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Nonparametric Bayesian Estimation of Reliabilities
in a Class of Coherent Systems

Adriano Polpo, Member, IEEE, Debajyoti Sinha, and Carlos A. de B. Pereira

Abstract—Usually, methods evaluating system reliability re-
quire engineers to quantify the reliability of each of the system
components. For series and parallel systems, there are limited op-
tions to handle the estimation of each component’s reliability. This
study examines the reliability estimation of complex problems of
two classes of coherent systems: series-parallel, and parallel-se-
ries. In both of the cases, the component reliabilities may be
unknown. We developed estimators for reliability functions at
all levels of the system (component and system reliabilities). The
main assumption required is that, for all the distributions of the
components of a particular system, the sets of discontinuity points
have to be disjoint. Nonparametric Bayesian estimators of all
sub-distribution and distribution functions are derived, and a
Dirichlet multivariate process as a prior distribution is considered
for the nonparametric Bayesian estimation of all distributions.
For illustration, two simulated numerical examples are presented.
The estimators are -consistent, and one may observe from the
examples that they have good performance. Our estimator can
accommodate continuous failure distributions, as well as distribu-
tions with mass points.

Index Terms—Coherent systems, Dirichlet multivariate pro-
cesses, reliability theory, series-parallel systems.

ACRONYMS

CHR cumulative hazard rate

CRHR cumulative reversed hazard rate

DF distribution function

HR hazard rate

MAE mean absolute error

RHR reversed hazard rate

PSS parallel-series system

SD standard deviation

SDF sub-distribution function

SPS series-parallel system
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NOTATION

distribution Beta with parameters and .

Dirichlet multivariate ( -variate) process
with parameters .

Dirichlet multivariate distribution with
parameters .

the last component to fail (that is, if
, then the system has failed because

of the -th component, ).

.

distribution function of the system.

, the distribution function
of the -th component.

, the sub-distribution
function of the -th component.

, the empirical sub-distribution
function of the -th component.

, the empirical
distribution function of the system

unit function: ,
.

product-integral.

integration over disjoint open intervals
that do not include the jump points of

.

jump point of is any point such that
, where is a

distribution function.

hazard rate.

cumulative hazard rate.

reversed hazard rate.

cumulative reversed hazard rate.

MAE
.

maximum between and .

minimum between and .
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number of systems in the sample.

.

probability of event .

product over jump points of .

reliability of the -th component.

set of jump points of is an enumerate (discrete) set
of all jump points of the distribution
function .

support of a random variable is the
sample space of , that is,

, where is
the distribution function of .

the system failure or survival time.

, random
sample to be observed.

-th distinct order statistics.

-th component failure time.

I. INTRODUCTION

S YSTEM reliability of the coherent structure has been
studied by many authors [1]–[6], who either consider

the component’s reliability to be known, or the system to be
multi-stage [7]–[9]. In this study, we have developed a non-
parametric estimator for all the reliability functions involved in
the series-parallel system and parallel-series system under the
assumptions that the components’ reliabilities are unknown; the
only available information are the failure times of the system
and the component that produced the failure, and the notion
that two components cannot fail at same instant of time. It must
be noted that this is a very challenging problem because the
failure times of the components involved in a system are mostly
censored by the failure of other component. Moreover, here, we
are not limited to only the right-censor or left-censor, because in
a series-parallel system (SPS) or parallel-series system (PSS),
we can either observe the exact failure time of the component,
or the failure time can be right-censored or left-censored, which
makes the components’ reliability estimation problem of the
SPS (or the PSS) a very difficult task. It is very common to
have 80%–90% of the failure time data of the components be
censored. However, the system does not have censored data,
so it is not complicated to estimate the system’s reliability, and
hence, our main interest is in the estimation of the components’
reliabilities.
The reliability estimation problem when the distributions of

the components are unknown has received many contributions
in recent decades. Some important references in this subject
are as follows. Langberg et al. [10] presented one form to con-
vert -dependent models into -independent ones, using the as-
sumption that two components cannot fail at the same time. Pe-
terson [11], and Tsiats [12] developed some important results
with respect to nonparametric estimation of the series system
(competing risks), while Salinas-Torres et al. [13] developed

Fig. 1. (a) SPS; (b) PSS representation for the SPS in Fig. 1(a).

