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ABSTRACT
In this article, we propose a Bayesian criterion for the identifi-
cation of differentially expressed genes by using the Kullback–
Leibler divergence. The advantage of using the Kullback–Leibler
divergence is that it allows measuring the influence of the treat-
ment average on the posterior distribution of the parameters of
the control distribution. To verify the performance of the pro-
posed method and compare it with the t-test and other two
Bayesian methods, we developed a simulation study. The com-
parison is made in terms of the true positive rate and the false
discovery rate. The results obtained show a better performance
of the proposed method. We also apply the four methods to a real
dataset publicly available on the internet.
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1. Introduction

A common interest in the analysis of gene expression data is the identification of
differentially expressed (DE) genes between a treatment condition and a control
condition. The interest in the identification of these genes is that this allows to
study and detect possible relationships between genes and between genes and
proteins. In addition, it also allows identifying which genes may be involved in
the origin and/or evolution of diseases with genetic origin or which genes react
to a drug stimulus (Schena et al. 1995; DeRisi, Iyer and Brown 1997; Arfin et al.
2000; Lonnstedt and Speed 2001; Wu 2001).

A method commonly used to identify DE genes is the two-sample t-test (TT)
for the log-transformed data (Baldi and Long 2001; Hatfield, Hung, and Baldi
2003). However, a problem often encountered in the application of the t-test for
this kind of dataset is the small sample size, which may lead to low test power. As
an alternative to the t-test, Baldi and Long (2001) consider a Bayesian approach
and propose the Cyber-t test. Following the work of Baldi and Long (2001),
Fox and Dimmic (2006) propose the Bayesian t-test (BT). In both methods, the
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authors consider modifications of the standard error estimate of the two sample
differences present in the denominator of the standard t statistics.

In this article, we adopt a Bayesian approach and consider the identification
of DE genes by using the influence of the treatment average on the posterior
distribution of the parameters of the control distribution. To measure this
influence, we consider the Kullback–Leibler divergence (Kullback and Leibler
1951; Cover and Tomas 1991), hereafter denoted by index KLD. This procedure
was motivated by the work of Song (2002), who developed a goodness-of-fit test
using the KLD. Also based on Song’s (2002) work, Pérez-Rodrigues, Vaquera-
Huerta, and Villaseñor-Alva (2009) propose a goodness-of-fit test for the Gum-
bel distribution. Girardin and Lequesne (2019) proposed the unification of the
works of Song (2002) and Vasicek (1976) in a unique goodness-of-fit test and
applied it to a DNA dataset.

To decide which are the DE genes, we consider a threshold κ in such a way
that if the index KLD is larger than κ for a specific gene, it is considered DE,
otherwise it is not. This threshold value was obtained according to the proposal
of Peng and Dey (1995).

To verify the performance of the proposed method and compare it with the
three methods cited earlier, we developed a simulation study. In this simulation
study, we compare the performance of the methods in terms of the true positive
rate and the false discovery rate. Results show a better performance for KLD, i.e.,
greater true positive rate and smaller false discovery rate, especially, for the case
with the difference of means and variances. We also applied the four methods to
a real dataset downloaded from the website http://cybert.ics.uci.edu/controlexp.

The remainder of the article is structured as follows. In Sec. 2, we describe the
Bayesian approach and the criterion based on the KLD. In Sec. 3, the proposed
method is applied to simulated datasets and to a real dataset. Sec. 4 concludes
the article with the final remarks.

2. Bayesian model for gene expression data analysis

Following Louzada et al. (2014), consider a DNA array experiment with n genes
and two experimental conditions which we name control (c) and treatment (t).
Suppose that control and treatment are replicated nc and nt times, respectively.
Denote by xigh the ith observed expression level (or its logarithm) for gene
g in experimental condition h, h ∈ {c, t} and g ∈ {1, . . . , n}. Let xgh =
(x1gh , . . . , xnhgh) be realizations of the vector of independent random variables
Xgh = (X1gh , . . . , Xnhgh), for g = 1, . . . , n and h ∈ {c, t}.

