This article was downloaded by:[Universidad De Sao Paulo] On: 25 January 2008 Access Details: [subscription number 731846969] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK # Communications in Statistics - Theory and Methods Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597238 ### The influence of the sample on the posterior distribution Salwa Fahmy; A. Carlos ^a; B. Pereira ^a; Frank Proschan ^b; Moshe Shaked ^c ^a Universidade De Sao Paulo IME-MAE-Cid Universitaria, Iguatemi, Sao Paulo, SP, Department of Statistics, Florida State University, Tallahassee, FL ^c Department of Mathematics, University of Arizona, Tucson, Arizona Online Publication Date: 01 January 1982 To cite this Article: Fahmy, Salwa, Carlos, A., Pereira, B., Proschan, Frank and Shaked, Moshe (1982) 'The influence of the sample on the posterior distribution', Communications in Statistics - Theory and Methods, 11:16, 1757 - 1768 To link to this article: DOI: 10.1080/03610928208828348 URL: http://dx.doi.org/10.1080/03610928208828348 #### PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. ## THE INFLUENCE OF THE SAMPLE ON THE POSTERIOR DISTRIBUTION Salwa Fahmy Carlos A. de B. Pereira 1 Road 208 Degla, Maad Cairo, Egypt, A.R.E. Universidade De Sao Paulo IME-MAE-Cid Universitaria CX. Rostal 20570-Ag Iguatemi, Sao Paulo, SP Brazil Frank Proschan Moshe Shaked Department of Statistics Florida State University Tallahassee, FL. 32306 Department of Mathematics University of Arizona Tucson, Arizona 85721 Key Words and Phrases: Monotone likelihood ratio property; multivariate totally positive functions; multivariate reverse rule functions; negative dependence; Bayesian operation (prior to posterior). #### ABSTRACT In this paper, we present conditions on the likelihood function and on the prior distribution which permit us to assess the effect of the sample on the posterior distribution. Our work is inspired by Whitt (1979) <u>J. Amer. Statist. Assoc. 74</u>, and is based on the notions of multivariate totally positive and (strongly) multivariate reverse rule functions introduced and studied by Karlin and Rinott (1980a, b). #### 1. INTRODUCTION As usual, $\underline{\theta}$ is the parameter of interest and \underline{x} is the data on which the inference about $\underline{\theta}$ is based. The Bayesian operation (prior 1758 FAHMY ET AL. to posterior) supplies the answer to the question of how to use the information (about $\underline{\theta}$) provided by the data, \underline{x} . Here, attention is shifted to another general question: What kind of information about $\underline{\theta}$ does the sample possess? Whitt (1979) shows that in a Bayesian analysis, under certain general conditions, the larger the observations, the larger (or smaller in a reparametrization) stochastically will be the appropriate parameter of the posterior distribution. His interesting results are developed for the case of a univariate parameter, mainly in the hypergeometric distribution. In the present paper, it is shown that Whitt's key ideas may be extended to the case of multivariate distributions with multivariate parameters. The basic notions used here are multivariate total positivity of order 2, and multivariate reverse rule of order 2, introduced and studied by Karlin and Rinott (1980a, b). These concepts are briefly described in Section 2. Section 3 presents sufficient conditions on the likelihood function and on the prior distribution under which θ_i , the i-th component of $\underline{\theta}$ in the