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Abstract: Measuring the dependence between random variables is one of the most fundamental
problems in statistics, and therefore, determining the joint distribution of the relevant variables is
crucial. Copulas have recently become an important tool for properly inferring the joint distribution of
the variables of interest. Although many studies have addressed the case of continuous variables, few
studies have focused on treating discrete variables. This paper presents a nonparametric approach
to the estimation of joint discrete distributions with bounded support using copulas and Bernstein
polynomials. We present an application in real obsessive-compulsive disorder data.
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1. Introduction

The association between random variables is a subject of interest in many scientific fields. The most
complete method of characterizing the association between random variables is to determine the joint
distribution of these random variables. Multivariate density functions, for absolutely continuous
variables, and multivariate probability mass functions, for discrete variables, have become the focus of
researchers interested in evaluating such associations (see, for example, [1–4]).

The motivation for the present paper was a study performed as part of the Obsessive-Compulsive
Spectrum Disorder Program of the Institute of Psychiatry, University of São Paulo Medical School.
A group of 1001 consecutive adult outpatients diagnosed with primary obsessive-compulsive disorder
(OCD) according to the DSM-IV criteria [5] were recruited, and some of these patients were submitted
to psychiatric treatment. Their OCD severity was evaluated using the Yale-Brown Scale (YBOCS; [6,7])
at the beginning of the project. At the time when the data records were accessed, only 213 patients
participated in the re-evaluation using the same scale. The YBOCS is composed of two sub-scales,
obsession (O) and compulsion (C), and each sub-scale assumes values in the set of integers {0, 1, . . . , 20}.
To measure the OCD severity of the patients, we considered the maximum value between the O and
C sub-scale measures, max{O;C}; this method of scoring is known as the M-YBOCS scale (see the
discussions in [8,9]).

Figure 1 presents the initial (X) and final (Y) M-YBOCS scores for all 213 patients for whom both
initial and final scores were obtained. In this graphic, darker colors and larger dots represent higher
cell frequencies. Our first objective is to estimate the marginal distributions of the initial and final
scores. For this purpose, all available information should be used: all 1001 patients included in the
first evaluation and all 213 remaining patients at the end of the study. If we use only the complete
pairs of observation, omitting missing marginal values, we obtain only 213 pairs of measurements to
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be used in the estimation of the joint distribution of interest, the support of which possibly contains
441(= 212) points, nearly double the sample size. As a consequence, standard methods of estimation
(like maximum likelihood) would unavoidably yield estimates equal to zero for most cell probabilities.
It is then reasonable to consider the whole dataset (including the available incomplete pairs) in order
to improve such estimates.

Figure 1. Frequencies of each observed OCD severity before and after treatment.

The objective of the present paper is to introduce a method of estimating multivariate discrete
probability mass functions in the presence of (marginal) missing data. For this purpose, we developed
an estimation method that uses both empirical distribution functions and Bernstein polynomials.
The procedure consists of estimating a smooth joint distribution function, followed by applying a
method that transforms this function into a discrete function, i.e., the estimated joint probability
mass function. The results of this new method are compared with those of alternative methods, both
graphically and by evaluating standard distances.

Section 2 describes the existing methods found in the literature that will be considered for
comparison. Section 3 describes our estimator for the joint probability functions. Section 4 presents a
discussion of the new method and comparisons of this method to the alternative methods using both
simulated samples and the real OCD example. Finally, in Section 5, we present our final comments
and considerations for future work.

2. Existing Solutions

First, we introduce the mathematical framework for our problem. Let F be the unknown
distribution function of a random vector X that takes values in a subset of Rp. A sample of size n of
X is represented by X1, . . . , Xn, where Xi = (Xi1, . . . , Xip) and i = 1, . . . , n. In other words, the Xi’s
are conditionally independent and identically distributed random variables, given any distribution
function F. Observations of Xi are denoted by xi.

