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ABSTRACT

In this paper, we present conditions on the likelihood func-
tion and on the prior distribution which permit us to assess the
effect of the sample on the posterior distribution., Our work is
inspired by Whitt (1979) J. Amer. Statist. Assoc. 74, and is based

on the notions of multivariate totally positive and (strongly) mul-
tivariate reverse rule functions introduced and studied by Karlin
and Rinott (1980a, b).

1. INTRODUCTION

As usual, 8 is the parameter of interest and x is the data on
which the inference about 6 is based, The Bayesian operation (prior
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to posterior) supplies the answer to the question of how to use the
information (about 8) provided by the data, x. Here, attention is
shifted to another general question: What kind of information about
8 does the sample possess? ’

Whitt (1979) shows that in a Bayesian analysis, under certain
general conditions, the larger the observations, the larger (or
smaller in a reparametrization) stochastically will be the appro-
priate parameter of the posterior distribution. His interesting re-
sults are developed for the case of a univariate parameter, mainly
in the hypergeometric distribution. In the present paper, it is
shown that Whitt's key ideas may be extended to the case of multi-
variate distributions with multivariate parameters. The basic no-
tions used here are multivariate total positivity of order 2, and
multivariate reverse rule of order 2, introduced and studied by
Karlin and Rinott (1980a, b). These concepts are briefly described
in Section 2. ‘

Section 3 presents sufficient conditions on the likelihood func-
tion and on the prior distribution under which ei, the i-th compo-
nent of 8 in the posterior distribution, be increasing in X the
i-th component of x and decreasing in xj for j = i. In Section 4,

these results are applied to some well known distributions.

2. PRELIMINARIES

in this section we present definitions, notation, and basic
facts used throughout the paper.

Definition 1. A random vector x is said to be stochastically in-

creasing in a random vector y if E{¢(x)|y) is increasing in y for

every increasing bounded real function ¢. (A function ¢: Rk + R
is said to be increasing if it is increasing in éach of its argu-
ments.)

The following concepts of total positivity of order 2 (TPZ),re-

verse rule of order 2 (RRZ)' and Pélya frequency function of order
2 (PF,) may be found in Karlin (1968).

Definition 2. (i) A nonnegative real function f: R2 + R is TP2 (RRZ)
if
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fx,, x,)f(x7, x5) 2()f(x;, xJ)f(x7, x,)
1 2 1 2 1 2 1 2

thenever x; 2 X1 and x 2 x

1 2 2°
(ii) A nonnegative real function £: R - R is PF2 if
f(xl' xz) = g(x1 - x2) is 1P2.
The definitions below appear in Karlin and Rinott (1980a, b),

For every x, y ¢ Rk, denote:

52¥1fﬁzyiV1=L.“,h

x vy = max(x;, y;), ..., max(x, y)),
and x Ay = (min(x), y;), ..o, min(x, ¥,)).

The following is the natural generalization of Definition 2(i):
Definition 3. Consider a nonnegative real function f: Rk -+ R. We

say that f(x) is multivariate totally positive of order 2 or M'I’P2

(multivariate reverse rule of order 2 or MRRZJ if:

f(x vy f(x Ay 2(2) F(RE(Y

for every x, y ¢ Rk.

Karlin and Rinott (1980a) show that MTP2 is a concept of strong
positive dependence. They show, however, in their second paper
(1980b) that the MRRZ property fails to be a 'good" concept of ne-
gative dependence. In the same paper they solve the problem by in-
troducing the following definition. For additional illustration of
its usefulness we refer to Block, Savits, and Shaked (1982).

Let (il, ceey ik) be any permutation of (1, 2, ..., k)..
Definition 4. An MRR2 function f: Rk + R is said to be strongly-
MRR2 (S-MRRZ) if for any set of k PF, functions (cl, cees ;k}, and
for each j < k, the function

. J
gk'j(xij+1’ o xik) ) I‘..ff(ﬁ)mflcm(xim)dxim
is MRR2 whenever the integral exists.

The multivariate generalization of the familiar monotone like-
lihood ratio property is given by:
Definition 5. Let fl and f2 be two probability density or mass
functions (p.d.f.) on R%. If for every x, y Rk, .
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foxvy) £i(xay) 2 £ 00,

then we say that fz is "larger than" fl in the TP2 sense, and write

f27 1, f1

It is well known that the monotone likelihood ratio ordering
implies stochastic ordering. The following result is a generaliza-
tion of this fact.

k
Theorem 1. Let f1 and fz be two p.d.f.'s on R such -that fz > TPZf1

If ¢: Rk + R is an increasing function, then

-

i

[++-]ox) £ ()dx < [+ fo(x) £,(x)dx.
For a proof of this result, see Karlin and Rinott (1980a).