posterior distribution, be increasing in x_i the i-th component of \underline{x} and decreasing in x_j for $j \neq i$. In Section 4, these results are applied to some well known distributions. #### 2. PRELIMINARIES In this section we present definitions, notation, and basic facts used throughout the paper. Definition 1. A random vector \mathbf{x} is said to be stochastically increasing in a random vector \mathbf{y} if $E\{\phi(\mathbf{x})|\mathbf{y}\}$ is increasing in \mathbf{y} for every increasing bounded real function ϕ . (A function ϕ : $R^k \to R$ is said to be increasing if it is increasing in each of its arguments.) The following concepts of total positivity of order 2 (TP_2), reverse rule of order 2 (RR_2), and Pólya frequency function of order 2 (PF_2) may be found in Karlin (1968). Definition 2. (i) A nonnegative real function $f: \mathbb{R}^2 \to \mathbb{R}$ is TP_2 (RR₂) if $$f(x_1, x_2)f(x_1, x_2) \ge (\le) f(x_1, x_2)f(x_1, x_2)$$ thenever $x_1^* \ge x_1$, and $x_2^* \ge x_2$. (ii) A nonnegative real function ζ : $R \rightarrow R$ is PF_2 if $$f(x_1, x_2) = \zeta(x_1 - x_2)$$ is TP_2 . The definitions below appear in Karlin and Rinott (1980a, b). For every \underline{x} , $y \in \mathbb{R}^k$, denote: $$\underline{x} \ge \underline{y} \text{ if } x_i \ge y_i \text{ v i = 1, ..., } k_i$$ $$\underline{x} \vee \underline{y} = (\max(x_1, y_1), \ldots, \max(x_k, y_k)),$$ and $$\underline{x} \wedge \underline{y} = (\min(x_1, y_1), \dots, \min(x_k, y_k)).$$ The following is the natural generalization of Definition 2(i): Definition 3. Consider a nonnegative real function $f: \mathbb{R}^k \to \mathbb{R}$. We say that f(x) is multivariate totally positive of order 2 or MTP₂ (multivariate reverse rule of order 2 or MRR₂) if: $$f(\underline{x} \lor \underline{y}) f(\underline{x} \land \underline{y}) \ge (\le) f(\underline{x}) f(\underline{y})$$ for every x, y $\in \mathbb{R}^k$. Karlin and Rinott (1980a) show that MTP_2 is a concept of strong positive dependence. They show, however, in their second paper (1980b) that the MRR_2 property fails to be a "good" concept of negative dependence. In the same paper they solve the problem by introducing the following definition. For additional illustration of its usefulness we refer to Block, Savits, and Shaked (1982). Let (i_1, \ldots, i_k) be any permutation of $(1, 2, \ldots, k)$. Definition 4. An MRR₂ function f: $\mathbb{R}^k \to \mathbb{R}$ is said to be strongly-MRR₂ (S-MRR₂) if for any set of k PF₂ functions $\{\zeta_1, \ldots, \zeta_k\}$, and for each $j \le k$, the function $$g_{k-j}(x_{i_{j+1}}, \ldots, x_{i_k}) = \int \cdots \int f(\underline{x}) \prod_{m=1}^{j} \zeta_m(x_{i_m}) dx_{i_m}$$ is MRR₂ whenever the integral exists. The multivariate generalization of the familiar monotone likelihood ratio property is given by: Definition 5. Let f_1 and f_2 be two probability density or mass functions (p.d.f.) on \mathbb{R}^k . If for every \underline{x} , $\underline{y} \in \mathbb{R}^k$, FAHMY ET AL. $$f_2(\underline{x} \vee \underline{y}) f_1(\underline{x} \wedge \underline{y}) \ge f_1(\underline{x}) f_2(\underline{y}),$$ then we say that f_2 is "larger than" f_1 in the TP_2 sense, and write $f_2 > TP_2 f_1$. It is well known that the monotone likelihood ratio ordering implies stochastic ordering. The following result is a generalization of this fact. Theorem 1. Let f_1 and f_2 be two p.d.f.'s on R^k such that $f_2 > TP_2^{f_1}$. If $\phi: R^k \to R$ is an increasing function, then $$\int \cdots \int \phi\left(\underline{x}\right) \ f_1\left(\underline{x}\right) d\underline{x} \le \int \cdots \int \phi\left(\underline{x}\right) \ f_2\left(\underline{x}\right) d\underline{x}.