Assuming that the distribution F is drawn from a known family of distributions, we represent
the statistical model by (X ,F ,P), where X is the sample space, F is a sigma-algebra of its subsets
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and P = {P(·|θ) : θ ∈ Θ} is a family of distributions indexed by the parameter θ that belongs to the
parameter space Θ. The estimation of F is then reduced to that of the parameter θ, and the dependence
structure is limited to that supported by the underlying statistical model. For many years, the multivariate
normal distribution has been used for most multivariate analyses (see, for example, [10,11]). Recently,
for many random phenomena whose distributions are skewed and possess heavier tails than those of
the normal distribution, alternative distributions, such as multivariate skew-elliptical distributions, have
been adopted [12,13].

In recent approaches, copulas have become a popular tool for modeling multivariate dependence
structures and for obtaining new multivariate distributions with given marginals. In short, a copula is
a multivariate distribution whose marginals are uniform over the entire range [0, 1]. There are many
parametric families of copulas, allowing for the modeling of many different dependence structures [1–4].
Let F be a p-dimensional distribution function with the margins F1, . . . , Fp. Sklar [14] first showed that
there exists a p-dimensional copula C such that:

F(x1, . . . , xp) = C(F1(x1), . . . , Fp(xp))

for all x = (x1, . . . , xp) in the domain of F. If the variables X1, . . . , Xp are absolutely continuous,
then the copula C is unique; otherwise, C is uniquely determined on Ran(F1)× . . .× Ran(Fp), where
Ran(Fi) is the image of the function Fi, i = 1, . . . , p [14]. Thus, the copula can be used to separately
model the margins and the dependence structure. The non-unique representation of a copula for
discrete distributions is a theoretical issue that must be considered in the context of an analytical proof,
but this does not limit its empirical applications [15]. However, the above theorem [14] does not tell us
how to find the copula C. This problem is widely discussed in the literature, and several solutions to
this problem have been proposed (see, for example, [16]). The most widely-used approach is to adjust
several families of (parametric) copulas and choose one of them using certain selection criteria or a
goodness-of-fit test [17–21].

Nonparametric techniques may also be applied to estimate a multivariate distribution. A popular
solution using this approach is the application of the empirical distribution function F(n) : Rp → [0, 1],
which is defined, for (t1, . . . , tp) ∈ Rp, as:

F(n)(t1, . . . , tp) =
1
n

n

∑
i=1

I
{

x1i ≤ t1, . . . , xpi ≤ tp
}

, (1)

where I{A} is the indicator of the set A. This approach is equivalent to using the relative
frequencies to estimate the joint probability mass function. The relative frequencies coincide with
the maximum-likelihood estimate under the assumption that the data are drawn from a multinomial
distribution. One shortcoming of such approaches is that the probability of any non-observed cells
will be estimated to be zero.

Another possible approach is to use some function to smooth the empirical distribution. We can
consider the Bernstein polynomials [22,23] for this purpose because of their simplicity and good
mathematical properties [24,25]. Let h : [0, 1]p → R be a continuous function. The mth-degree
(multivariate) Bernstein polynomial for the function h, namely, Bm

h : [0, 1]p → R, is defined as:

Bm
h (x1, . . . , xp) =

m

∑
j1=0

. . .
m

∑
jp=0

h
(

j1
m

, . . . ,
jp

m

) p

∏
i=1

(
m
ji

)
xji

i (1− xi)
m−ji . (2)

The multivariate Bernstein polynomials for the function h converge uniformly to the function h as
m→ ∞ [26,27], and its derivatives are simple to obtain. The function h must be defined in [0, 1]p, and
therefore, for practical purposes, data that do not take values in [0, 1]p must first be transformed [24].
To apply this method to the OCD data, for example, we consider the transformation Y = X/20.
Moreover, the polynomial degree adopted here is m = n/log(n), as suggested by [24]. Bernstein



Entropy 2018, 20, 194 4 of 16

polynomials have been used to approximate a copula C by simply replacing the function h with the
copula. The resulting Bernstein polynomial, Bm

C , which is also a copula that strongly converges to C, is
called a Bernstein copula [28–32]. When the true copula is unknown, the empirical copula can be used
instead, and the resulting function is called the empirical Bernstein copula [16,33–37]. The empirical
copula is defined as:

Cn(u1, . . . , up) =
1
n

n

∑
i=1

I
{

F1(x1i) ≤ u1, . . . , Fp(xpi) ≤ up
}

.

