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ABSTRACT

The important problem of discriminating between separate families
of distributions is the theme of this work. The Bayesian significance
test, FBST, is compared with the celebrated Cox test. The three families
most used in survival analysis, lognormal, gamma and Weibull, are con-
sidered for the discrimination. A convex combination—with unknown
weights—of the three densities is used for this discrimination. After
these weights have been estimated, the one with the highest value indi-
cates the best statistical model among the three. Anotherimportant fea-
ture considered is the parameterization used. All the three densities are
written as a function of the common population mean and variance.
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CLASSIFICATION

Including the weights, the number of parameters is reduced from eight 62F15; 62703

(two of each density and two of the convex combination) to four (two
from the common mean and variance plus two of the weights). Some
numerical results from simulations are given. In these simulations, the
results of FBST are compared with those obtained with the Cox test. Two
real examples properly illustrate the procedures.

1. Introduction

Looking for a statistical model is the first step of a statistical analysis. Thus, choosing a model
from a group of alternatives is one of the most important statistical problems. The Neyman-
Pearson test is the statistical technique most used for this purpose; however, it is only applica-
ble in cases where all alternative models belong to the same parametric family of distributions.
In such cases, the choice of parametric values among alternatives ones is, in fact, the problem
to be solved. When the statistician first has to choose a family of distributions in a set of sepa-
rate (non-nested) families, other techniques are needed. Two families are said to be separate or
non-nested if an arbitrary member of a family cannot be obtained by a limit of any sequence
of members of the other family. The set of separate families treated in the present work is
restricted to three of the most important families of distributions: Lognormal, Gamma, and
Weibull. These distributions play a very significant role in reliability and survival analysis; see,
for instance, Pereira (1981) and Lawless (2002).

The literature is full of research on separate families since Cox (1961, 1962), the first works
that dealt with the problem. Pereira (2005), Araujo et al. (2005), Araujo and Pereira (2007)
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and Pereira and Pereira (2017) are few of the reviews of Cox’s work. The present paper is the
natural companion of Assane, Pereira, and Pereira (2017).

Cox (1977) and Kempthorne (1976) considered a test of significance as a procedure to
measure the consistency of the data with a null hypothesis through the value p. Berger and
Delampady (1987) presented Bayesian alternatives by considering Bayes Factors and posterior
probabilities of the null hypothesis as measures of significance. Using another point of view,
Pereira and Stern (1999) defined another measure that is based on the posterior probability
of a specific event in the parameter space, the tangent set. The associated test is known as the
Fully Bayesian Significance Test (FBST) and its measure of evidence is called e-value. Recall
that the p-values are tails of the null distribution calculated from the observed data and the
e-values are tails of the posterior distribution calculated from the null hypothesis. Araujo et al.
(2005), Araujo and Pereira (2007) and Kamary et al. (2014) have documented some difficulties
using traditional Bayesian model choices when Bayes factors or posterior probabilities of null
sets are considered as measures of significance. These difficulties occur, for example, when the
prior information is weak or when an improper prior is used. To overcome these difficulties,
due to inadequate priors, modified Bayes factors were proposed; see, for example, Araujo and
Pereira (2007) and Pereira and Pereira (2017).

The e-value of the FBST is an alternative to both the Bayes factor and classical p-values for
the case of precise hypotheses. Precise hypotheses are hypotheses defined in sets with a smaller
dimensionredality than redthat of the redfull parameter space. The basis for the FBST is the
e-value (e standing for evidence), which measures the inconsistency of the hypothesis with
the observed data. For further references on FBST, see Pereira, Stern, and Wechsler (2008)
and Stern and Pereira (2014). For a possible relation between p-values, based on likelihood
ratio tests, and e-values, see Diniz et al. (2012). Three interesting applications illustrating the
use of FBST with its e-values can be found in Irony et al. (2002), Lauretto et al. (2003) and
Chakrabarty (2016).