Assume that observed data (log-transformed) are generated from normal
distributions with mean μgh and variance σ 2

gh
, Xigh

iid∼ N (μgh , σ 2
gh

), for i =
1, . . . , nh, h ∈ {c, t}, and g = 1, . . . , n. This normality assumption for the data
is common in gene expression data analysis (see, e.g., Baldi and Long 2001;
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Fox and Dimmic 2006; Hatfield, Hung, and Baldi 2003; Louzada et al. 2014;
Saraiva and Milan 2012 and their references).

We specify the joint prior distributions for μgc and σ 2
gc such that

π(μgc , σ
2
gc) = π(μgc |σ 2

gc)π(σ 2
gc),

for g = 1, . . . , n. So, we consider the following prior distributions

μgc |μ0g , λ, σ 2
gc ∼ N

(
μ0g ,

σ 2
gc

λ

)
,

σ−2
gc |xgc , αg , βg ∼ �(αg , βg),

where μ0g , λ, αg , and βg are known hyperparameters, for g = 1, . . . , n. The
parameterization of the Gamma distribution is so that the mean is α/β and the
variance is α/β2. These prior distributions were also used by Casella, Robert,
and Wells (2000), Nobile and Fearnside (2007), and Saraiva et al. (2016).

Since it may be unrealistic to assume the availability of strong prior informa-
tion regarding parameters (μgc , σ 2

gc) in practice, we specify the hyperparameters
values as μ0g = εg and E(σ−2

gc ) = 1
10Rg

, where εg is the midpoint of the observed
variation interval of the data xgc and Rg is the length of this interval. Thus,
we obtain βg = αg

10Rg
and we fix αg = 1, for g = 1, . . . , n. We also fix the

hyperparameter λ = 10−1 to get a prior distribution for component means with
large variance.

The joint posterior distribution upon which inference is based is given by

π(μgc , σ
2
gc |xgc) ∝ L

(
μgc , σ

2
gc |xgc

)
π(μgc , σ

2
gc),

where L
(
μgc , σ 2

gc |xgc

)
is the likelihood function from the normal distribution.

The conditional posterior distributions for parameters are

μgc |xgc , μ0g , λg , σ 2
gc ∼ N

(
μ

post
g ,

σ 2
gc

nj + λg

)
and

σ−2
gc |xgc , αg , βg ∼ �

(
α

post
g , βpost

g
)

, (1)

where

μ
post
g =

nc∑
i=1

xigc + λμ0

nc + λ
,

α
post
g = αg + nc + 1

2
,

β
post
g = βg +

nc∑
i=1

x2
igc

+ λμ2
0

2
−

( nc∑
i=1

xigc + λμ0

)2

2(nc + λ)
,

for g = 1, . . . , n.
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Thus, we can estimate the parameters of control distribution using a Gibbs
sampling algorithm (Geman and Geman 1984). In this algorithm, at each itera-
tion, values for (μgc , σ 2

gc) are generated from conditional posterior distributions
in Eq. (1), for g = 1, . . . , n. The estimates are given by the average of the
generated values for each parameter.

2.1. Influence measure based on Kullback–Leibler divergence

We now consider the KLD to measure the influence of the observed treatment
average xgt on the posterior distribution for θgc = (μgc , σ 2

gc), for g = 1, . . . , n.
If xgt is influential then we consider that there exists evidence for the difference
between expression levels of treatment and control.

Thus, consider x∗
g = {xgc} ∪ {xgt} and π1 = π(θgc |x∗

g ) and π2 = π(θgc |xgc) be
the posterior distributions for θgc = (μgc , σ 2

gc) given the observed data x∗
g and

xgc , respectively, for g = 1, . . . , n.
The KLD measure between π1 and π2 is given by

KLD(π1||π2) =
+∞∫

0

+∞∫
−∞

log

(
π1(θgc |x∗

g )

π2(θgc |xgc)

)
π1(θgc |x∗

g )dμgcdσ 2
gc =

6∑
r=1

Kr, (2)

where

K1 = 1
2

log
(

nc + 1 + λ

nc + λ

)
− 1

2
+ nc + λ

2(nc + 1 + λ)
, K4 = log

(
�(α

post∗
g )