Note that even when Fi, i ∈ 1, . . . , n, is unknown, we can use the empirical marginal distribution
F(n)

i as a consistent estimator of Fi, according to the Glivenko–Cantelli theorem (e.g., [38]). Other
estimators for marginal distributions could be considered instead, as in the procedure proposed in the
next section.

We have so far obtained a continuous function as an estimate while our objective is clearly to
estimate a (discrete) probability mass function. Hence, this function must be discretized to obtain
an adequate estimate. This can be achieved as follows: suppose, with no loss of generality, that
X =

(
X1, . . . , Xp

)
is a random vector such that all its components Xi, i = 1, 2, . . . , p, assume values in

the set Ω = {0, 1, . . . , k} with probability one. In addition, there always exists a continuous random
vector Z = (Z1, . . . , Zp) with distribution function F such that P(0 ≤ Zi ≤ k) = 1, i = 1, . . . , p,

and Xi =
k

∑
j=0

j I {j− 0.5 < Zi ≤ j + 0.5}, i. It follows that:

P
(
X1 = x1, . . . , Xp = xp

)
= P

(
x1 − 0.5 < Z1 ≤ x1 + 0.5, . . . , xp − 0.5 < Zp ≤ xp + 0.5

)
.

Let F (or an estimate F̂) be the continuous joint distribution function of the random vector Z,
and let B = [a, b] = [a1, b1]× . . .× [ap, bp] be a p-dimensional rectangle with all its vertices in Ω. The
F-volume of B [4] is then given by:

VF(B) = ∑
c

sgn(c)F(c), (3)

where the sum is taken over all vertices c = (c1, . . . , cp) of B, and sgn(c) is given by:

sgn(c) =

{
1, if cj = aj for an even number of j’s,
−1, if cj = aj for an odd number of j’s.

In particular, suppose b = (b1, . . . , bp) ∈ {0, 1, . . . , k}p, and take B = [b − 1
2 1, b + 1

2 1] =

[b1 − 0.5, b1 + 0.5]× [b2 − 0.5, b2 + 0.5]× . . .× [bp − 0.5, bp + 0.5], with bi ∈ Ω, ∀i = 1, . . . , p, then the
probability of the event {X = b} =

{
X1 = b1, . . . , Xp = bp

}
can be calculated (estimated) as:

P(X = b) = P(b1 − 0.5 < Z1 ≤ b1 + 0.5, . . . , bp − 0.5 < Zp ≤ bp + 0.5]) = VF(B).

Because weak convergence occurs at the points of continuity of the limiting distribution function
F and because our goal is to estimate a discrete probability mass function, we consider sets of the
form B = [b− 1

2 1, b + 1
2 1], with bi ∈ Ω, so that the vertices of the p-dimensional rectangle B are

always points of continuity of the distribution function of the discrete random vector X. Thus, such
discretization yields satisfactory estimates for the probability mass function of X.

3. Proposed Solutions

Our proposed method for estimating the joint distribution of a discrete random vector consists
of using Bernstein polynomials to estimate both the marginals and the copula. The advantage of
this method is that it allows all observations to be used, even in the case of missing values in some
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variable. Furthermore, this method is a nonparametric approach, and there are few restrictions on the
dependence structure.

First, for each random variable Xi, we estimate the marginal distributions using the empirical
marginal distribution with ni observations, F(ni)

i (x) = 1
ni

∑ni
j=1 I(xij ≤ x), i = 1, . . . , p; then,

the Bernstein polynomial of degree mi = ni/log(ni) is used to smooth this function:

Bmi
i (x) =

mi

∑
j=1

F(ni)
i

(
j

mi

)(
mi
j

)
xj(1− x)(mi−j).