In order to discriminate between the three separate models, lognormal, gamma and
Weibull distributions, we consider first a convex linear combination of their three densities
and we use the FBST not only to estimate the parameters of the distributions, but also to esti-
mate the weights of the convex combination and for testing the hypotheses defined on the
weights space. The chosen prior distribution for the vector of the weights is the Dirichlet dis-
tribution of order three (equivalently of dimension two). This combination is not a novelty
but a suggestion presented by Cox (1961) and applied by Lauretto et al. (2007) and Lauretto,
Pereira, and Stern (2003). The recent novelty could be the parameterization using the mean
and the variance in the place of the original parameters. These methods were used by Kamary
et al. (2014), Assane, Pereira, and Pereira (2017), and Pereira and Pereira (2017). Note that
population means and variances are independent of the distribution one use and also all three
distributions considered here may be written with these most common population character-
istics. Instead of the six original parameters, we have now two parameters, common to the
three densities. With the weights of the convex (linear) combination, we have four parame-
ters to be estimated. Also, anyone that assesses a prior distribution to population means and
variances do not need to know which statistical model the statistician will choose.

To compare the method described above with the Cox test, numerical results based on
simulations is presented together with a discussion of the empirical results obtained by both
methods. Also, the lognormal-gamma-Weibull mixture model was applied to the simulated
data in order to evaluate the performance of the FBST for choosing the right density. Two
examples of real observed uncensored datasets are presented.
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Section 2 is a brief review of Cox test. The basic FBST concepts are presented in Section
3. Section 4 discusses the FBST formulation for discriminating between separate models in
the context of the convex combination of densities. Section 5 presents the simulation results
of both the FBST and the Cox test. Section 6 focuses on two real datasets, and illustrates the
performance of the procedures. Final remarks are presented in Section 7.

2. The Cox test

Let y = (y1, ..., y») be independent and identically distributed observations from some
unknown distribution F. Suppose that there is a null hypothesis, Hy : F € §, where §
is a family of probability distributions with density f(y|«), and an alternative hypothesis,
H, : F € §,, where §, is another family of probability distributions with density g(y| ). Hence
o and B are unknown parameter vectors and it is assumed further that the families of f and
g are separate in the sense defined above. Formal definitions of separate hypotheses are given
in Pereira and Pereira (2017).

The asymptotic test developed by Cox (1961, 1962) is based on a modification of the
Neyman-Pearson maximum likelihood ratio. The test statistic for Hy against H, is

Tyo = £;(&) — £y(B) — n |:plim M} ,

n—o0 n

where £ ¢(&) and Eg(ﬁ) are the maximized log-likelihoods under Hy and H,, respectively; &
and B denote the maximum likelihood estimates; plim represents convergence in probability;
and the subscript o indicates that the means are calculated under Hy.

Cox showed that, asymptotically, under the alternative hypothesis, T, has a negative mean,
whereas, under the null hypothesis, it is normally distributed with mean zero and variance

Ve (Trg) = Vel (@) — £(B)} — C I, 'Ca,

where g, is the probability limit of ,3 under Hy,as n —> 00,C, = na% [plim,,_, . M],
and I, the information matrix of «. When H, is the null hypothesis and H is the alternative
hypothesis, analogous results are obtained for a statistic Ty . Therefore, T7, = TV (Tgp)} /2
and T¢' = T {V (Tgy) }~'/> under H; and H,, respectively, are approximately standard normal
variables, and two-tailed tests can be performed. For example, if T/, is significantly negative,
there is evidence of a departure from Hy in the direction of H,. If T7, is significantly positive,
there is evidence of a departure form H; in the opposite direction to H,. The possible results
of application of both tests (T, and Ty ) are presented in Pereira and Pereira (2017).

As an illustration of the calculations for the Cox test statistics, following Pereira (1978),
suppose that H specifies that the distribution is lognormal and H, specifies that it is Weibull;
that is

2
Hy: (o) = —=— exp {—(logyz—“)
(2%)

Y/ 2,
)

,3 B B2
H,: g(yIB) = ﬂ—{,zzyﬁz "exp {— (E) } . B= (B B2).

