a merge movement is chosen with probability Pme|kspc given as in (14). The
probability of selecting the adjacent clusters Dj1 and Dj2 for a merge is

Pj1,j2|kspc = Pj1Pj2|j1 + Pj2Pj1|j2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if kspc = 2;
3

2kspc
, if kspc > 2 and j1 = 1 or j2 = kspc ;

1
kspc

, if kspc > 2 and j1 
= 1 or j2 
= kspc ;

where Pb1 is the probability of choosing cluster b1 and Pb2|b1 is the conditional probability
of choosing cluster b2 given the previous choice of b1.

Given the choice if the clusters Dj1 and Dj2 , we join them in a single cluster Dj, i.e. we
do Dj = {Dj1} ∪ {Dj2}. The configuration c = (c1, . . . , cn) is obtained doing:

(a) ci = cspi for all cspi = j′ and j′ ≤ j1;
(b) ci = cspi − 1 for all cspi = j′ and j′ ≥ j2;

for i = 1, . . . , n, j′ = 1, . . . , n and j1, j2 ∈ {1, . . . , kc}.
Conditional on configuration cwe have kc = kspc − 1 clusters. The vector of parameters

θn = (θkc , θ0) is obtained doing θj′ = θ
sp
j′ ∀j′ < j1, θj′ = θ

sp
j′+1 ∀j′ ≥ j2 and generating θj

from its posterior distribution π(θj|Dj). Besides, in order to complete θn, generate θn from
its prior distribution, θn ∼ πG(θn).

Here, we alsomust check if the adjacency condition for parameters of the clusters ismet,
i.e. μj−1 < μj < μj+1. If the adjacency condition is met, the transition probability for the
merge proposal is given by

q[�|�sp] = Pme|kspc Pj1,j2|kspc π(θ
me
j |Dj, ηj)πG(θn|ηn). (16)

From (15) and (16), the transition probability ratio for a split proposal is given by

q[�|�sp]
q[�sp|�]

=
Pme|kspc
Psp|kc

Pj1,j2|kspc
Pj|κ2

1
Pspalloc

π(θj|Dj, ηj)π(θn|ηn)
π(θ

sp
j1 |Dj1 , ηj1)π(θ

sp
j2 |Dj2 , ηj2)

. (17)

From equation (13), the acceptance probability for a split movement is �[�sp|�] =
min(1,Asp), where (see Appendix 1 of the SM)

Asp = I(Dj1)I(Dj2)

I(Dj)

�(nj1)�(nj2)
�(nj)

Qsp

Palloc
,

Qsp =
Pme|kspc
Psp|kc

Pj1,j2
Pj|C2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2
, if kc = 1;(
1
2

)1−I
kspc
(n) 3κ2

kc+1
, if kc ∈ K1;

2
I
kspc
(n) κ2

kc + 1
, if kc ∈ K2;

with Ikspc
(n) being an indicator function and the sets K1 = {2 ≤ kc ≤ k − 1; and j1 =

1 or j2 = kc}, K2 = {2 ≤ kc ≤ k − 1 and j1 
= 1 or j2 
= kc}. Similarly, the acceptance
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probability for a merge is �[�me|�] = min(1,Ame) = 1/Asp, but with some obvious
differences in the substitutions.

3.3. Sequential data-driven allocation sampler

Now the split-merge procedure is inserted within the Algorithm 1 and described as an
algorithm denominated by Sequential Data-driven allocation sampler (SDAS).

SDAS Algorithm: Initialize with a configuration (c(0), θ (0)kc ). For l-th iteration of the
algorithm do:

(i) Update the indicator variables c using items (1)–(6) of the MCMC Algorithm 1;
(ii) Choose between split or merge with probabilities Psp|kc and Pme|kc ;
(iii) Accept the proposal with probability�[�∗|�], where ‘∗’ is either a sp or ame;

(a) If a split proposal is accepted, do k(l)c = k(l−1)
c + 1;

(b) If a merge proposal is accepted, do k(l)c = k(l−1)
c − 1;

(c) Otherwise, maintain k(l)c = k(l−1)
c ;

(i) Update the component parameters θkc using item (7) of the Algorithm 1;

Run the SDAS algorithm for L iterations and discard the first B iterations as a burn-in.
ConsiderNkc(j) be the number of times that kc = j in the L−B iterations, for j ∈ {1, . . . , n}.
Thus, P̃(kc = j) = Nkc(j)/(L − B) is the estimated posterior probability for kc = j and k̃c =
argmax
1≤j≤k

(P̃(kc = j)) is the kc value with highest estimated posterior probability.