3. THEORETICAL RESULTS.

In the sequel, let § be a parameter taking values in a subset
9 (the parameter space) of Rk, and x aRn(n 2 k) be the data vector.
The likelihood function or the sample p.d.f. is represented by
f(5|§). The prior and the posterior p.d.f.'s are denoted respec-
tively by £(8) and £*(8]x). ‘

The following result is the TP2 version of Theorem 4 of Whitt
(1979). 1In the above notation, suppose that k = n = 1, 8 denotes
the parameter, and x denotes the data.

Theorem 2. Consider f(xle) and E*(elx) as bivariate real functions
of 8 and x. Then f(x|6) is TP,(RR,) if and only if £*(8lx) is
TPZ(RRZ).. \

Proof. For [H(x)]™" = [f(x]|8)&(8)de, we notice that

£*(0]x) = H(DE@)F(x|e). Then, SCX »(s) g:%%bf-;}—)— holds

E¥(87]x)
. ¢ £(x]6) £(x°]8)
if and only if F(x]07) z2(3) 18 0
Theorem 2 motivates the results of this section.
Let h: R" + R and g: Rn+k + R be two nonnegative'real func-

.tions,
Theorem 3. Suppose that

(a) f(}_[_e.) = h(x) g(x, 8), where g is MIP
and (b) E(8)is MTP Then

2’
2
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ex(elx”) » £*(6]x)
2

TP
for every x, x” ¢ R" such that X7z x.

Proof. The posterior p.d.f. may be factored as:

E*(8)x) = 1i(x) g(x, 8)€(8),
where
1 = feix, 9)e(e)do.

Consider two sample points x° and x such that x” 2 x, and

denote
£5(8) = £*(8]x) and £,(0) = £*(8)x").

Let 8 and 8” be two points in the parameter space 0. iow, we

can write
" 828 (&7 = NN (x, Bglx”, BIE(DIE®)
S HEOH(xg(x A X7, 84 87)g(x v X", 8 v 87)E(8 A 87)E(8 Vv 87)
since both g and ¢ are MIP,. Since x” z x, we finally have
£9(8)6,(87) s [(X)g(x, 8 A 87)E(8 A 87)] x
(H(xg(x", 8 v 87)E(a v 87)]
= 5,8 A 876, (0 v 8.

Thus, it is equivalent to say that &, > . & . [
1 1P2 0
Corollary. If conditions (a) and (b) of Theorem 3 hold, then 8 is

stochastically increasing in x.
Proof. The result follows immediately from Theorems 1 and 3. 0O

In many cases, conditions (a) and (b) of Theorem 3 are too
strong. A more realistic result is presented below where x is con-
sidered to be the data reduced by sufficiency, and to have the same
dimension of 8; that is, n = k.

Let ¢: Rk + R, and g Rz + R(i =1, ..., k) be nonnegative
functions and represent the posterior marginal p.d.f. of 8,
(=1, ..., k) by £5(6;|x).
Theorem 4. Suppose that
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k
f(x|®) - h(x) 1 8; (g 8p)e(@ ¥
=1

where, for i = 1, ..., k, g; is TPz. Then, for every i = 1, ..., k,
the following condition (for the posterior marginal density of ei)
holds:

* - ' *

gfe, |x) > szzi(eily
for x” equal to x except for the i-th coordinate, where x{(z xi)
replaces Xge

Proof, Without loss of generality we assume i = 1. The posterior

marginal p.d.f. of 61 is

k
t = L ]
£100, [0 = H(we (x;, 6))f fccg)izzgi(xi. 8,)de,,
where C(8) = c(8)£(8), and H(x) is defined as above. Now, define

k
G, (x, 8,) = f--~IC(§)i§2gi(xi. 8,)de,,
which is constant in xl. Thus,

£%(8,1x) = H(x)g, (x;, 8,)G (x, 6)).