} , o= (a, o),

We then have
Ty, = ”{.éz InBi — Bas In Brg — In B +1In Bog — &1 (B, — ,32&)}
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and
Ve (Typ) = 0.2183n,

where B1; = exp{ad; +/&,2/2} and By = &5 172 are the estimated values of Bie and B, that
are the probability limits of 8, and 8, under Hy, respectively.
Also,
AL 1 1 a;
Ty =nq B _a13)+5 n@
and
Vs (T,s) = 0.2834n,

where o= —0.5772/,32 +1In ,31 and a5 = 1.6449/[%22 are the estimated values of 15 and
o4, which are the probability limits of @; and &, under H,, respectively.

The Cox test statistics for discriminating between exponential vs. lognormal, lognormal
vs. gamma, and gamma vs. Weibull distributions can be found in Pereira and Pereira (2017).

3. Fully Bayesian Significance Test (FBST)

The FBST of Pereira and Stern (1999), which is reviewed in Pereira, Stern, and Wech-
sler (2008), is a Bayesian version of significance testing, as considered by Cox (1977) and
Kempthorne (1976), for precise (or sharp) hypotheses.

First, let us consider a real parameter 6, a point in the parameter space ® C N, and an
observation y of the random variable Y. A frequentist looks for the set I € )i of sample points
that are at least as inconsistent with the hypothesis as y is. A Bayesian looks for the tangential
set T(y) C O (Pereira, Stern, and Wechsler 2008), which is a set of parameter points that are
more consistent with the observed y than the hypothesis is. An example of a sharp hypothesis
in a parameter space of the real line is of the type H : 6 = 6,. The evidence value in favor of
H for a frequentist is the usual p-value, P(Y € I|6,), whereas for a Bayesian, the evidence in
favor of H is the e-value,ev =1 — Pr(0 € T(y)|y).

In the general case of multiple parameters, ® C 9%, let the posterior distribution for 6
given y be denoted by q(0]y) o 7w (6)L(y, 0), where 7 () is the prior probability density of 6
and L(y, 6) is the likelihood function. In this case, a sharp hypothesis is of the type H : 6 €
Oy C O, where Oy is a submanifold of smaller dimension than ©. Letting sup,; denote the
supremum of ®p, we define the e-value evidence measure and the tangential set, T'(y), as
follows:

q" =supq(@ly) and T(y) ={6 :q@ly) > q°}. (3.1)
H
The Bayesian evidence value against H is the posterior probability of T (y),
evo =Pr(@ e T(y)ly) = f q(0|y)d6; consequently, ev =1 —ev. (3.2)
T(y)

It is important to note that evidence that favors H is not evidence against the alternative,
H = © \ H, because it is not a sharp hypothesis. This interpretation also holds for p-values
in the frequentist paradigm. As in Pereira, Stern, and Wechsler (2008), we would like to point
out that this Bayesian significance index uses only the posterior distribution, with no need for
additional artifacts such as the inclusion of positive prior probabilities for the hypotheses or
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the elimination of nuisance parameters. The computation of e-values does not require asymp-
totic methods, and the only technical tools needed are numerical optimization and integration
methods.

Let us consider the distribution function of the evidence value against the hypothesis,
V(c) = Pr(ev < c), given 6°, the true value of the parameter. Under appropriate regularity
conditions, for increasing sample size, n — 00, we can state the following:

e If His false, 6° ¢ H, then ev converges (in probability) to 1, that is, VO<c<1) — 0.

e if H is true, 0° € H, then V (¢), the confidence level, is approximated by the function

Q(t, h,c) = E4[E (o)),

where t = dim(®), h = dim(H), F,(x) is the cumulative density function of chi-square
distribution with g degree of freedom.
Hence, for large n, to reject H with level of significance y, we set ¢ such that Q(¢t, h, ¢) =
1—y,ie,c= Ft[thl(l — y)]. Therefore, the FBST procedure rejects H ifev(H) > c.
Diniz et al. (2012) have shown that, asymptotically, there is a relationship between ev(H)
and the p-value based on the Likelihood ratio test. Thus, from the asymptotic normality prop-
erty,ev(H) ~ F, [F;L(l — p-value)]. We then have

p-value = 1 — F_,[F ™' (ev(H))]. (3.3)