Fig. 2. (a) PSS; (b) SPS representation for the PSS in Fig. 2(a).

a Bayesian nonparametric estimator, which was corrected by
Polpo and Sinha [14]. Furthermore, Polpo and Pereira [15] re-
ported similar results for the problem of parallel systems (co-op-
erating system) to those presented in [11], and [13]. Also, for
Bayesian nonparametric analysis, in [16] the Dirichlet process
was reported, and in [17] the multivariate Dirichlet process has
been described.
It is known that any coherent system can be written as a SPS

or a PSS (Barlow and Proschan [1]). Using their results, the SPS
(Fig. 1(a)) can be represented as a PSS (Fig. 1(b)), and the PSS
(Fig. 2(a)) can be represented as a SPS (Fig. 2(b)). However, it
is very common that, in the representation of the system, some
components appear in two different places within it. For ex-
ample, consider the component in Fig. 1(b) (or Fig. 2(b)).
We have the reliabilities of four components to estimate. How-
ever, two of them are in fact the same component , and will
fail at the same time, which violates our assumptions. For this
reason, it is important to have the estimators for both the SPS
and the PSS that give a wide variety of representations. If one
of these representations does not violate our assumptions, then
our proposed estimator can be used there.
In Section II, we have given the probability results necessary

for the development of the estimator. Section III is devoted to
the construction of the nonparametric Bayesian estimator for the
SPS and the PSS with three components . In Section IV,
we have extended the results to a more general case of
; and in Section V, we have shown how to use the proposed
estimator, and illustrated its qualities. Last, in Section VI, we
have presented some final comments and possible future works.
The proofs of the theorems are given in the Appendix.

II. PROBABILITY RELATIONS

In this section, we present the important results and properties
of the SPS and the PSS. We restrict ourselves to a system with
three components , given in Fig. 1(a), and in Fig. 2(a).
It must be noted that, with two components , it is only
possible to have a series or parallel system.
Let be the lifetimes of three components of a

SPS (Fig. 1(a)) or a PSS (Fig. 2(a)), with marginal distribution
functions (DF) , , and , respectively. The indicator of
the component that produced the system failure is when

, when , and when .
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The restriction here is that the three sets of jump points of ,
, and must be disjoint. The following properties can be

proved.
Property 1: The sub-distribution functions (SDF) , ,

and determine the DF of the system,

(1)

Property 2:
1) ;
2) ;
3) ;
4) .
Property 3: The set of jump points and are the same,

where ,2,3. Because , , and have disjoint set of
jump points, so have , , and .
Property 4: If for , and

1 for , then is the largest support point of the system.
The lifetime of the system is ,

and the system reliability of -independent components is

(2)

for the SPS, and

(3)

for the PSS.
Property 5: The SDF of the SPS can be expressed using the

marginal DF of the components by

(4)

and the SDF of the PSS can be expressed using the marginal DF
of the components by

(5)

Our interest is to obtain the inverse of (4) and (5); that is, to
express the DF as a function of the SDF . This
inverse is presentedwith the following definitions and theorems.

Definition 1: The functions , and
based on sub-distributions , , and

are

The functions (for a series system), and (for a parallel
system) are the versions with three components for those pre-
sented in [14], and [15], respectively. First, Theorem 1 states
the relation between and , , and . The functions ,
and can be used to define the relations between the DF
and the sub-distributions , , and in a series system, or
in a parallel system, respectively.
Theorem 1: The SDF , , and determine

(uniquely) the DF of a SPS for by
, and the DF of a PSS for by

.
The next definition gives the functions (for the SPS), and
(for the PSS) that are the inverses of (4), and (5), respec-

tively. These two functions are the ones that relate fromwhat we
can observe from a sample ( , , and ) to what we want
to know . Based on these functions, and on the Dirichlet
process, we have developed the Bayesian nonparametric esti-
mator for the components involved in the SPS (or the PSS).
Definition 2: The functions , and

, based on sub-distributions , ,
and , are
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Theorem 2: The SDF , , and determine
(uniquely) the DF of a SPS for by

, and the DF of a PSS for by
.

Note that Theorem 2 can be easily rewritten to obtain the
relation of DF and the SDF. However, for the component
, we have a series system (or a parallel system). In this case,

we can use the result given in Theorem 1.
Theorem 2 provides an important relation between the SDF

and DF, for both the SPS and the PSS. Using this result, in the
next section, we have developed the nonparametric Bayesian
estimator for the DF of the system’s components.