Consider two sample points that differ only in the first coordi-

nate, say
x = (xl, xz, caey xk), and x° = (xi, Xys cooa xk),
where xi 2 xl' Define
*
£10(8) = €106, |0
* P
and  £,,(8)) = £](8,[x")
Since by definition
61(5. 8,) = Gl(i s 91),
we thus have
511(91) . "(Z.ﬂ)gl(xin e‘l)

which is increasing in 81 by the TP2 property of 8, Hence,

11 > 1p.510° O

2 10
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Remark 1. Note that the result in Theorem 4 pertains to the pos-
terior marginal p.d.f. of 8, Also it holds irrespective of the
choice of the prior distribution.
Remark 2. It follows from Theorems 1 and 4 that E{¢(Gi)]§} is
increasing in X for every increasing real function ¢: R + R,
In many applications, we noted that the posterior distribu-

tion of ei stochastically decreases in xj for every j = i, This
fact is included in the following result.
Theorem 5. Suppose that

K

£*(8x) = () 1 g (x,, 8,)C(8),

i=1
where
vi=1, ..., k,

(i) gi(xi. ei) is TP2

(ii) for fixed xi(l =1, ..., k), gi(xi, ai) is PFZ(in Bi).
and (iii) C€(@) is S-MRRZ.
Then, for every i = 1, ..., k,
* * -
5o 1x) > szzi(eilz )

whenever x” 2 x and the i-th coordinates of x” and x are equal;

that is, X, x{ and xj < xj v j = i. (For k = 2, condition (ii)
is not required,)
Proof. Without loss of generality we assume i = 1, (

x = (xl, xz, xs, sy xk), and

O R o

where xi > xz; that is, x and x~ differ only in the second coordi-

nate.
(A) We consider first the case of k > 2, The posterior margi-

nal p.d.f. of 91 is
* 3
El(elli) H(x)g, (x;, el)fgz(xz. 8,)G(8,, 8,, X5, ..., X )dO,
where
k
G(O), 8, Xgs vy X)) = f“‘fC(QJiz g; (x,, 0,)de..

Since C(8) is S-MRR2 and gi(xi. ei) is PF2 in ai. it follows
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from Definition 4 that G is RRZ in (61, 62) for every fixed

(x3, ey xk).
By the basic composition formula (Karlin [1968]) and the fact

that gz(xz, ez) is TPZ, it follows that
Gl(elo 5) = jgz(xzv ez)c(ely ezl xsv LA ] xk)dez

is RR2

is constant in xl.)

As before, let

in (91‘ xz) for every fixed (x3. N xk). {Note that G1

= F* = p* o ”
E10(8)) = £7(8,x), and £, (8)) = £](8,[x")
and note that

£108)) . H(x") G (8;, x7)
£,008,) R G,(e, x)

is decreasing in 61 since Gl is RR2 in (el, xz). Hence,
10 7 e, f100 ,
(B) When k = 2, from (iii), C(ei, 9,) is RR, and by the basic

composition formula,
6,(8), x,) = ng(GZ, x,)C(0,, 0,)de, .

is RRZ' Thus, if xz > X

)

-

-

g0y Gepp x30) Nlxy, x9) 6,8, x))

E;(Bll(xl, x,))  H(x;, x,) G (8, x,)
is decreasing in 61 and the result follows.
Remark 3. Note that Theorem S5 involves conditions on the prior
distribution.
Remark 4. It follows from Theorems 1 and 5 that E(¢(ei)|5).is

decreasing in xj whevever j # i and ¢: R + R is increasing.

4. APPLICATIONS

In this section, we show how the results of Section 3 apply to
some important probability distributions.

Example 1. Multivariate Normal Distribution. Let x be a k-dimen-

sional random vector whose coordinates, xi(i =1, ..., k), are inde-
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pinaent. Suppose that for i = 1, ..., k, 8, = E{xi} is unknown - and
UI = Var{xi) is known. Then, whatever appropriate prior we choose,
Theorem 4 applies, and by Remark 2, E{¢(ei)|§) is increasing in X

for every increasing real function p.

Suppose that our prior opinion about 8 is represented by a non-
singular k-dimensional normal distribution, with mean vector u and
covariance matrix V'l, which is a conjugate prior. Let Vij
(i, j=1, ..., k) be the (i, j)-th element of V. If vij < 0 for
every i = j, then £{8), the prior p.d.f., is MTPz (Barlow and Pros-
chan [1981]). Thus, Theorem 3 and its corollary apply yielding the
conclusion that @ is stochastically increasing in x.