As this estimator converges to the marginal distribution [24], we estimate the copula using an
alternative version of the empirical copula based on the n complete observations and the estimates
Bmi

i , i = 1, . . . , p,

Cn(u1, . . . , up) =
1
n

n

∑
j=1

I
{

Bm1
1 (x1j) ≤ u1, . . . , B

mp
p (xpj) ≤ up

}
,

and smooth this function to obtain the corresponding empirical Bernstein copula,

Bm
Cn
(u1, . . . , up) =

m

∑
j1=0

. . .
m

∑
jp=0

Cn

(
j1
m

, . . . ,
jp

m

) p

∏
i=1

(
m
ji

)
xji

i (1− xi)
m−ji .

Note that the construction of the copula Cn using Bernstein polynomials rather than empirical
(marginal) distribution functions yields, at least in the examples to be presented in Section 4, non-zero
estimates for non-observed cells. This feature justifies the choice of this alternative version of the
empirical copula.

The estimate of the joint distribution function is a discretization (Equation (3)) of the
following function:

F̂m,n(x1, . . . , xp) = Bm
Cn

(
Bm

1 (x1), . . . , Bm
p (xp)

)
. (4)

The algorithm used to obtain the proposed solution is quite simple and is summarized below:

1. for all ni observations of each variable Xi, estimate the marginal empirical distribution
function F(ni)

i ;
2. smooth each function F(ni)

i using a Bernstein polynomial B(mi)
i of degree mi;

3. for all complete observations of the random vector X, estimate the empirical copula Cn;
4. estimate the Bernstein copula by smoothing the empirical copula Cn using the mth-degree

multivariate Bernstein polynomial Bm
Cn

;
5. obtain a continuous estimate of the multivariate distribution function F̂m,n given by Equation (4);
6. discretize F̂m,n using Equation (3) to obtain an estimate of the discrete multivariate probability

mass function.

4. Applications

To evaluate the robustness of the method, we simulated datasets from two bivariate discrete
distributions generated using copulas (Examples 4.1 and 4.2). For each simulated example, we present
the estimated probabilities for three cases:

1. 600 pairs of observations with no censored data;
2. censored data in only one marginal, with 1000 observations in one marginal and 200 in

another; and
3. censored data in both variables, with 600 observations for each variable, 300 of which form

complete pairs.
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After these examples, we present and compare estimates to the observed data from the OCD
study (Example 4.3).

For the examples described above, we present the estimates for the probability mass functions
considering the proposed method and compare its performance with some existing solutions, similar
to those briefly discussed in Section 2 and which are more detailed below:

a. the empirical distribution presented in Equation (1), that is obtained using only the complete
pairs and the resulting probability function, coincides with the relative frequencies of the points
observed in the sample;

b. the multivariate skew t approximation that is obtained through a discretization of a parametric
multivariate continuous distribution, estimated by the maximum likelihood method using only
the complete pairs;

c. the discretization of the normal copula with the normal marginal approximation to the distribution
function that is obtained by using all observations for marginal distribution estimation and using
only the complete pairs for copula estimation. This method is quite similar to that described in (b)
considering the normal multivariate distribution rather than the skew t distribution, but here, it is
possible to estimate the marginal distributions using all available data, not just the complete pairs;

d. the discretization of the empirical Bernstein polynomial approximation presented in Equation (2),
replacing the function h by the empirical distribution F(n) obtained in (a) and using only the
complete pairs; and

e. our proposed solution described in the previous section, which is obtained by using the Bernstein
polynomial to approximate the margins using all observations and the approximated copula
using the complete pairs.