Conditional on k̃c, we define a configuration for the latent allocation variables c and
obtain the estimates for parameters of the clusters according to the procedure described in
Appendix 2 of the SM.

4. Data analysis

In this section, we present a discussion on the performance of the proposed method by
using simulated data sets and three real datasets. We model these datasets considering an
univariate normal mixture model, i.e. in the model (1), f (yi|θj) is the density of a normal
distribution with mean μj and variance σ 2

j and θj = (μj, σ 2
j ), for j = 1, . . . , k.

In order to explore the fully conjugation, we consider the following prior distributions
for component parameters θj = (μj, σ 2

j ),

μj|σ 2
j ,μ0, λ ∼ N

(
μ0,

σ 2
j

λ

)
and σ−2

j |α,β ∼ �(α,β),

where μ0, λ, α and β are hyperparameters,N (μ0, σ 2
j /λ) represents the normal distribu-

tionwithmeanμ0 and variance σ 2
j /λ and�(α,β) represents the Gamma distributionwith

location parameter α and scale parameter β . The parametrization of the Gamma distribu-
tion is so that the mean is α/β and the variance is α/β2. These prior distributions are also
used by Casella et al. [32], Nobile and Fearnside [33] and Saraiva et al. [34].
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In order to obtain weakly prior distributions for component parameters θj = (μj, σ 2
j ),

we specify the hyperparameters values in a way that μ0 = ε and E(σ−2
j ) = R−2, where ε

is the midpoint of the observed variation interval of the data and R is the length of this
interval. Thus, we obtain β = αR2 and we fix α = 1. We also fix the hyperparameter λ =
10−2 in order to get a prior distribution for component means with large variance and we
fix γ = 0.1.

The conditional posterior distributions for parameters of the clusters are

μj|σ 2
j , y, c, k,μ0, λ ∼ N

(
μ
post
j ,

σ 2
j

nj + λ

)
and σ−2

j |y, c, k, τ ,β ∼ �
(
α
post
j ,βpostj

)
,

where

μpost =
∑

Dj
yi + λμ0

nj + λ
,αpost = α + nj + 1

2
,βpost = β + A

2
− B2

2(nj + λ)
, (18)

for A = ∑
Dj
y2i + λμ2

0, B = ∑
Dj
yi + λμ0 and j = 1, . . . , kc.

The normalizing constant I(Dm) present in the acceptance probability for the split-
merge movements is given by

I(Dm) =
[

1
2βπ

]nm/2 [ λ

nm + λ

]1/2 � (α + nm + 1
2

)
�(α)

×
[
1 + A

2β
− B2

2β(nm + λ)

]−(α+(nm/2))
,

form ∈ {j, j1, j2}.
The KL divergence between π(θ |D∗

m) and π(θ |Dm), used in the split movement, is

KL(D∗
m;Dm) =

6∑
r=1

Kr (19)

where

K1 = 1
2
log
(
nm + 1 + λ

nm + λ

)
− 1

2
+ nm + λ

2(nm + 1 + λ)
, K4 = log

(
�(α

post∗
m )

�(α
post
m )

)
,

K2 = (nm + λ)
(μ

post∗
m − μ

post
m )2

2
α
post∗
m

β
post∗
m

, K5 =
(
α
post∗
m − α

post
m

)
ψ(α

post∗
m ),

K3 = α
post
m log

(
β
post∗
m

β
post
m

)
, K6 =

(
β
post∗
m − β

post
m

) αpost∗m

β
post∗
m

,

D∗
m = Dm ∪ {yi}, for m ∈ {j1, j2}, and μpost∗

m , αpost∗m and βpost∗m are calculated using D∗
m in

Equation (18) and ψ(a) is the digamma function.
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Table 1. Number of clusters and parameter values used for simulating the datasets.