4. Mixture of separate models

Let us consider a dataset y = {yy, ..., y,} and m alternative probability distributions with
densities fi (y|¥1), L WIV2), ..., fu(Y|¥m). Here, ¥y, k =1, ..., m, are unknown (vector)
parameters and the families of distributions are separate. The problem of interest is to mea-
sure the evidence in favor of each model for fitting the dataset. As suggested by Cox (1961),
we can consider a general model including all candidate distributions where the choice of a
specific distribution is a special case. In this work, we formulate the FBST for the convex linear
combination of separate models as a selection procedure. Denoting @ = (1, ..., ¥,,, p), the
density function for the m—component mixture model is

FOI0) = pAGIVD + -+ pufu i) =0, D pe=1. (41
k=1

where p = (p1, ..., pm) is the vector of the mixture weights.

In this paper, the density functions of the mixture components in (4.1) are reparameterized
in terms of the common population mean  and variance 0. These methods were used by
Kamary et al. (2014), Assane, Pereira, and Pereira (2017), and Pereira and Pereira (2017).
Therefore, we have @ = (i, 0%, p) denoting all parameters of the mixture model, where 1 and
o? are the parameters connecting the different survival distributions, with p corresponding
to the vector of the mixture weights.

Assuming that the y; are conditionally (on the parameter) independent and identically dis-
tributed, then, the likelihood function is

Lp.0) =D pefiyjlu. o). (4.2)
j=1 k=1
The families of distributions considered in this work include the lognormal, gamma and
Weibull models. The relationship between the parameters of these models through the u and
o? is described as follows.
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(i) Lety bealognormal(a, o), @; € Rand o, > 0, with probability density function

1 (logy — 1)’
frla, @) = oma, exp{ 20, '
We then have
2
{u = E(ylo, ap) = e1te/? N 8 oo (4.3)
2 _ ay 201 +or .
o? = Var(ylay, ap) = (™ — 1)e**1+® a, = /log %

(ii) Lety be agamma(y,, y2), y1 > 0and y, > 0, with probability density function
1 y

Gl ) = =y ex {__}.

JoOlnov) = 5wy P |~y

Therefore

{M =EQIn, v2) =nr = { n= (4.4)

o = Var(ylyr, v2) = 121} y2 =

leth; | QI\J

(iii) When y ~ Weibull(B;, B,), f1 > 0 and B, > 0, with probability density function
_ /32 Br—1 )/ P2
fwlBL, B) = ﬂ—f,z}’ expy— 5 ,

{M =E@y|Bi, B) =BT'A+1/85)
o =Var(y|piB.) = BT (1 +2/By) — BiT2(1 +1/B,)

Pr= r<1+”1/ﬁz> )
2logN(1 4+ 1/B,) —log'(1 4+ 2/B,) —|—log% =0.

then

(4.5)

In order to find B,, the Newton-Rapson method can be used to solve the nonlinear equa-
tion. Here, we use the nlegslv” function in the R” package of the same name.

Assuming independence, the joint prior density function of § = (u, 0%, p) is given by
7(0) = 7, (p)m2(1)7s(0?). Therefore, according to the Bayesian paradigm, the posterior
density of 0 is

f(Oly) o< L(y, 0)7 (). (4.6)

In this paper, the prior distributions for the connecting parameters,  and 0%, are assumed
to be independent gamma distributions, both with a mean of one and a variance of 100, that
is, u, 0> ~ gamma(0.01, 100) (Pereira and Pereira 2017). For the mixture weights, we use a
Dirichlet prior, p ~ Dir(1, 1, 1) when all families of models are considered (m = 3) or a Beta
prior with parameters (1,1) (uniform(0, 1)) for any combination of m = 2 (Pereira and Stern
2008).

In order to measure the evidence in favour of each model, hypotheses on the mixture
weights are tested (Kamary et al. 2014; Assane, Pereira, and Pereira 2017; Pereira and Pereira
2017).

The hypothesis specifying that y has the density function fi(y|y) is equivalent to

He:pr=1Ap;=0, i#k (4.7)
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On the other hand, the hypothesis that y does not have the density f;(y|¥) is equivalent
to

H:pe=0AY pi=1 (4.8)
ik

The alternative hypotheses to (4.7) and (4.8) are Ay : pr < 1 and A : pi > 0, respectively,
which are not sharp anyway.