III. BAYESIAN ANALYSIS

This section describes a Bayesian reliability approach
to the SPS and the PSS. We have derived a nonparametric
Bayesian estimator of the distribution function using the
multivariate Dirichlet process [15], [17]. From Property 1,
we have that the sub-distribution functions are related to
the system distribution function by a sum. Considering that

, we have the restric-
tion that these four quantities have a sum equal to 1, and that
the set of possible points for
is the four-dimensional simplex, or for
the non-singular form. In this case, for a fixed , we have that a
natural prior choice is the Dirichlet distribution, and for any ,
we have the Dirichlet multivariate process. The Dirichlet mul-
tivariate process can be viewed as a random distribution. Our
interest is to develop a nonparametric estimator for the distribu-
tion function of the components in a SPS or in a PSS, and using
the Dirichlet process, we have a complete distribution for the
set . In this case, our parameters are the
functions that we want to estimate, giving us a nonparametric
framework. For a better understanding regarding the properties
of the Dirichlet (univariate) process, see Ferguson [16]; for the
multivariate Dirichlet processes, see Salinas-Torres et al. [17];
and for a simplified version, see [15].
Consider , the prior for , and

the vector of the components’ SDF is .
The induced prior for is given by

(6)

The following result gives the prior mean of the distribution
function in terms of the prior mean of its associated cumula-
tive reversed hazard rate (CRHR) for the SPS, and cumu-
lative hazard rate (CHR) for the PSS.
Lemma 1: Suppose that , , and have no common

discontinuities. Under the prior (6), for , the prior mean of
the distribution function , for each , is given by

π

for the SPS, and

π
for the PSS, where is the prior mean
of associated with the distribution function for the SPS,
and is the prior mean of associated with
the distribution function for the PSS.
The posterior distribution of is an updated

Dirichlet multivariate process where

; see Salinas-Torres et al. [17]. The Bayesian
estimators (posterior means) of and are given by

(7)

where , and

(8)

These Bayesian estimators are strongly -consistent. For in-
stance, using the Glivenko Cantelli Theorem (cf. Billingsley
[18, pp. 275]), it can be shown that converges to uni-
formly with probability 1.
If , the Bayesian estimator of

is given by

(9)
Let the distinct order statistics of be
. Set , and

, . Define

(10)

(11)

(12)

(13)
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(14)

(15)

(16)

and

(17)

The main result of this study is given in the following
paragraph.
Theorem 3: Suppose that are con-

tinuous on , for each , and , , and have no
common discontinuities. Then, for , and the SPS, we
have that

(18)

(19)

and, for the PSS,

(20)

(21)

, and are the nonparametric estimators of , and
, respectively, based on posterior means.

As in Theorem 2, it is straightforward to express the nonpara-
metric estimator of . In the next section, we extend the es-
timators to a general case of .

IV. BAYESIAN ESTIMATOR FOR

The extension of the nonparametric Bayesian estimator for
the SPS and the PSS, given in Section III, is based on rewriting
the system representation in a proper simplified version of the
general case to the one given with , which has
a solution given in Theorem 3. Considering the SPS and the

Fig. 3. (a) SPS, (b) PSS.

Fig. 4. (a) SPS, (b) PSS.

Fig. 5. The SPS representation of the PSS in Fig. 3(b).

PSS presented in Fig. 3, we specify how to rewrite the system
representation and estimation of their components’ reliability in
the following.
We provided how to estimate (for the SPS), and (for the

PSS), because the reliability estimation of the other components
are straightforward once these two are given. The idea of the
extension is to represent the systems in a simple version with
three components (Figs. 1(a) and 2(a)). In this case, to estimate
the reliability of , we use the SPS solution considering

, , and (Fig. 4(a)); and for the
estimation of , we use the PSS solution considering

, , and (Fig. 4(b)). It must be
noted that other more complex systems can also be considered,
but the task is only to simplify the representation of the system
as one of either the SPS or the PSS given in Figs. 1(a) and 2(a).
Furthermore, both the classes (SPS and PSS) are important

so as to have a more general solution, because we have the re-
striction that two different components cannot have the same
failure time, which in turn would result in different representa-
tions giving more options to the reliability estimation problem.
Considering the PSS given in Fig. 3(b), we can write their SPS
representation as that presented in Fig. 5. The component’s reli-
ability of the original PSS (Fig. 3(b)) can be estimated using the
PSS result of Theorem 3, which has a simple solution. How-
ever, as the SPS representation (Fig. 5) has some components
repeated, the SPS result of Theorem 3 is not applicable. Thus,
the solutions for both the SPS and the PSS are important, and
can be used in different situations.