�(α
post
g )

)
,

K2 = (nc + λ)
(μ

post∗
g − μ

post
g )2

2
α

post∗
g

β
post∗
g

, K5 =
(
α

post∗
g − α

post
g

)
ψ(α

post∗
g ),

K3 = α
post
g log

(
β

post∗
g

β
post
g

)
, K6 =

(
β

post∗
g − β

post
g

) α
post∗
g

β
post∗
g

,

in which, μ
post∗
g , α

post∗
g , and β

post∗
g are calculated using x∗

g and ψ(a) is the
digamma function, for g = 1, . . . , n.

However, the influence measure KLD(π1||π2) does not determine when
an observation is influential. For this, we need to define a cut-off point κ to
determine whether xgt is influential or not. Nonetheless, as discussed by Peng
and Dey (1995) and Weiss (1996), it is a very difficult task to define a cut-off point
for the divergence measure to determine whether an observation is influential
or not. To overcome this difficulty, these authors propose to define a cut-off
point using a procedure based on the divergence measure for a biased coin with
success probability p, for 0 < p < 1.

To define the cut-off point we consider the proposal of Peng and Dey
(1995) and Weiss (1996) adapted for the gene expression data analysis context,
explained next. Assume all genes have the same probability p of being considered
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Figure 1. Kullback–Leibler divergence.

DE, for 0 < p < 1. Let Z be an indicator variable that takes the value 1 whether a
gene is DE and 0 otherwise. Thus, we have that Z follows a Bernoulli distribution
wit success probability p, Z ∼ Bernoulli(p), and probability function π1(z|p) =
pz(1 − p)1−z, for z = 0, 1. As a second scenery, consider that a gene is declared
DE at random with p = 0.5. For this case, the probability function is given by
π2(z|p = 0.5) = 0.5. According to Peng and Dey (1995), the KLD between
π1(z|p) and π2(z|p = 0.5) is given by

KLD(p) = − log(2p) − log(2(1 − p))

2
. (3)

Figure 1 shows the graphic of KLD(p). As one can note, KLD(p) increases as
p moves away from 0.5, is symmetric around p = 0.5 and achieves its minimum
at p = 0.5. For p = 0.5, KLD(0.5) = 0 and π1(z|p) = π2(z|p).

Thus, if we consider p ≥ 0.95 (or p ≤ 0.05) as an adequate probability to
declare a gene as DE, then, since KLD(0.95) = 0.8304, we can indicate a gene
as DE when KLD(p) > 0.8304. Thus, we set up the cut-off value κ = 0.8304
and consider that xgt is an influential observation if KLD(π1||π2) given in Eq.
(2) is greater than κ , for g = 1, . . . , n. For these cases, there exist evidence for
the difference between the observed expression levels in treatment in relation to
the control condition.

At this point, it is important to note that as in the use of hypothesis tests
where other values for significance level different from 5% can be chosen,
in our case, the choice of κ = 0.8304 can also be questioned. However, a
possible rationale may arise from looking at Fig. 1. If the interest is to use the
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methodology described here to detect DE genes, then we can choose a value of
κ that corresponds to a value of p far from 1

2 and near to 1 or 0, in Eq. (3). Based
on our experience with simulated data the value κ = 0.8304 obtained from the
choice of p = 0.95 leads to satisfactory results.

3. Data analysis

In this section, we illustrate the performance of the proposed method by using
simulated data sets and a real data set.

3.1. Simulated datasets

To generate the data sets, we follow the procedure proposed by Louzada et al.
(2014). For this, we fix μgc = −8.5 and σ 2

gc = 0.40. These values are the average
of the observed means and variances from the control of the real dataset. We
then set up

μgt = μgc ± δσgc and σgt = γ σgc ,

for δ = {0, 0.50, 1, 1.50, 2, 2.50, 3, 3.50, 4} and γ = {1, 2, 3, 4}, where the
signal ± in expression for μgt represent the situation over and under expressed,
respectively. Besides, we fix n = 1,000 and nc = nt = 4.