The FBST procedure is used to test Hy, k = 1, ..., m, according to expressions (3.1) and
(3.2). For the optimization step, we used the conjugate gradient method (Fletcher and Reeves
1964). In order to perform the integration over the posterior measure, we used an Adap-
tive Metropolis Markov chain Monte Carlo algorithm, MCMC, of Haario, Saksman, and
Tamminen (2001).

In this paper, the implementation of the computations in the Bayesian models is carried
out using the LaplacesDemon” R” package. LaplacesDemon” is an open-source package that
provides a complete environment for simulation in Bayesian inference (Statisticat, LCC 2016).

5. Simulations

In this section we present some numerical results based on simulated sample points in order to
evaluate the performance of the FBST for discriminating between separate families of distri-
butions. Our main interest is to measure the convergence rate of correct decisions concerning
the acceptance/rejection of the true/false distribution of the generated sample, when using the
FBST on the mixture model. In this paper, the simulation study is carried out in two parts.
First, we compare the empirical results of the FBST and Cox test on discriminating between
two separate models. Second, we apply the lognormal-gamma-Weibull mixture model (LGW)
to the simulated data in order to evaluate the performance of the FBST on identifying the true
distribution used to generate the sample.

The simulations of this paper were performed on a computer with an Intel(R) Core(TM)
i7-5500U CPU@ 2.40 GHz.

5.1. Discriminating between two separate models

Simulation scheme of sample points

In this paper, we illustrate simulations of the lognormal and Weibull distributions. Let H,
and Hy, be the hypotheses specifying the probability density functions of the lognormal and
Weibull models, respectively, as defined in Section 2. For each hypothesis, we generate 500
samples of sizes n = 20, 40, 60, 80, 100, 150 and 200 from the distribution and, for every sam-
ple data, n, we compute the evidence in favor of the hypothesis using the FBST procedure
and Cox test. Due to the invariance of the e-value (Madruga, Pereira, and Stern 2003) and of
the maximum likelihood ratio (Pereira 1978), this case did not require changes in parame-
ter values for the simulations. Therefore, the various sample sizes n from a lognormal were
obtained with &r; = 0 and @, = 1 (LN(0, 1)) and the samples from a Weibull were generated
with 8y =1land 8, = 1 (W(1, 1)).

As an acceptance/rejection threshold, we adopted the critical level ¢ according to the crite-
rion presented in Section 3, with a significance level of 5%. We chose this asymptotic criterion
because of our benchmark (the Cox test), which is an asymptotic procedure as well. Since the
mixture model and the restricted model have three and two degree of freedom, respectively,
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Table 1. Acceptance rates of true null hypothesis H, . Data from LN(0, 1).

n 20 40 60 80 100 150 200
FBST 0.992 0.978 0.984 0.980 0.984 0.982 0.994
Cox test 0.988 0.980 0.968 0.972 0.964 0.974 0.974

Table 2. Rejection rates of false null hypothesis H,,. Data from LN(O, 1).

n 20 40 60 80 100 150 200
FBST 0.316 0.608 0.704 0.930 0.998 1.000 1.000
Cox test 0.160 0.384 0.670 0.822 0.938 1.000 1.000

Table 3. Acceptance rates of true null hypothesis H,,. Data from W (1, 1).

n 20 40 60 80 100 150 200
FBST 0.998 0.966 0.972 0.982 0.976 0.982 0.984
Cox test 0.994 0.972 0.964 0.978 0.950 0.944 0.936

we have ¢ = F[F,1(0.95)] = 0.72. Therefore, we reject H if ev(H) > 0.72 or, equivalently, if
ev(H) < 0.28.

For the Cox test, adopting a significance level of 5%, we define the rejection region as fol-
lows: R = {y: ’T*| > 1.96}, where T* ~ N(0, 1). The expressions for the computations of
the Cox test statistics are given in Section 2.