V. NUMERICAL EXAMPLES

This section presents two examples to demonstrate the esti-
mation steps, and shows the quality of the Bayesian nonpara-
metric estimator. The estimation steps for the PSS are very sim-
ilar to those for the SPS, and for the sake of brevity, we have
omitted them. The estimation steps for the SPS are as follows.
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1) Defining priors: The prior measures are prior
guesses of the SDF , but it is not simple to
elicit these measures. It is easier to elicit the priors for the
DF , and use (4) for the SPS to evaluate the
prior measures (for the PSS we can use (5)). In our case,
we chose the exponential distribution (with mean 1) as the
prior guess for each of the three components’ DF. By eval-
uating the prior measures using (4), we have

, and
. Note that this prior is not very informa-

tive because the measure of the whole parameter space
is only one . Also, we
have that , and

.
2) Obtaining Posteriors: The posterior processes for the
SDF functions are

; and from (7), we have

which are the estimators of SDF.
3) Computing system’s reliability: (8) provides the estimator
of the system distribution function. For the prior defined
earlier, we have

4) Computing components’ reliabilities: Theorem 3 gives the
estimators of the components’ DF. Using (18), we obtain
the estimate for component 1 DF; and from (19), we obtain
the estimate for component 2 DF. For component 3 DF,
we substitute by (in the integral part
), and by (in the product part ) in (19). Also,

the integral part of the estimator can be solved by using a
numerical procedure, such as the Simpson’s rule. For more
details and other numerical integration methods, see Davis
and Rabinowitz [19].

Example 1: We obtained 100 observations of four simulated
processes, where all the components had gamma distributions,
and the first component had a mean of 4 and a standard
deviation (SD) of 2.83, the second component had a mean
of 6 and a SD of 4.9, the third component had a mean of
8 and a SD of 5.67, and the fourth component had a mean
of 3 and a SD of 2.45. Let us consider the SPS presented in
Fig. 3(a). The Bayesian estimators are based on 100 observa-
tions of . The simulated values are listed in the Appendix.
To estimate components 1–4, we rewrote the representation

of the system as follows. For component 1, we considered that
, , and ; then

, where is the DF estimate of component 1, and
is the proposed estimator for the SPS (19). In a similar way, for
component 2, we considered , , and

Fig. 6. Estimates for the Example 1.

; for component 3, we considered ,
, and ; and for component 4, we considered

, , and (see Section IV).
We found that the proportions of censored data for components
1–4 are 77%, 64%, 73%, and 86%, respectively.
Fig. 6(a) –6(e) present the estimates of the five distribution

functions associated with components 1–4, and the system. In
all plots, the true distribution functions (dashed lines) and the
prior mean (dashed-dot line) are also illustrated. The conditional
reliabilities of the components relative to the system are

, , , and .
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Fig. 6. (Continued.) Estimates for the Example 1.

TABLE I
SUMMARY STATISTICS FOR MAE OF 1000 -INDEPENDENT COPIES OF A

SYSTEM WITH

To better understand the performance of the estimator, we
did a simulation study of the system, shown in Example 1. For
each of the three sample sizes ( , 100, and 1000), we
generated 1000 -independent copies. Then, for each of these
1000 different copies (data sets), we evaluated the mean ab-
solute error (MAE) from the estimator to the true distribution.
Tables I through III present the summary statistics obtained. As
expected, if the sample size is large , then the es-
timator is better (that is, it has the smallest summary statistics
for MAE). With the small sample size , we obtained
the worst (largest) summary statistics. For instance, the overall
worst mean of MAE was achieved at the component (around
0.17).

TABLE II
SUMMARY STATISTICS FOR MAE OF 1000 -INDEPENDENT COPIES OF A

SYSTEM WITH

TABLE III
SUMMARY STATISTICS FOR MAE OF 1000 -INDEPENDENT COPIES OF A

SYSTEM WITH

Example 2: In this example, we considered a PSS with four
components; one of them had the distribution function of a mix-
ture of an exponential distribution and a discrete distribution,
with positive probability to fail at times 1 and 3, and is given by

(22)

We obtained 100 observations of four simulated processes,
where the first component had a gamma distribution with
a mean of 4 and a SD of 2.83, the second component had
a Weibull distribution with a mean of 4.51 and a SD of 3.06,
the third component had a mixture of an exponential and
a discrete distribution (22) with a mean of 3.1 and a SD of 3.34,
and the fourth component had a log-normal distribution
with a mean of 4.59 and a SD of 2.45. Let us now consider the
PSS presented in Fig. 3(b). The Bayesian estimators are based
on 100 observations of . The simulated values are listed
in the Appendix.
To estimate the parameters for components 1 through 4, we

rewrote the representation of the system as follows. For compo-
nent 1, we considered that , , and

; then, , where is the DF estimate
of component 1, and is the proposed estimator for the PSS
(21). In a similar way, for component 2, we considered

, , and ; for component 3, we
considered , , and ; and
for component 4, we considered , ,
and (see Section IV). We found that the proportion of
the censored data for components 1 through 3 is 71%, and that
for component 4 is 87%.
Figs. 7(a) through 7(e) present the estimates of the five dis-

tribution functions: components 1 through 4, and the system. In
all the plots, the true distribution functions (dashed lines) and
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Fig. 7. Estimates for the Example 2.

the prior mean (dashed-dot line) are also illustrated. The condi-
tional reliabilities of the components relative to the system are

, , , and .