Artificial data set Number of clusters Parameter values

A1 kc = 2 μ1 = 0, μ2 = 3,
σ 2
1 = 1, σ 2

2 = 1,
w1 = 0.40, w2 = 0.60,

A2 kc = 3 μ1 = −4, μ2 = 0, μ3 = 4
σ 2
1 = 0.5, σ 2

2 = 1, σ 2
3 = 2

w1 = 0.20, w2 = 0.30, w3 = 0.50
A3 kc = 4 μ1 = 0, μ2 = 8, μ3 = 15, μ4 = 22

σ 2
1 = 4, σ 2

2 = 3, σ 2
3 = 2, σ 2

4 = 1
w1 = 0.40, w2 = 0.30, w3 = 0.20, w4 = 0.10

A4 kc = 5 μ1 = −6, μ2 = 0, μ3 = 8, μ4 = 15, μ5 = 21
σ1 = 1, σ2 = 2, σ3 = 3, σ4 = 2, σ5 = 1
w1 = 0.15, w2 = 0.20, w3 = 0.30, w4 = 0.20, w5 = 0.15,

4.1. Artificial datasets

In order to generate the artificial datasets, we set up the number of clusters kc and the
component parameters for the kc clusters according to the specified in Table 1.

In the set up A1, the two clusters have equal variances while A2 has three clusters with
different variances and weights. In A3, we consider four clusters with decreasing variances
andweights values; and inA4, we consider five clusters with different variances andweights
being the two last clusters away from the first three clusters.

The procedure for generating the data sets is given by the following two steps:

(i) For i = 1, . . . , n, generate Ui ∼ U(0, 1); if∑j−1
j′=1 wj < ui ≤ ∑j

j′=1 wj, generate Yi ∼
N (μj, σ 2

j ), with fixed parameter values according to Table 1, for w0 = 0 and j =
1, . . . , kc.

(ii) In order to record from which component each observation is generated from we
define G = (G1, . . . ,Gn) such that Gi = j if Yi ∼ N (μj, σ 2

j ), for i = 1, . . . , n and
j = 1, . . . , kc.

Figure 8 in Appendix 3 of the SM shows the values generated by cluster for datasets A1
to A4 for n=500.

For each generated dataset, we apply the proposed SDAS algorithm fixing L=55,000
iterations and a burn-in of B=5000.We also consider a sample of one draw for every 20 in
order to obtain a sequence of 5000 cases to make inferences. The algorithm was initialized
with just one cluster, kc = 1, and component parametersμ1 = y and σ 2

1 = s2, where y and
s2 represent the sample mean and variance of the generated data.

The results for posterior probabilities of kc are presented in Table 2. The estimated
maximum posterior probability for each dataset is highlighted in bold. As we can note,
the proposed SDAS algorithm attributes maximum posterior probability for the kc true
value.

Figure 1 shows the performance of the SDAS algorithm in relation to the sampled
kc values. Figure 1(a,d,g,j) show the plots of the P(kc|·) estimates across the iterations
for datasets A1 to A4, respectively. In order to maintain a good visualization, we dis-
play in each graphic only the two higher P(kc|·) estimates. As we can note, the number
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Table 2. Posterior probability for kc.

Data set ktruec kc P(kc|·) Data set ktruec kc P(kc|·)
A1 2 1 0.0000 A2 3 1 0.0000

2 0.5782 2 0.0000
3 0.2900 3 0.6068
4 0.0932 4 0.2968
5 0.0318 5 0.0752

≥ 6 0.0068 ≥ 6 0.0212
A3 4 ≤ 3 0.0000 A4 5 ≤ 3 0.0000

4 0.7928 4 0.0000
5 0.1810 5 0.6992
6 0.0234 6 0.2684
7 0.0028 7 0.0312

≥ 8 0.0000 ≥ 8 0.0012

of iterations and burn-in seems to be adequate to achieve stability for the posterior
probabilities of kc. Figure 1(b,e,h,k) shows the sampled kc values in the course of itera-
tions. Figure 1(c,f,i,l) shows the estimated autocorrelation functions (acf). These figures
show us that the proposed algorithm mix well over kc and does not present significant
autocorrelation.

Figure 9 in Appendix 4 of the SM shows the generated values and identified clusters by
the SDAS algorithm for datasets A1 to A4. The cluster were satisfactorily identified. This
Appendix also present the parameter estimates for each cluster (Table 6 of the SM) and the
histogram of the observed data and the estimated density function (Figure 10 of the SM).
As one can note the results are satisfactory.