Simulation results

The simulation results are summarized in the tables shown below. As expected, both the
FBST and Cox test have achieved high acceptance rates of the null hypotheses that specify
the true distributions used to generate the samples (see Tables 1 and 3). The type-I error rates
(rejection rates of the true model) obtained by FBST are always below the predefined signifi-
cance level (5%). The significance levels attained from the Cox test are, in general, very close
to 5%. This is what would be expected in a specific application (Pereira 1978).

Regarding the rejection of the hypotheses that specify the false models, it is clear from the
Tables 2 and 4 that, as the sample size increases, the rejection rate converges to 1. The rejection
rates obtained from the FBST are higher than those of the Cox test mainly when sample sizes
are small. This means that the FBST presents higher discrimination power compared to the
Cox test. Note that Cox’s asymptotic tests are developed under the assumption that a higher
power for the alternative hypothesis is required (Cox 1961).

5.2. Discriminating based on the LGW mixture model

Let H;, H; and Hyy be the hypotheses specifying the probability density functions of the log-
normal, gamma and Weibull distributions, respectively. From each distribution, we generate
200 samples of sizes n = 25, 50, 100, and 200 and, for every sample, we use the FBST on the

Table 4. Rejection rates of false null hypothesis H, . Data from W (1, 1).

n 20 40 60 80 100 150 200

FBST 0.410 0.784 0.860 0.928 0.956 0.990 1.000
Cox test 0.304 0.580 0.774 0.896 0.942 0.994 1.000
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Table 5. Mean of estimates for LGW model parameters and percentages of correct decisions made by FBST
in selecting the true distribution of the generated samples.

2

2] g Py Pg Pw
Model n 20 50 — — — % of Cd"
Lognormal 25 19.93 5174 039 0.35 0.26 55
50 19.89 49.81 0.44 035 0.21 67
100 19.98 48.52 0.49 035 0.16 68
200 20.02 48.79 0.58 0.31 0.1 80
Gamma 25 20.22 58.47 034 0.34 0.32 25
50 19.96 5314 036 035 0.29 32
100 20.02 51.80 037 0.38 0.25 46
200 20.02 51.23 0.37 0.41 022 51
Weibull 25 20.26 59.95 0.28 0.32 0.40 7
50 20.09 54.19 024 0.30 0.46 80
100 20.07 52.07 0.18 0.25 0.57 90
200 20.05 50.89 0.13 0.20 0.67 96

*percentage of correct decision.

LGW mixture model in order to compute the evidence measures in favor of the models spec-
ified in the hypotheses.
Criteria for evaluating the performance of the FBST

In order to evaluate the performance of the FBST on selecting the true distribution used
to generate the sample, we have compared the measures of evidence in favor of the hypothe-
sesH:py,=0and H: py =1, k = L, G, W, where p; are, respectively, the mixture weights
associated with the lognormal, gamma and Weibull components in the LGW mixture model.

For instance, suppose that the sample has a lognormal distribution. We consider that the
FBST has made a correct choice on the LGW model, if the evidence in favor of H : py = 0is
less than that in favor of H : pg = 0 and H : pyy = 0, and the evidence in favorof H : p; =1
is greater than that in favor of H : pc = 1 e H : py = 1. The calculation of the proportions
of correct decisions made by FBST is based on 200 replicates. An analogous procedure is
employed when the samples are generated from gamma or Weibull distributions.

In these simulations, we have assigned u = 20 and 0% = 50.

Simulation results

Table 5 presents the mean of the estimates for the LGW mixture model parameters and
the percentages of correct decisions made by FBST in selecting the true distribution used to
generate the samples. It is observed that, regardless of the distribution used for generating the
data and the sample sizes, the estimates for the mean p are very close to each other and to
the true value of the parameter. For the estimates of the variance o2, we observe a variation
between them but, in general, they approach the true value of the parameter as the sample
size increases.

We also observe that the FBST presents good performance in identifying the Weibull distri-
bution as the true data-generation process and low performance in identifying the gamma dis-
tribution. This happens because, for the parameters chosen for these simulations, the gamma
and lognormal densities are very similar.

6. Applications

In this section we analyze two uncensored datasets and use the FBST and the Cox test to
discriminate between lognormal, gamma and Weibull distributions.
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Table 6. Measures of evidence provided by yarn data.