VI. CONCLUDING REMARKS, AND AREAS FOR
FURTHER RESEARCH

Salinas-Torres et al. [13], and Polpo and Sinha [14] carried
out the nonparametric Bayesian estimation of components’
reliability in a series system, while Polpo and Pereira [15]
presented the estimation for the parallel system. In the present

Fig. 7. (Continued.) Estimates for the Example 2.

Fig. 7. (Continued.) (f) A more complex system; (g) SPS representation of
system in (f).

study, we have extended both these earlier works to a more
general problem of estimating components’ reliabilities in a
SPS or a PSS. The product integral was necessary to prove the
Theorem 3, which provides the mean posterior estimator for a
component’s distribution function. The proposed estimator can
accommodate both continuous and discrete failure times (see
Example 2), and is -consistent. In this case, the user of our
proposed estimator does not have to be worried if the unknown
reliability function to be estimated is continuous, discrete, or
a mixing of both because the estimator can accommodate all
these cases, giving a very general solution.
The estimation of more complex structures than those pre-

sented in Fig. 3(a) or Fig. 3(b) can be done by considering
sub-systems, and some adaptations on the initial problem. For
example, if our interest is the estimation of component in the
system given in Fig. 8(a), then we can build a new system by
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taking , , and ,
where are the components of the system given in
Fig. 1(a), and we can just estimate the system (1(a)) as earlier.
On the other hand, if our interest is in the estimation of compo-
nent , and we have ,

, and (Fig. 8(b)), then, in this case, the jump
point sets of and cannot be disjoint, and this result vio-
lates the estimator assumptions. Hence, we can estimate , ,
and , and cannot estimate , or . The estimator proposed
in the present study opens new possibilities in reliability estima-
tion; however, it is not the final solution for coherent systems.
As future research, one can think about how to solve the ques-
tion of the assumption of a disjoint jump point set, where it will
be possible to estimate the reliability of more complex systems,
such as the bridge system.

APPENDIX

Proof of Theorem 1: For the first part, see Peterson [11, The-
orem 2.1], and for the second part see Polpo and Pereira [15,
Theorem 2].
Proof of Theorem 2: For the SPS, we have that, from the

reversed hazard rate (RHR) (see Polpo and Pereira [15], Block
et al. [20], and Li and Zuo [21]),

(23)

We can write the integration as

From (1), ; from (2),
; from (4),

; and from Theorem 1,
. Also, the product becomes

Note that, from Property 3, and
, and the last equality holds. Because is positive and

increasing, implies for , and
implies for .

For the PSS, we have that, from the hazard rate (HR) (see
Peterson [11]),

(24)

We can write the integration as

From (1), ; from (3),
; from (5),
; and from Theorem 1,

. Also, the product becomes

Again, from Property 3, and
, and the last equality holds. Because is positive and

increasing, implies for , and
implies for .
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TABLE IV
SIMULATED SAMPLE OF EXAMPLE 1

Proof of Lemma 1: See Salinas-Torres et al. [13].
Proof of Theorem 3: SPS part: for the proof of (18), see Polpo

and Sinha [14]. Replacing the Bayesian estimates of , ,
and in (19), we have

(25)

Note that , and from
(1) and (18) the first term in (25) becomes , and the second
factor in (25) is

On the other hand, proceeding as in Lemma 1,

π (26)

where ,
and . With simple algebraic manipula-
tions, we obtain (25) from (26).

TABLE V
SIMULATED SAMPLE OF EXAMPLE 2

PSS part: for the proof of (20), see Polpo and Pereira [15].
Replacing the Bayesian estimates of , , and in (21),
we have

(27)

Note that , and
from (1) and (20) the first term in (27) becomes , and the
second factor in (27) is

On the other hand, proceeding as in Lemma 1,

π (28)

where ,
and . With simple algebraic manipula-
tions, we obtain (27) from (28).
The simulated samples of , , used in the

examples, are described in Tables IV and V.
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