We also repeat the simulation procedure describe above forM=100 different simulated
datasets. For each one of theM simulated datasets the number of clusters kc was estimated
using the SDAS algorithm. The proportion of times that SDAS placed higher posterior
probability on the kc true value for datasets A1, A2, A3 and A4 were 0.92, 0.98, 0.98 and
0.98, respectively. This results show a satisfactory performance of the SDAS algorithm in
estimation of the number of clusters kc.

Table 3 shows the average of the posterior probability for kc obtained from theM simu-
lated datasets. As we can note, the average of the posterior probability for the kc true value
is greater than others values of kc, for the four simulated datasets.

4.2. Real data sets

We now apply the proposed method to three benchmark datasets. The first one is the
Galaxy dataset previously analysed by Richardson and Green [19], Stephens [25], Roeder
andWasserman [35], Escobar andWest [36], among others. This dataset refers to velocity
in km/sec of n=82 galaxies from 6 well-separated conic sections of an unfilled survey of
the Corona Borealis region. This dataset is available in the R software.

The second real dataset refers to enzymatic activity in the blood, for an enzyme involved
in themetabolism of carcinogenic substances, among a group of n=245 unrelated individ-
uals; and the third dataset refers to an acidity index measured in a sample of n=155 lakes
in north-central Wisconsin. The Enzyme and Acidity datasets were downloaded from the
website https://people.maths.bris.ac.uk/mapjg/mixdata.
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Figure 1. Performance of the SDAS algorithm across iterations for datasets A1 and A2. (a) P(kc|·) for
dataset A1, (b) sampled kc values, A1, (c) Est. acf for dataset A1. (d) P(kc|·) for dataset A2, (e) sampled kc
values, A2, (f ) Est. acf for dataset A2. (g) P(kc|·) for dataset A3, (h) sampled kc values, A3, (i) Est. acf for
dataset A3. (j) P(kc|·) for dataset A4, (k) sampled kc values, A4 and (l) Est. acf for dataset A4.
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Table 3. Average of the posterior probability for kc forM= 100 simulated datasets.

Data set ktruec kc P(kc|·) Data set ktruec kc P(kc|·)
A1 2 1 0.0001 A2 3 1 0.0000

2 0.5233 2 0.0045
3 0.3078 3 0.5856
4 0.1176 4 0.3018

≥ 5 0.0511 ≥ 5 0.1081
A3 4 ≤ 3 0.0085 A4 5 ≤ 3 0.0000

4 0.7369 4 0.0000
5 0.2149 5 0.7679
6 0.0353 6 0.1939

≥ 7 0.0044 ≥ 7 0.0382

Note: The highlighted values in bold are the average of the estimated posterior probability for the kc true value.

Table 4. Estimated probabilities for kc, real datasets.

kc values

Data set 1 2 3 4 5 ≥ 6

Galaxy 0.0000 0.0050 0.8694 0.1154 0.0096 0.0006
Enzyme 0.0000 0.0802 0.6412 0.2436 0.0314 0.0036
Acidity 0.0000 0.1896 0.2936 0.2994 0.1624 0.0550

Note: The estimated maximum posterior probability for each dataset is highlighted in bold.

These three real datasets have been analyzed with SDAS using the same hyperparame-
ters specification, the number of iterations, burn in size and thin value used for simulated
datasets.

Table 4 shows the estimates for posterior probability of kc for each dataset. For Galaxy
dataset, the maximum posterior is at kc = 3 with P(kc = 3|·) = 0.8694. For Enzyme
dataset themaximumposterior is also at kc = 3with P(kc = 3|·) = 0.6412; while for Acid-
ity dataset the maximum posterior is at kc = 4 with P(kc = 4|·) = 0.2994. But, for this
dataset, the posterior probability for kc = 3 and kc = 4 are very near.

Figure 2 shows the performance of the SDAS for each dataset. As one can note, the
SDAS sampler mixes well over kc and shows a satisfactorily stability for probabilities of kc.
Besides, the sampled kc values do not present significant autocorrelation.

Figure 3 shows the identified clusters for each dataset, conditional on the estimate k̃c. At
this point, we present the clusters identified with k̃c = 4 for acidity dataset. Belowwemake
a discussion on the number of clusters k̃c = 3 and k̃c = 4 for this dataset. Table 5 shows
the estimates for parameters of the identified clusters and the credibility intervals (95%).
Figure 4 shows the histogram of the observed data and the estimated density function.