For all examples, we graphically illustrate the estimates of the probability mass distributions
and evaluate several distances between the estimated and theoretical distributions. For this purpose,
some notation must be introduced. Let θ = (θ1, . . . , θk) be the theoretical probabilities, and let
θ̂ =

(
θ̂1, . . . , θ̂k

)
be the estimated probabilities. We consider the following distances for comparison of

the estimates:

i. Aitchison’s distance:

∆(θ̂, θ) =

√√√√ k

∑
i=1

[
ln

(
θ̂i
θi

)
− L̄

]2

, where L̄ =
1
k

k

∑
i=1

ln

(
θ̂i
θi

)

ii. Euclidean distance:

δ(θ̂, θ) =

√√√√ k

∑
i=1

[
θ̂i − θi

]2
iii. Total variation distance:

τ(θ̂, θ) =
1
2

k

∑
i=1

∣∣θ̂i − θi
∣∣

iv. Kullback–Leibler symmetrized divergence:

D(θ̂, θ) =
1
2

[
k

∑
i=1

θi ln
(

θi

θ̂i

)
+

k

∑
i=1

θ̂i ln

(
θ̂i
θi

)]

Aitchison [39,40] and Pawlowsky [41] have presented many arguments for using Aitchison’s
distance for compositional vectors, that is when the sum of the vector’s components is constant (in our
case, the sum of the probabilities is equal to one). Moreover, the orderings implied by these distances
agree in most cases.



Entropy 2018, 20, 194 7 of 16

At the end of this section, we present the estimates for the distribution of the real data described
in the Introduction. In this case, we do not know the theoretical distribution; we present only the
estimates and the distances calculated from the empirical distribution.

4.1. Simulated Elliptically-Shaped Distribution

In this section, we simulate data from an elliptically-shaped distribution with marginals X1 ∼
beta-binomial (Nx = 20, α = 5, β = 5) and Y1 ∼ binomial (Ny = 20, π = 0.5) and a normal copula
with parameter ρ = 0.7.

We can see from Figures 2–4 and from Tables 1–3 that in these examples, the solutions based
on elliptical distributions, namely the skew t and normal distributions, yield better estimates. This
superior estimation occurs because the theoretical probability mass function is elliptical in shape.
However, in practical situations, we have no knowledge of the real shape of the distribution. In such a
case, the empirical distribution may be a good basis for evaluating the estimates, despite the existence
of many unobserved points that are estimated as zero. When the estimates are compared with the
empirical distribution, our proposed solution appears to produce good results, particularly in the
presence of censored data.

Figure 2. Estimates and theoretical probabilities for 600 complete pairs of observations, simulated from
an elliptically-shaped distribution.
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Figure 3. Estimates and theoretical probabilities for the case of censored data in only one marginal,
with 1000 observations in one marginal and 200 in the other, simulated from an elliptically-shaped
distribution.

Figure 4. Estimates and theoretical probabilities for the case of censored data in both variables, with 600
observations for each variable, of which 300 form complete pairs, simulated from an elliptically-shaped
distribution.
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Table 1. Distances between the estimates and theoretical probabilities for 600 complete pairs of
observations. The bold values highlight the smaller distances.

Example 4.1.1 Aitchison Euclidean Total Variation Kullback–Leibler

Empirical 4.98521 0.02116 0.09988 0.04154
Skew T 1.44499 0.00629 0.02915 0.00345
Normal Copula 1.28402 0.00476 0.02418 0.00236
Bernstein Polynomial 3.45943 0.01388 0.07159 0.01870
Bernstein Copula 3.23712 0.01217 0.06360 0.01578

Table 2. Distances between the estimates and theoretical probabilities for the case of censored data
in only one marginal, with 1000 observations in one marginal and 200 in the other. The bold values
highlight the smaller distances.

Example 4.1.2 Aitchison Euclidean Total Variation Kullback–Leibler

Empirical 8.97909 0.03454 0.17083 0.12490
Skew T 1.28441 0.00493 0.02291 0.00239
Normal Copula 1.28040 0.00554 0.02738 0.00284
Bernstein Polynomial 4.84901 0.02049 0.11110 0.03982
Bernstein Copula 3.28689 0.01171 0.06340 0.01530

Table 3. Distances between the estimates and theoretical probabilities for the case of censored data in
both variables, with 600 observations for each variable, of which 300 form complete pairs. The bold
values highlight the smaller distances.