$$ For a proof of this result, see Karlin and Rinott (1980a). #### 3. THEORETICAL RESULTS. In the sequel, let $\underline{\theta}$ be a parameter taking values in a subset 0 (the parameter space) of \mathbb{R}^k , and $\underline{x} \in \mathbb{R}^n$ ($n \ge k$) be the data vector. The likelihood function or the sample p.d.f. is represented by $f(\underline{x}|\underline{\theta})$. The prior and the posterior p.d.f.'s are denoted respectively by $\xi(\underline{\theta})$ and $\xi^*(\underline{\theta}|\underline{x})$. The following result is the TP_2 version of Theorem 4 of Whitt (1979). In the above notation, suppose that k=n=1, θ denotes the parameter, and x denotes the data. Theorem 2. Consider $f(x|\theta)$ and $\xi^*(\theta|x)$ as bivariate real functions of θ and x. Then $f(x|\theta)$ is $TP_2(RR_2)$ if and only if $\xi^*(\theta|x)$ is $TP_2(RR_2)$.. Proof. For $[H(x)]^{-1} = \int f(x|\theta)\xi(\theta)d\theta$, we notice that $$\xi^*(\theta \mid x) = H(x)\xi(\theta)f(x|\theta). \quad \text{Then, } \frac{\xi^*(\theta \mid x)}{\xi^*(\theta^* \mid x)} \geq (\leq) \frac{\xi^*(\theta \mid x^*)}{\xi^*(\theta^* \mid x^*)} \text{ holds}$$ if and only if $$\frac{f(x|\theta)}{f(x|\theta^*)} \geq (\leq) \frac{f(x^*|\theta)}{f(x^*|\theta^*)} \cdot \Box$$ Theorem 2 motivates the results of this section. Let h: $R^n \to R$ and g: $R^{n+k} \to R$ be two nonnegative real functions. Theorem 3. Suppose that (a) $$f(\underline{x}|\underline{\theta}) = h(\underline{x}) g(\underline{x}, \underline{\theta})$$, where g is MTP₂, and (b) $\xi(\underline{\theta})$ is MTP₂. Then $$\xi^*(\underline{\theta}|\underline{x}^*) > _{\mathrm{TP}_2} \xi^*(\underline{\theta}|\underline{x})$$ for every \underline{x} , $\underline{x}' \in R^n$ such that $\underline{x}' \ge \underline{x}$. Proof. The posterior p.d.f. may be factored as: $$\xi^*(\theta|x) = H(x) g(x, \theta)\xi(\theta),$$ where $$\left[\mathrm{li}(\underline{x})\right]^{-1} = \int g(\underline{x}, \ \underline{\theta}) \, \xi(\underline{\theta}) \, d\underline{\theta}.$$ Consider two sample points \underline{x} and \underline{x} such that \underline{x} $\geq \underline{x}$, and denote $$\xi_0(\underline{\theta}) = \xi^*(\underline{\theta}|\underline{x}) \text{ and } \xi_1(\underline{\theta}) = \xi^*(\underline{\theta}|\underline{x}').$$ Let $\underline{\theta}$ and $\underline{\theta}$ be two points in the parameter space θ . Now, we can write since both g and ξ are MTP₂. Since $\underline{x}' \ge \underline{x}$, we finally have $$\begin{split} \xi_0(\underline{\theta}) \xi_1(\underline{\theta}^*) &\leq \left[\Pi(\underline{x}) g(\underline{x}, \ \underline{\theta} \ \land \ \underline{\theta}^*) \xi(\underline{\theta} \ \land \ \underline{\theta}^*) \right] \times \\ & \left[\Pi(\underline{x}^*) g(\underline{x}^*, \ \underline{\theta} \ \lor \ \underline{\theta}^*) \xi(\underline{\theta} \ \lor \ \underline{\theta}^*) \right] \\ &= \xi_0(\underline{\theta} \ \land \ \underline{\theta}^*) \xi_1(\underline{\theta} \ \lor \ \underline{\theta}^*). \end{split}$$ Thus, it is equivalent to say that $\xi_1 > {}_{TP_2}\xi_0$. \square <u>Corollary</u>. If conditions (a) and (b) of Theorem 3 hold, then θ is stochastically increasing in x. Proof. The result follows immediately from Theorems 1 and 3. In many cases, conditions (a) and (b) of Theorem 3 are too strong. A more realistic result