The procedure to generate the artificial data sets is given by the following four
steps:

(i) For g = 1, . . . , n, generate Xigc ∼ N (μgc , σ 2
gc), for i = 1, . . . , nc;

(ii) Choose randomly w = 10% of the indexes {1, . . . , n} to indicate the cases
to be generated with a difference. We use w = wover + wunder, for wover =
wunder = 5%.

(iii) If the index g ∈ {1, . . . , n} was chosen, then consider an indicator variable
Ig = 1 and generate Xigt ∼ N (μgt , σ 2

gt), for i = 1, . . . , nt;
(iv) If the index g ∈ {1, . . . , n} was not chosen, then set up Ig = 0 and generate

Xigt ∼ N (μgc , σ 2
gc), for i = 1, . . . , nt.

To record the cases identified with difference by KLD method, we consider an
indicator variable IKLD

g that assumes the value 1 if KLD(π1||π2) > κ and I
KLD
g =

0 otherwise. Analogously, for t-tests we consider It-tests
g = 1 if p-valueg < α

2 and
I

t-tests
g = 0 otherwise, for α = 0.05. Then, we calculate the true positive rate and

the false discovery rate,

TPRM =

n∑
g=1

Ig · IM
g

n∑
g=1

Ig

and FDRM =

n∑
g=1

(1 − Ig) · IM
g

n∑
g=1

Ig

,
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where M ∈ {KLD, TT, CT, BT}. The method with better performance should
present a higher TPR values and smaller FDR values.

We also generate L = 100 different artificial data sets for each pair (δ, γ )

according to steps (i)–(iv) described above. We present results according to
TPRM , the average of TPR from L = 100 simulated data sets. Figures 2 and 3
show the plot of TPRM and FDRM for each pair (δ, γ ) used, respectively, for
each method M ∈ {KLD, CT, BT}.

The graphs in Figs. 2 and 3 show that the KLD method performs better than
the t-tests for most of the simulated cases. An exception is the TPR cases with
γ = 1 fixed, the condition of equal variances between case/control distributions.

Figure 2. TPRM for each pair (δ, γ ) considered.
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Figure 3. TPRM for each pair (δ, γ ) considered.

One possible explanation for the better performance of the KLD method in most
cases is that it is a Bayesian method that uses parameter distributions with a
focus on the parametric space, as a whole, and not only in the estimated central
values as is the case of other methods.

3.2. Application

We now consider the gene expression dataset publicly available on the website
http://cybert.ics.uci.edu/controlexp. This data set is composed of n = 2,758
genes and refers to a small amount of control and experimental data from a
DNA microarray. Each gene g has four measures from control and four measures
from the treatment. Figure 4 shows the observed averages and variances from
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Figure 4. Treatment and control observed means and variances.

treatment versus the observed averages and variances from control for the n
genes of this dataset.

For the application of the KLD, we consider the same cut-off κ = 0.8304
value to define a gene as DE. The hyperparameters values were specified in the
same way as in the simulation study. The t-tests were applied with a significance
level α = 0.05.

The KLD identifies 144 genes with evidence for difference, while TT identifies
482 genes, CT identifies 207, and BT identifies 347 genes. Out of case identified
with difference, 90 were identified by the four methods and 120 cases were
identified with difference by the three Bayesian methods (KLD, CT, and BT).

Figure 5 shows the observed treatment and control averages for the cases
identified with evidence for the difference by four methods. Figure 6 shows the
observed treatment and control variances of the cases identified with evidence
for the difference.

As one can note in Fig. 5, the gene 40 (oppA) is identified as DE by the
four methods. This gene has the highest absolute difference between averages of
treatment and control. However, as can be viewed in Fig. 6, cases with the highest
absolute differences of variances are not identified by the t-tests. Two examples
are the genes 594 (menC) and 763 (yihT) that are highlighted in Figs. 5a and 6a.
Table 1 shows the observed treatment and control observed means and variances
for the cases cited above. This table also shows the KLD value and the p-value
from t-tests.