Example 4.1.3 Aitchison Euclidean Total Variation Kullback–Leibler

Empirical 7.32955 0.03035 0.13826 0.09162
Skew T 1.12383 0.00419 0.02221 0.00185
Normal Copula 1.06365 0.00375 0.01891 0.00146
Bernstein Polynomial 4.54073 0.01934 0.10051 0.03531
Bernstein Copula 3.54526 0.01377 0.06743 0.01963

4.2. Simulated Asymmetrical Distribution

In this section, we present the simulated data for an asymmetrical distribution with margins
X2 ∼ beta-binomial (Nx = 20, α = 0.85, β = 1.1) and Y2 ∼ binomial (Ny = 15, π = 0.6) and a Gumbel
copula with the parameter θ = 0.7.

In the case of an asymmetrical distribution, our proposed solution yields a better estimation in
all three considered cases: the case with no censored data, the case with missing data in one variable
and the case with missing data in both variables. The superior performance of our approach can be
observed both graphically (Figures 5–7) and from the calculated distances (Tables 4–6). It is possible to
graphically observe that the probabilities of both the smaller and larger values of X2 are well estimated
by our method.
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Figure 5. Estimates and theoretical probabilities for 600 complete pairs of observations, simulated from
an asymmetrical distribution.

Figure 6. Estimates and theoretical probabilities for the case of censored data in only one marginal, with
1000 observations in one marginal and 200 in the other, simulated from an asymmetrical distribution.
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Figure 7. Estimates and theoretical probabilities for the case of censored data in both variables, with
600 observations for each variable, of which 300 form complete pairs, simulated from an asymmetrical
distribution.

Table 4. Distances between the estimates and theoretical probabilities for 600 complete pairs of
observations. The bold values highlight the smaller distances.

Example 4.2.1 Aitchison Euclidean Total Variation Kullback–Leibler

Empirical 6.17032 0.02767 0.12761 0.06377
Skew T 5.47625 0.03287 0.14429 0.07724
Normal Copula 5.76598 0.03293 0.14785 0.08020
Bernstein Polynomial 5.41325 0.02436 0.11969 0.05380
Bernstein Copula 5.07634 0.02519 0.11842 0.05068

Table 5. Distances between the estimates and theoretical probabilities for the case of censored data
in only one marginal, with 1000 observations in one marginal and 200 in the other. The bold values
highlight the smaller distances.

Example 4.2.2 Aitchison Euclidean Total Variation Kullback–Leibler

Empirical 8.77534 0.03906 0.19104 0.14363
Skew T 5.23773 0.03130 0.13494 0.07356
Normal Copula 5.07437 0.02892 0.12727 0.06549
Bernstein Polynomial 5.65580 0.02626 0.13135 0.06562
Bernstein Copula 4.86027 0.02558 0.11172 0.05379

Table 6. Distances between the estimates and theoretical probabilities for the case of censored data in
both variables, with 600 observations for each variable, of which 300 form complete pairs. The bold
values highlight the smaller distances.

Example 4.2.3 Aitchison Euclidean Total Variation Kullback–Leibler

Empirical 7.32005 0.03284 0.15576 0.09786
Skew T 4.79233 0.02760 0.12321 0.05917
Normal Copula 5.06253 0.02819 0.12855 0.06325
Bernstein Polynomial 5.09522 0.02253 0.11486 0.05028
Bernstein Copula 4.35547 0.01957 0.09863 0.03595
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The new method performed better than the other presented solutions in the case of asymmetric
models. It should be emphasized that the method was developed for cases with a large proportion of
censored data or situations in which the number of points to be estimated is larger than the sample size.
Figure 8 shows the Aitchison distances between the theoretical distribution and the estimates of the
example of Section 4.2 considering censored data in only one marginal. Sample sizes n ∈ {1, . . . , 2000}
with the same proportion of censored data of the example were considered. In this case, the support of
the distribution has 336 points. Note that for small samples (n < 750), the proposed method presents
the smallest distances. Although the method was developed for small samples, it appears that its
estimates converge to the theoretical distribution as n increases. However, a detailed investigation on
the asymptotic properties of the new method is needed and is the goal of a future work.