is presented below where \underline{x} is considered to be the data reduced by sufficiency, and to have the same dimension of $\underline{\theta}$; that is, n = k. Let c: $\mathbb{R}^k \to \mathbb{R}$, and g_i : $\mathbb{R}^2 \to \mathbb{R}(i=1,\ldots,k)$ be nonnegative functions and represent the posterior marginal p.d.f. of θ_i ($i=1,\ldots,k$) by $\xi_i^*(\theta_i|\underline{x})$. Theorem 4. Suppose that $$f(\underline{x}|\underline{\theta}) = h(\underline{x}) \prod_{i=1}^{k} g_i(x_i, \theta_i) c(\underline{\theta})$$ where, for $i = 1, ..., k, g_i$ is TP_2 . Then, for every i = 1, ..., k, the following condition (for the posterior marginal density of θ_i) holds: $$\xi_{i}^{\star}(\theta_{i}\left|\underline{x}'\right) > {}_{\mathsf{TP}_{2}}\xi_{i}^{\star}(\theta_{i}\left|\underline{x}\right)$$ for \underline{x} equal to \underline{x} except for the i-th coordinate, where $x_i \ge x_i$ replaces x_i . Proof. Without loss of generality we assume i = 1. The posterior marginal p.d.f. of θ_1 is $$\xi_{1}^{*}(\theta_{1}|\underline{x}) = H(\underline{x})g_{1}(x_{1}, \theta_{1}) \cdots \int_{C(\underline{\theta})} \prod_{i=2}^{k} g_{i}(x_{i}, \theta_{i}) d\theta_{i},$$ where $C(\underline{\theta}) = c(\underline{\theta})\xi(\underline{\theta})$, and $H(\underline{x})$ is defined as above. Now, define $$G_{1}(\underline{x}, \theta_{1}) = \int \cdots \int C(\underline{\theta}) \prod_{i=2}^{k} g_{i}(x_{i}, \theta_{i}) d\theta_{i},$$ which is constant in x_{1} . Thus, $$\xi^*(\theta_1|\underline{x}) = H(\underline{x})g_1(x_1, \theta_1)G_1(\underline{x}, \theta_1).$$ Consider two sample points that differ only in the first coordinate, say . $$\underline{x} = (x_1, x_2, ..., x_k), \text{ and } \underline{x}^* = (x_1, x_2, ..., x_k),$$ where $x_1 \ge x_1$. Define $$\xi_{10}(\theta_1) = \xi_1^*(\theta_1|\underline{x})$$ and $$\xi_{11}(\theta_1) = \xi_1^*(\theta_1|\underline{x}')$$ Since by definition $$G_1(\underline{x}, \theta_1) = G_1(\underline{x}', \theta_1),$$ we thus have $$\frac{\xi_{11}(\theta_1)}{\xi_{10}(\theta_1)} = \frac{H(\underline{x}')g_1(x_1', \theta_1)}{H(\underline{x})g_1(x_1, \theta_1)} ,$$ which is increasing in θ_1 by the TP_2 property of g_1 . Hence, Remark 1. Note that the result in Theorem 4 pertains to the posterior marginal p.d.f. of θ_i . Also it holds irrespective of the choice of the prior distribution. Remark 2. It follows from Theorems 1 and 4 that $E\{\phi(\theta_i)|\underline{x}\}$ is increasing in x_i for every increasing real function $\phi\colon R\to R$. In many applications, we noted that the posterior distribution of θ_i stochastically decreases in x_j for every $j\neq i$. This fact is included in the following result. Theorem 5. Suppose that $$\xi^*(\underline{\theta}|\underline{x}) = H(\underline{x}) \prod_{i=1}^k g_i(x_i, \theta_i)C(\underline{\theta}),$$ where (i) $$g_{i}(x_{i}, \theta_{i})$$ is $TP_{2} \vee i = 1, ..., k$, (ii) for fixed $$x_i$$ (i = 1, ..., k), $g_i(x_i, \theta_i)$ is $PF_2(in \theta_i)$. and (iii) $C(\underline{\theta})$ is S-MRR₂. Then, for every i = 1, ..., k, $$\xi_{\mathbf{i}}^{\star}(\boldsymbol{\theta}_{\mathbf{i}} \, \big| \, \underline{\mathbf{x}}) \, > \, _{\mathsf{TP}_{2}} \xi_{\mathbf{i}}^{\star}(\boldsymbol{\theta}_{\mathbf{i}} \, \big| \, \underline{\mathbf{x}}^{\star})$$ whenever $\underline{x}' \ge \underline{x}$ and the i-th coordinates of \underline{x}' and \underline{x} are equal; that is, $x_i = x_i'$ and $x_j \le x_j' \forall j \ne i$. (For k = 2, condition (ii) is not required.) <u>Proof.