Consider now the estimated number of cluster for Acidity dataset. Note in Figure 3(c)
that this dataset has a smaller observed value away from the others observations. Due this,
we opt to verify whether this observation is an influential observation for the cluster 1.

In order to do it we consider the following procedure. Let y1 be the observations of the
Acidity dataset allocated in cluster 1 with k̃c = 4 by the SDAS algorithm and y∗

1 = {y1} \
{min(y1)} be the observations of the cluster 1 excluding the smallest observation. Consider
π1(θ1) = π(μ1, σ 2

1 |y1) and π2(θ2) = π(μ1, σ 2
1 |y∗

1) be the posterior distributions for θ1 =
(μ1, σ 2

1 ) given the observed data y1 and y
∗
1 , respectively. The KLDmeasure between π1(θ1)

and π2(θ1) is KL(y1, y∗
1) that is calculated according to Equation (19).

However, the influence measure KL(y1, y∗
1) do not determine when an observation is

influential. For this, we need to define a cutoff point in order to determinewhethermin(y1)
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Figure 2. Performance of the SDAS algorithm across iterations for real datasets. (a) Galaxy data, (b)
galaxy data, (c) galaxy data, (d) enzymedata, (e) enzymedata, (f ) enzymedata, (g) acidity data, (h) acidity
data and (i) acidity data.

is influential or not. In order to define the cutoff point we consider the proposal given by
Peng and Dey [37]. The proposal is based on the divergence between distributions of a
biased and unbiased coin, explained next.

The probability function of a biased coin is π1(x|p) = px(1 − p)1−x while for an unbi-
ased coin is π2(x|p = 0.5) = 0.5, for x=0,1 and p ∈ (0, 1). The KLD between a biased and
an unbiased coin is given by

KLD(p) = −log(2p)− log(2(1 − p))
2

.

Figure 5 shows the graphic of KLD(p). As one can note, KLD(p) increases as p moves
away from 0.5, is symmetric around p=0.5 and achieves its minimum at p=0.5. For
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Figure 3. Identified clusters for real datasets. (a) Galaxy dataset, (b) enzyme dataset and (c) acidity
dataset.

Table 5. Estimates for component parameters of the k̃c clusters.

Data set

Parameter Galaxy Enzyme Acidity

μ1 9.7286 0.1921 3.8025
(9.2905, 10.1615) (0.1771, 0.2075) (2.6188, 4.6391)

μ2 21.4021 1.1480 4.6999
(20.8929, 21.0968) (1.0024, 1.2823) (4.1361, 5.9405)

μ3 32.9864 2.0202 5.7798
(31.8243, 34.1145) (1.3610, 2.6398) (4.5106, 6.4661)

μ4 – – 6.6119)
(6.1838, 6.9595)

σ 2
1 0.3383 0.084 0.774

(0.1308, 0.8443) (0.0065, 0.0106) (0.0158, 0.2399)
σ 2
2 4.7508 0.0997 0.2382

(3.4154, 6.6001) (0.0322, 0.2033) (0.0224, 0.7959)
σ 2
3 1.0094 0.1803 0.1303

(0.2630, 3.3673) (0.0377, 0.4264) (0.0170, 0.4903)
σ 2
4 – – 0.1082

(0.0191, 0.3319)

Figure 4. Histogram of observed data and estimated density function. (a) Galaxy data, (b) enzyme data
and (c) acidity data.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 19

Figure 5. Kullback–Leibler divergence for p.

p=0.5, KLD(0.5) = 0 and π1(x|p) = π2(x|p). In this way, if we consider p ≥ 0.80 (or
p ≤ 0.20) as a strong bias in a coin, then, since KLD(0.80) = 0.2231, we can indicate
an influential observation when DKL(p) > 0.2231. Thus, we consider that min(y1) is an
influential observation if KL(y, y∗) > 0.2231.

Applying Equation (19), we obtained KL(y1, y∗
1) = 8.3511. This results indicates that

min(y) is an influential observation. We then apply the SDAS algorithm for the acid-
ity dataset excluding this influential observation. We call this dataset by Acidity∗ dataset.
For this ‘new’ dataset the estimated posterior probability for kc = 1, 2, 3, 4 and ≥ 5 are 0,
0.2590, 0.3830, 0.2638 and 0.0942, respectively. The maximum posterior probability is at
kc = 3, P(kc = 3|·) = 0.3830. That is, the excluded observation is also influential for the
estimation of the number of clusters.