Evidence in favor of null hypothesis

e-value Standard normal p-value

Comparison Null hypothesis (FBST) deviate, Tf’; (Cox test)
H, x Hy, H, 0.000 —3.048 0.002
Hy 0.997 —0.549 0.583
H, x Hg H, 0.000 —3.033 0.002
Hg 0.871 0.773 0.439
Hg x Hy H 0697 1016 0309
Hy 0.725 0.967 0.333

Let us consider again the probability densities specified in the hypotheses H;, Hy, and Hg.
Here, the goal is to decide which of these alternative models best fits the datasets.

Example 1. Quesenberry and Kent (1982) present a method for selecting the member of a
collection of families of distribution that best fits a set of observations. A selection statistic is
proposed that is essentially the value of the density function of a scale transformation maximal
invariant. The dataset observations consist of experiments for testing the tensile fatigue char-
acteristics of polyester/viscose yarn to study the problem of warp breakage during weaving.
The experiment consisted of placing 100 samples of yarn into a 10-station testing apparatus
that subject the yarn to 80 cycles per minute of a given strain level. The cycle at which the
yarn failed (cycles-to-failure) was recorded. The FBST and the Cox test are used to compare
the distributions for the data from the experiment at the 2.3 percent strain level.

Table 6 presents the Bayesian and classical measures of evidence provided by the yarn data
in favor of null hypothesis on the comparisons between pairs of the distributions. For select-
ing between the lognormal and the Weibull distributions, we have the following results: the
e-values ev (H;) = 0.000 and ev (Hy) = 0.871, and the values of standard normal deviate
for Cox’s test statistics T}j, = —3.048 and T;};, = —0.549 with the corresponding p-values of
0.002 and 0.583, respectively. These results indicate rejecting the lognormal distribution and
choosing the Weibull distribution, which provides the best fit to the dataset. In Quesenberry
and Kent (1982), the Weibull distribution is also preferred over the lognormal distribution.
Araujo and Pereira (2007) used intrinsic and fractional Bayes factors to discriminate between
these distributions and also obtained very strong evidence against the lognormal distribution.

Since the comparison between the lognormal and gamma distributions suggests rejecting
the lognormal model, gamma versus Weibull distributions were tested. The results of the tests
indicate that both the distributions provide good fit to the dataset. Again we agree with the
findings of Quesenberry and Kent (1982) and Araujo and Pereira (2007), which observed
that it would be difficult to distinguish between those two models because both families of
distributions fit these data equally well.

In order to simultaneously test the three hypotheses, we have applied the LGW mixture
model,

fOlp. . 0) = prfiylie, o) + p2 fe(li, o) + ps fw Y. o), (6.1)

to the yarn data from the experiment at the 2.3 percent strain level.

Table 7 presents the estimates for the parameters of the model (6.1). Here, SD, 2.5% and
97.5% denote the standard deviation, the 2.5th and the 97.5th percentiles of the posterior
distribution of the LGW parameters, respectively. Table 8 gives the results of hypothesis test-
ing on the mixture weights. The p-values are calculated according to Diniz et al. (2012), as
described in Section 3. The results of the tests are similar to the previous comparisons between
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Table 7. Summary of the posterior distribution of the LGW parameters.

Parameter Mean SD 2.5% Median
p,-lognormal 0.170 0.127 0.007 0.143
p,-gama 0.381 0.249 0.018 0.355
p3—Weibu|| 0.449 0.237 0.032 0.461
n 220423 14.239 193.679 219.966
o2 20665.944 4001.274 14369.620 20248.042
Table 8. Hypothesis testing on the mixture weights of the LGW model.
Hypothesis e-value p-value”
p, = 0.652 0.116
p, = 0.206 0.015
p; = 0.073 0.003
*p-value calculated according to Diniz et al. (2012).
Table 9. Summary of the posterior distribution of Weibull parameters.
Parameter Mean SD 2.5% Median
% 220.409 13.675 194.595 219.938
o? 19862.278 3170.874 14708.324 19523.516

pairs of the distributions. Both the classical and the Bayesian measures of evidence indicate
that, among the three models, the lognormal model is the one that should not be considered
because the null hypothesis H : p; = 0 is not rejected.