</u> Without loss of generality we assume i = 1, $$\underline{x} = (x_1, x_2, x_3, ..., x_k), \text{ and}$$ $\underline{x}' = (x_1, x_2, x_3, ..., x_k),$ where $x_2^{\prime} > x_2^{\prime}$; that is, \underline{x} and \underline{x}^{\prime} differ only in the second coordinate. (A) We consider first the case of k>2 . The posterior marginal p.d.f. of $\theta_{\,1}$ is $$\xi_1^*(\theta_1|\underline{x}) = H(\underline{x})g_1(x_1, \theta_1) \int g_2(x_2, \theta_2)G(\theta_1, \theta_2, x_3, \dots, x_k)d\theta_2$$ where $$G(\theta_1, \theta_2, x_3, \dots, x_k) = \int \cdots \int C(\underline{\theta}) \prod_{i=3}^k g_i(x_i, \theta_i) d\theta_i.$$ Since $C(\underline{\theta})$ is S-MRR₂ and $g_i(x_i, \theta_i)$ is PF₂ in θ_i , it follows 1764 FAHMY ET AL. from Definition 4 that G is RR₂ in (θ_1, θ_2) for every fixed (x_3, \ldots, x_k) . By the basic composition formula (Karlin [1968]) and the fact that $\mathbf{g}_2(\mathbf{x}_2, \ \mathbf{\theta}_2)$ is TP_2 , it follows that $$G_1(\theta_1, \underline{x}) = \int g_2(x_2, \theta_2)G(\theta_1, \theta_2, x_3, \dots, x_k)d\theta_2$$ is ${\rm RR}_2$ in $(\theta_1$, ${\rm x}_2)$ for every fixed $({\rm x}_3$, ..., ${\rm x}_k)$. (Note that ${\rm G}_1$ is constant in ${\rm x}_1$.) As before, let $$\xi_{10}(\theta_1) = \xi_1^*(\theta_1|\underline{x}), \text{ and } \xi_{11}(\theta_1) = \xi_1^*(\theta_1|x')$$ and note that $$\frac{\xi_{11}(\theta_1)}{\xi_{10}(\theta_1)} = \frac{H(\underline{x}')}{H(\underline{x})} \frac{G_1(\theta_1,\ \underline{x}')}{G_1(\theta_1,\ \underline{x})}$$ is decreasing in θ_1 since G_1 is RR_2 in (θ_1, x_2) . Hence, $$\xi_{10} > TP_2^{\xi_{11}}$$ (B) When k = 2, from (iii), $C(\theta_1, \theta_2)$ is RR_2 and by the basic composition formula, $$G_1(\theta_1, x_2) = \int g_2(\theta_2, x_2)C(\theta_1, \theta_2)d\theta_2$$ is RR₂. Thus, if $x_2 > x_2$ $$\frac{\xi_{1}^{\star}(\theta_{1} \mid (x_{1}, x_{2}^{\star}))}{\xi_{1}^{\star}(\theta_{1} \mid (x_{1}, x_{2}))} = \frac{\Pi(x_{1}, x_{2}^{\star})}{H(x_{1}, x_{2})} \frac{G_{1}(\theta_{1}, x_{2}^{\star})}{G_{1}(\theta_{1}, x_{2})}$$ is decreasing in θ_1 and the result follows. \square Remark 3. Note that Theorem 5 involves conditions on the prior distribution. Remark 4. It follows from Theorems 1 and 5 that $E\{\phi(\theta_i)|\underline{x}\}$ is decreasing in x_i wherever $j\neq i$ and $\phi\colon R\to R$ is increasing. #### 4. APPLICATIONS In this section, we show how the results of Section 3 apply to some important probability distributions. Example 1. Multivariate Normal Distribution. Let \underline{x} be a k-dimensional random vector whose coordinates, x_i (i = 1, ..., k), are inde- pendent. Suppose that for i = 1, ..., k, $\theta_i = E\{x_i\}$ is unknown and $\sigma_i^2 = Var\{x_i\}$ is known. Then, whatever appropriate prior we choose, Theorem 4 applies, and by Remark 2, $E\{\phi(\theta_i)|x\}$ is increasing in x_i for every increasing real function ϕ . Suppose that our prior opinion about $\underline{\theta}$ is represented by a non-singular k-dimensional normal distribution, with mean vector $\underline{\mu}$ and covariance matrix V^{-1} , which is a conjugate prior. Let \mathbf{v}_{ij} (i, $j=1,\ldots,k$) be the (i, j)-th element of V. If $\mathbf{v}_{ij} \leq 0$ for every $\mathbf{i} \neq \mathbf{j}$, then $\xi(\underline{\theta})$, the prior p.d.f., is MTP₂ (Barlow and Proschan [1981]). Thus, Theorem 3 and its corollary apply yielding the conclusion that $\underline{\theta}$ is stochastically increasing in $\underline{\mathbf{x}}$. If the prior $\xi(\underline{\theta})$ is negatively dependent in the S-MRR₂ sense, then Theorem 5 applies, and by Remark 4, for every $i=1,\ldots,k$, $E\{\phi(\theta_i)|\underline{x}\}$ is decreasing in $x_j(\forall j\neq i)$ for every increasing real function ϕ . A normal prior is S-MRR₂ if $$V^{-1} = D - \alpha^{\prime}\alpha$$ where D is a positive definite diagonal matrix, say D = diag(d_1 , ..., d_k) with $d_i > 0$, and $\alpha = (\alpha_1, \ldots, \alpha_k)$ with $\alpha_i \ge 0$ and $\sum_{1}^{k} \alpha_i^2 d_i^{-1} < 1$ (Karlin and Rinott (1980b] or Block, Savits, and Shaked [1982]). In particular, if the correlation matrix for the normal prior distribution is $$\begin{bmatrix} 1 & \rho & \dots & \rho \\ \vdots & & & \vdots \\ \rho & \rho & & 1 \end{bmatrix},$$ where $\rho \leq 0$, then the prior p.d.f. is S-MRR₂. \square Example 2. Multivariate Bernoulli Trials. Let $\underline{y_1}, \underline{y_2}, \ldots$ be a sequence of i.i.d. k-dimensional vectors with common multinomial distribution with parameters n=1 and $\underline{p}=(p_1,\ldots,p_k)$, where $\sum_{1}^{k}p_i=1$. That is, $\underline{y_1},\underline{y_2},\ldots$ are independent and $\underline{y_i} \sim M(1,\underline{p}) \ \forall \ i=1,2,\ldots$. Note that for any finite sequence $\underline{y_1},\ldots,\underline{y_m}$, the vector $\underline{x}=\sum_{1}^{m}\underline{y_i}=(x_1,\ldots,x_k)$ is a sufficient statistic since the probability mass function of $\underline{y_1},\ldots,\underline{y_m}$ is $$L = \prod_{i=1}^{k} p_i^{x_i} I(\underline{p})$$ where $I(\underline{p})$ is the indicator function of $\sum_{i=1}^{k} p_{i} = 1$. Clearly, $f(\underline{x}|\underline{p}) = h(\underline{x})L$. We notice now that Theorem 4 applies since p_i^{i} is TP_2 in (x_i, p_i) . Hence, by Remark 2, for i = 1, ..., k, $E(\phi(p_i)|\underline{x})$ is increasing in x_i , for every increasing real function ϕ . Suppose that a Dirichlet distribution with parameters each no smaller than unity is chosen to represent our prior opinion about p. With this choice, the prior p.d.f. for p is S-MRR₂ (see Karlin and Rinott [1980b] or Block, Savits, and Shaked [1982]). Thus, since $p_i^{\ i}$ is PF₂ in $p_i^{\ (i-1,\ldots,k)}$, Theorem 5 applies and by Remark 4, for $i=1,\ldots,k$, $E\{\phi(p_i^{\ })|\underline{x}\}$ is decreasing in $x_i^{\ }$ whenever $j\neq i$ and ϕ increasing. [] Remark 5. Note that Example 2 includes both the multinomial and the negative multinomial models. Example 3. Multivariate Hypergeometric Distribution. The probability mass function in this case may be expressed as $$f(\underline{x}|\underline{\theta}) = h(\underline{x}) \prod_{i=1}^{k} {\theta \choose x_j} 1(\underline{\theta}),$$ where $I(\underline{\theta})$ is the indicator function of $\sum_{i=1}^{k} \theta_{i} = N$. Again, Theorem 4 applies since $\binom{\theta}{x_{i}}$ is TP_{2} . Thus, for i = 1, 2, ..., k, E{ $\phi(\theta_i)|x\}$ is increasing in x_i whenever ϕ is an increasing function. Suppose that a Dirichlet-Multinomial distribution [denoted by DM(n; α)] with shape parameters, α_i 's, each no smaller than unity is chosen to represent our opinion about θ . In addition, note that (x_i^0) is PF₂ in θ_i for every fixed x_i . Thus, Theorem 5 and Remark 4 apply. To conclude this example, recall that the posterior distribution of $\theta - x$ (the unsampled population) is DM(N; $\alpha_1 + x_1, \ldots, \alpha_k + x_k$) whose component means are given by $(\sum_{i=1}^{k} (\alpha_i + x_i))^{-1} (\alpha_i + x_i)$ for $i = 1, \ldots, k$. Thus, for every $i = 1, \ldots, k$, E{ $\theta_i - x_i | x$ } is decreasing in $x_i \neq j \neq i$. \square Remark 6. The above example may be viewed as a natural generalization of Theorems 2 and 3 of Whitt (1979). Example 4. Uniform Distribution. Suppose that t_1, \ldots, t_n is a random sample from a uniform distribution on the real interval (θ_1, θ_2) . Let (x_1, x_2) be the usual sufficient statistic, that is, $x_1 = \min(t_1, \ldots, t_k)$ and $x_2 = \max(t_1, \ldots, t_k)$. Suppose that a bilateral Pareto distribution with parameter (r_1, r_2, α) represents our prior opinion. This distribution is a conjugate prior for the uniform distribution case (De Groot [1970], pp. 62-63 and pp. 172-174). The prior p.d.f. is given by $$\xi(\theta_1, \theta_2) = \alpha(\alpha + 1)(r_2 - r_1)^{\alpha}(\theta_2 - \theta_1)^{-(\alpha+2)}I(\theta_1, \theta_2)$$ where $\alpha > 0$, $r_1 < r_2$, and $I(\theta_1, \theta_2)$ is the indicator function of $\theta_1 < r_1$ and $\theta_2 > r_2$. The likelihood function may be expressed as: $$L = (\theta_2 - \theta_1)^{-n} I_1(x_1, \theta_1) I_2(x_2, \theta_2)$$ where I_1 and I_2 are the indicator functions of $x_1 > \theta_1$ and $x_2 < \theta_2$ respectively. Since I_1 and I_2 are TP_2 functions and $(\theta_2 - \theta_1)^{-b}$ is RR_2 for b > 0, Theorems 4 and 5 (k = 2) apply. Then by Remarks 2 and 4, we conclude that $E\{\phi(\theta_1) \mid (x_1, x_2)\}$ increases in x_1 and decreases in x_2 for every increasing function ϕ . The analogous result for θ_2 is obvious. \square Example 5. The Exponential Family. This application is of a general nature. Consider that the distribution of \underline{x} belongs to the exponential family. With a proper reparametrization we may consider $\underline{\theta}$ such that $$f(\underline{x}|\underline{\theta}) = h(\underline{x}) \exp{\{\underline{\theta}^*\underline{x}\}}c(\underline{\theta})$$ Since $e^{\theta_i x_i}$ is TP₂, Theorem 4 applies and for any increasing ϕ , $E\{\phi(\theta_i) | \underline{x}\}$ is increasing in x_i . With a suitable choice for the prior, Theorem 5 and Remark 4 apply. #### 5. ACKNOWLEDGEMENTS. Originally, we stated Theorem 5 for the case k=2. This fact greatly restricted our applications. We would like to thank Shelly Zacks and the referee for their suggestions which made possible the actual extended version. #### **BIBLIOGRAPHY** - Barlow, R.E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing. To Begin With, Silver Spring, MD. - Block, H.D., Savits, T.H., and Shaked, M. (1982). Some Concepts of Negative Dependence. Ann. Prob., to appear. - De Groot, M.H. (1970). Optimal Statistical Decisions. McGraw-Hill, New York. - Karlin, S. (1968). Total Positivity. Stanford University Press. - Karlin, S. and Rinott, Y. (1980a). Classes of Orderings of Measures and Related Correlation Inequalities. I. Multivariate Totally Positive Distributions. J. Mult. Analysis 10, no. 4; 467-498. - Karlin, S. and Rinott, Y. (1980b). Classes of Orderings of Measures and Related Correlation Inequalities. II. Multivariate Reverse Rule Distributions. J. Mult. Analysis 10, no. 4, 499-518. - Pereira, C.A.B. (1980). Bayesian Solutions to some Classical Problems of Statistics. Unpublished Ph.D. thesis submitted to Florida State University. - Whitt, W. (1979). A note on the Influence of the Sample on the Posterior Distribution. J. Amer. Statist. Assoc., 74 No. 366 424-426. Received March, 1981; Revised February 1982. Recommended by Shelemyahu Zacks, State University of New York at Binghamton, Binghamton, NY. Refereed Anonymously.