Figure 6 shows the performance of the SDAS for this dataset. As one can note, the
method again presented a satisfactory performance.

Figure 7 shows the histogram of the observed data and the estimated density function.
Estimates for parameters of the three estimated clusters are μ1 = 4.2771, μ2 = 5.3795,
μ3 = 6.4675, σ 2

1 = 0.0859, σ 2
2 = 0.1867 and σ 2

3 = 0.1619.

5. Final remarks

In this paper, we consider a Bayesian mixture model to estimate the number of cluster and
the other parameters of interest in a joint way. In this approach, a Dirichlet prior distri-
bution for the weights of the mixture with a convenient parametrization was assumed in
order to allow us to integrate out the weights and to consider the number of components
k → ∞ to obtain a procedure to update the latent allocation variables. In this procedure,
there is a non-null probability of a single observation to define a new cluster.
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Figure 6. Performance of SDAS for acidity∗ dataset. (a) Galaxy data, (b) enzymedata and (c) acidity data.

Figure 7. Histogram of observed data and estimated density function for acidity∗ dataset. (a) Galaxy
data and (b) enzyme data.

In order to avoid local modes and increasing the mixing of theMarkov chain in relation
to the number of clusters we also consider a split-merge step to update the latent alloca-
tion variables. The split-merge step was constructed using a sequential allocation sampler
based on allocations probabilities which are calculated according to the Kullback–Leibler
divergence.

Defined the allocations probabilities we developed an MCMC algorithm called SDAS.
In this algorithm, the procedure to update the latent allocation variables is given by
a Metropolis–Hastings within a Gibbs sampling algorithm. The Metropolis–Hastings
algorithm is used to update, in a joint way, a set of latent allocation variables according to a
split-merge step; and the Gibbs sampling is used to update each indicator variable at time.
Conditional on a configuration for the latent allocation variables, the parameters of the
clusters are updated via Gibbs sampling algorithm generating values from their conditional
posterior distribution.
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Due to the way that we implement the split-merge strategy based on data, these propos-
als determine a new partition in the observed data set. This is one factor which improves
the efficiency of the method in identifying clusters. Besides, these movements do not need
of the specification of transition functions for being developed, simplifying its development
and computational implementation.

In order to verify the performance of SDASwedeveloped a simulation study considering
that clusters are generated from amixture of univariate normal distributions. Results show
a good performance of the SDAS. For all simulated cases, the SDAS placed higher posterior
probability on the kc true value and the identified clusters were a quite satisfactory.

We also apply the SDAS to three real datasets. For the Galaxy and Enzyme data sets, the
SDAS placed higher posterior probability on kc = 3, P(kc) = 0.8694 and P(kc) = 0.6412,
respectively. For Acidity dataset, the SDAS placed higher posterior probability on kc = 3
and kc = 4 (please, see Table 4). This lack of definition of the method occurs due a influ-
ential observation present in this dataset. Due this, we apply the SDAS to this dataset
excluding this influential value. For this case, the SDAS puts higher posterior probability
on kc = 3, P(kc = 3) = 0.3830.

Results from simulated and real data sets show that SDAS may be an effective alter-
native for joint estimation of kc, identification of clusters and estimation of parameters.
A practical differential of the proposed algorithm is that it is essentially data-driven and
it is simple to be implemented in softwares like R (the Comprehensive R Archive Net-
work, http://cran.r-project.org). Besides, our approach does not need of the specification
of transition functions to realize the split-merge movements and the candidate-values for
parameters of the new cluster are generated from the posterior distribution. Due to the
augmented parametrization considered the acceptance probability for split-merge move-
ments are given by the Metropolis–Hastings acceptance probability. The source code used
in data set analysis was developed in software R and is available upon request by emailing
authors. In Appendix 4 of the SM, we provide the R codes used in the application of SDAS
algorithm to the Galaxy dataset.

The SDAS algorithm was proposed here considering a Bayesian approach with conju-
gated prior distribution so that we could develop the split-merge movements using the
Kullback–Leibler divergence and obtain the probability of a single observation define
a new cluster in analytical way. Extending the SDAS for nonconjugated cases and the
generalization for the multivariate case are possible future developments of the method.
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