Table 2 shows the observed treatment and control observed means and
variances for the ten most significant case identified with difference but KLD.
This table also shows the p-value from t-tests.
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Figure 5. Treatment and control observed means for cases identified with evidence for difference.

4. Final remarks

We proposed a Bayesian approach to identify DE genes considering the influ-
ence of the treatment average in the posterior distribution for the parameters
of the control distribution. The influence was measured through the Kullback–
Leibler divergence.

To identify the cases with evidence for the difference, we establish a criterion
that considers the treatment average as being an influential observation if the
KLD value is greater than the value κ = 0.8304.

Although we have considered a cut-off value κ = 0.8304, another user has
the option to consider another cut-off value which is calculated according to
expression (3) for a fixed value of p. Thus, for example, if an user consider
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Figure 6. Treatment and control observed variances for cases identified with evidence for difference.

Table 1. Treatment and control observed means and variances for genes 40, 594, and 763.
Gene Control Treatment KLD value p-value

Average Variance Average Variance TT CT BT

40 −6.5243 0.5491 −3.4981 0.3420 4.4751 0.0001 <0.0001 <0.0001
594 −9.4657 0.5280 −12.3068 4.1694 4.2603 0.1333 0.1096 0.0940
763 −9.9263 1.2219 −13.1280 3.2507 1.5890 0.0711 0.0540 0.0534
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Table 2. The ten most significant genes identified with evidence by KLD.
Gene Control Treatment KLD value p-value

Average Variance Average Variance TT CT BT

15 −7.5710 0.2552 −10.6148 0.5542 6.5317 0.0002 <0.0001 <0.0001
11 −8.6385 0.1731 −11.8122 1.9511 6.3296 0.0234 0.0079 0.0053
51 −9.5336 0.3324 −6.8211 0.3296 5.4489 <0.0001 <0.0001 <0.0001

2752 −9.7992 0.4291 −12.7735 3.4927 5.2377 0.0934 0.0678 0.0555
52 −8.8761 0.1904 −11.1700 1.5937 4.5506 0.0313 0.0138 0.0094
40 −6.5243 0.5491 −3.4981 0.3420 4.4751 0.0001 <0.0001 <0.0001

594 −9.4657 0.5280 −12.3068 4.1694 4.2603 0.1333 0.1096 0.0940
230 −9.3605 0.2870 −11.3954 1.8535 4.1033 0.0572 0.0349 0.0264

55 −9.3584 0.3315 −7.3667 0.3052 3.8695 0.0001 0.0001 <0.0001
2180 −10.2446 0.3450 −8.3140 0.4271 3.5324 0.0002 0.0002 0.0001

p = 0.90 in Eq. (3), then a treatment average is an influential observation
whether KLD value is greater than 0.5108. Reducing the value of p in Eq. (3)
the κ value also reduces. As a consequence, the number of cases identified with
evidence for the difference may increases. On the other hand, increasing the
value of p the κ value also increases and the number of cases identified with
evidence for the difference may reduce.

Results from simulated datasets show a better performance of the KLD in
relation to the t-tests, i.e., greater true positive rate and smaller false discovery
rate. An exception is the case with the difference of means (δ > 0) and the same
variance (γ = 1), in which the t-tests present a higher true positive rate than
KLD. However, for this case, the false discovery rate of the KLD is smaller than
t-tests. In the real dataset, the cases with the highest absolute difference between
observed averages and variances are identified with evidence for the difference
by KLD and are not identified by t-tests.

Although the article does not present a new theoretical result from the
mathematical viewpoint, the simulation study and the application highlight
the following three advantages of the proposed method: (1) it is easier to use
like t-tests, (2) it performs well in situations with small sample sizes which are
common in gene expression data analysis, and (3) present better performance
than t-tests for cases with difference o means and variances. From the biological
practical point of view, it indicates the KLD may identify case DE which are not
identified by usual t-tests methods, TT, CT, and BT.

The computational codes used in the simulation study and in the application
to the real dataset are in the R language. In Appendix S-3 of the Supplementary
Material, we present the codes used in the application of the KLD method to
the real dataset. The extension of the proposed method to the second level of
analysis to identify clusters of genes can be viewed a future work.
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