If the prior £(8) is negatively dependent in the S-MRR, sense,

2
then Theorem 5 applies, and by Remark 4, for every i =1, ..., k,
E{¢(ei)|1} is decreasing in xj(vj z i) for every increasing real
function ¢. A normal prior is S-MRR2 if
V-1 =D-a’a
K
where D is a positive definite diagonal matrix, say

D= diag(dl, ceas dk) with di >0, and a = (al, cens ak) with

! <1 (xarlin and Rinott (1980b] or Block, Savits,

k 2. -
ay 2 0 and Xluidi K
and Shaked [1982]). 1In particular, if the correlation matrix for

the normal prior distribution is

1 [

PP

- e

»

where p < 0, then the prior p.d.f. is S-MRR,. 0

Example 2. Multivariate Bernoulli Trials, Let Yys Yoo oo be

a sequence of i.i.d. k-dimensional vectors with common multinomial
distribution with parameters n = 1 and p :,(pl, cees Pk)’ where

k X .

lei = 1, That is, Yp+ Yp» --- are independent and

Yy v oM@, p) Yi=1,2, ... . Note that for any finite sequence
Yyr. +++» Y the vector x = X?zd = (x;» ++.y %) is a sufficient
statistic since the probability mass function of Lys oo Yy is
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k X,
L=17p, 1(p)
i=1

where I(p) is the indicator function of tii = 1, Clearly,
£(x|p) = h(x)L. x.

We notice now that Theorem 4 applies since pi1 is TP, in
(xi, p;). Hence, by Remark 2, fori =1, ..., k, E(¢(pi)|5} is
increasing in x, for every increasing real function ¢.

Suppose that a Dirichlet distribution with: parameters each no
smaller than unity is chosen to represent our prior opinion about
p. With this choice, the prior p.d.f. for p is S-MRR2 (see Karlin
and Ringtt [1980b] or Block, Savits, and Shaked [1982]}). Thus,

since pi1 is PF2 in pi(i -1, ..., k), Theorem 5 applies and by Re-
mark 4, fori =1, ..., k, E(¢(pi)|£} is decreasing in xj whenever
'j = i and ¢ increasing. [

Remark 5. Note that Example 2 includes both the multinomial and
the negative multinomial models.

Example 3. Multivariate Hypergeometric Distribution. The probabi-

lity mass function in this case may be expressed as

k
8,
£(x]8) = h(0) 1 () 1(8),
isl 7j
where 1(8) is the indicator function of Ztei = N. Again, Theorem

4 applies since (gi) is TP Thus, for i =1, 2, ..., k,

2
i
E(¢(ei)|§} is increasing in X whenever ¢ is an increasing function.
Suppose that a Dirichlet-Multinomial distribution [denoted by
DM{n; @)] with shape parameters, ai's, each no smaller than unity

is chosen to represent our opinion about 8. 1In addition, note that

—

8. o
(x;) is PF, in 8; for every fixed x;. Thus, Theorem S and Remark

.

4 apply. To conclude this example, recall that the posterior
distribution of - x (the unsampled population) is

DM(N; ay + xl, sees O + xk) whose component means are given bf
k -1 .
(Xl(uj + xj)) (ui + xi) for i =1, ..., k. Thus, for every

i=1, ..., k, E{Oi - xilil is decreasing in xj viji=i.0O
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Remark 6. The above example may beé viewed as a natural gencraliza-
tion of Theorems 2 and 3 of Whitt (1979).

Example 4. Uniform Distribution, Suppose that t e T is a

random sample from a uniform distribution on the real interval

(el, 02). Let'(xl. x2) be the usual sufficient statistic, that is,
X = min(tl, ey tk) and X, = max(tl, RN tk)' Suppose that a
bilateral Pareto distribution with parameter (rl, Ty a) represents
our prior opinion. This distribution is a conjugate prior for the
uniform distribution case (De Groot {1970], pp. 62-63 and pp. 172-
174). The prior p.d.f. is given by

£(8), 8,)) = ala + L) (r, - rD%, - 6)7 D1, 0))

where @ > 0, r. < r,, and (6 62) is the indicator function of

1 1’
61 <Ty and 62 > r,. The likelihood function may be expressed as:
-n
L= (82 - el) Il(xl’ el)lz(xz, 62)
where Il and I2 are the indicator functions of X2 el and Xy < 92
respectively. Since I1 and 12 are TP2 functions and (62 - 61)'b is

RR2 for b > 0, Theorcms 4 and 5 {k = 2) apply. Then by Remarks 2

and 4, we conclude that E{¢(61]l(xl, x,)} increases in X, and de-
creases in X, for cvery increasing function ¢, The analogous re-
sult for 6, is obvious. [

2
Example 5. The Lxponential Family. This application is of a gen-

eral nature. Consider that the distribution of x belongs to the
exponential family. With a proper reparametrization we may consi-
der 6 such that
£(x|8) = h(x) expi8 x}c(y)
8. x.
Since e * ! is TPZ' Theorem 4 applies and for any increasing ¢,
E{¢(8;) |x} is increasing in x;. With a suitable choice for the

prior, Thevrem 5 and Remark 4 apply.
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