Figure 1 displays the survival curves calculated using Bayesian estimates of the Weibull
model (Table 9), the LGW mixture model (Table 7) and a procedure called the piecewise expo-
nential estimator (PEXE), introduced by Kim and Proschan (1976), representing the observed
data. Unlike the well-known Kaplan-Meier estimator, the PEXE is smooth and continuous
estimator of the survival function. It appears that the Weibull model by itself produces a good
estimate of survival function.

The results from Tables 6 and 8 show that the preference for the Weibull model is quite clear
in evaluating the three-component mixture model more than in the two-component model

Time to Survival/Progression

— PEXE

— Veibull

e LGW mixture

Probability

T T T T T
0 200 400 600 800

Time

Figure 1. Survival curves based on estimates of the Weibull model, the LGW model and PEXE for yarn data.

97.5%

0.469
0.869
0.869
249.759
30166.612

97.5%

248.975
27038.00
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Table 10. Hypothesis testing on the mixture weights of the LGW model.

Hypothesis e-value p-value”
P = 0.834 0.227
p,=0 0.856 0.249
p; =0 0.078 0.004

*p-value calculated according to Diniz et al. (2012).

(comparison Hg x Hy ), where the evidence measures in favor of both models are very close.
This means that the discrimination power provided by the LGW model is much higher than
the power of the pairwise comparisons. This finding is in agreement with the discussion of
Sawyer (1984).

Example 2 (Lagakos, Barraj, and De Gruttola 1988). This dataset contains the induction times
of AIDS in patients infected by contaminated blood transfusions. The times are for 258 adults
and 37 children (less than 5 years old), infected by June 30, 1985, given by US Center for
Disease Control.

Pereira (1997) analyzed the data of the adult population (n = 258) and used Cox tests to
discriminate between Hg x Hy, with the result indicating that the Weibull distribution is
preferable. Araujo and Pereira (2007) used the intrinsic and fractional Bayes factors to dis-
criminate between these distributions and also obtained positive evidence against the gamma
distribution.

Here, the LGW model is applied to the data of induction times for 258 adults and the
FBST is used to discriminate between the distributions by testing hypotheses on the mix-
ture weights. The results, given in Table 10, indicate that neither the lognormal nor gamma
models should be considered, because the null hypotheses Hy : p; = 0 and Hg : p, = 0 are
not rejected. Consequently, among the three models, the Weibull model should be chosen for
further analyses of the data. From Figure 2, it seems reasonable to disregard both the lognor-
mal and gamma models, since the Weibull model by itself produces a good estimate of the
survival function.

Time to Survival/Progression

Figure 2. Survival curves based on estimates of the Weibull, the LGW model and the PEXE for induction
times of AIDS.
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7. Final remarks

In this paper we considered the problem of discriminating between separate families of dis-
tributions. We analyzed this problem in the context of a convex linear combination of the
candidate models. The families of distributions considered include the lognormal, gamma
and Weibull models. In order to discriminate between the three separate models, we used the
FBST for testing the hypotheses defined on the weights space.

The simulation results indicate that both the FBST and Cox test have similar behavior in
discriminating between separate models. Nevertheless, the discrimination power of the FBST
is slightly higher than those of the Cox test, mainly for small sample sizes. For selecting based
on the lognormal-gamma-Weibull mixture model, the FBST achieved good performance in
identifying the true distribution used to generate the data. In the examples with real datasets,
the FBST reached the same conclusion as the other selection procedures used by Quesenberry
and Kent (1982), Araujo and Pereira (2007) and Pereira (1997). Therefore, our proposed selec-
tion procedure can be used effectively for discriminating between separate models even when
the sample size is small.

When using the FBST for discriminating between separate models, it is recommended to
apply a mixture model including all candidate models in order to avoid the problems that
arise when pairwise comparisons are performed (Sawyer 1984). Whenever possible, we also
recommend reparametrizing the models in terms of the common parameters.

It would be interesting to compare the proposed procedure with other selection procedures
that allow the use of data with censoring mechanisms.
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