Figure 8. Distances between the estimates and theoretical probabilities for the case of censored data in
only one marginal, with n observations in one marginal and 80% of censored data in the other one.

4.3. Real Data

In this section, we present the estimates for the real data described in the Introduction. The
YBOCS is one of the most widely-used outcome measures in treatment studies of obsessive compulsive
disorder (OCD). The total YBOCS scores comprise an integer number varying from 0–40 and intend
to grade the severity of obsessive-compulsive symptoms. The total YBOCS score is the sum of two
sub-scales, each ranging from 0–20, one of which measures the severity of compulsion and the other
of obsession. The works in [8,9] propose that instead of the sum, it would be better to consider the
maximum of these two sub-scales, called M-YBOCS. Thus, psychiatrists have been interested in better
understanding the properties of this new scale, such as the probability distribution of M-YBOCS scores
before and after patients have received some treatment for OCD.

As already mentioned in the Introduction, the dataset has 1001 observations of the scores at the
initial time and only 213 at the final time. This happens because many patients drop out of treatment.
The causes of drop out can be extremely different, such as a reduction in symptoms making the
patient feel that he/she does not need treatment, or even worsen the symptoms, causing the patient
to discredit the treatment. The small number of complete pairs in the database makes it difficult to
estimate the joint distribution.

In real problems, there are few cases where the law of probability that generates the data is
revealed. In such cases, a fairly common way to assess whether the proposed methods are adequate is
to compare estimates with observed data. In predictive models, for example, it is common to verify
some distance between predicted and observed values. In this way, we compare the distance between
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the estimates and the empirical probability function (which is the relative frequency of each observed
point). The proposed solution yields smaller distances than do the existing approaches (Table 7).

Table 7. Distances between the estimates and empirical probabilities for the real data.

Example 4.3 Aitchison Euclidean Total Variation Kullback–Leibler

Skew T 11.56219 0.03941 0.22684 0.19899
Normal Copula 12.07092 0.04143 0.24701 0.21760
Bernstein 11.35361 0.03933 0.22910 0.19125
Bernstein Copula 10.81475 0.03703 0.21020 0.17184

The estimation through the empirical distribution presents many zeros due to the small number
of observations. The researchers believe that the proportion of unobserved points would decrease
if the sample had fewer dropouts. In addition, they believe that common assumptions of normality
or even symmetry assumptions make no sense in this case. The proposed method assigns positive
probability to non-observed cells and captures the asymmetric nature of the data, which can be
observed graphically in Figure 9.

Figure 9. Estimates of probabilities for the real OCD data.

5. Conclusions

In this work, a new approach to the problem of estimating discrete bivariate distributions is
presented. The procedure, which essentially consists of estimating both the marginals and the copula
using Bernstein polynomials, aims at addressing three important issues: the handling of discrete
bivariate data in the presence of marginal missing values (using all available information, including
incomplete pairs of observations); the possibility of obtaining positive estimates for non-observed cells,
thus yielding “smoother” estimated discrete distributions; and the consideration of a large variety
of dependence structures between the relevant random variables. The new approach is suitable for
these cases owing to its fairly unrestrictive, nonparametric nature. The use of Bernstein polynomials
shows better results of the empirical distribution to estimate the marginal distribution. It is important
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to note that the empirical Bernstein copula produces a copula only asymptotically [35], and other
methods could be used to estimate Bernstein’s copula instead, as the one described in [42]. Anyway,
the proposed method showed reasonable estimates for the studied probability mass functions. The
new method can be applied also to p-dimensional random variables, p > 2: both the mathematical
development and the computational implementation are similar to the case p = 2.

The new method was applied to several examples of simulated data, and according to a few
typical measures of distance (between the estimated and theoretical distributions), it performed better
than some of the existing solutions in cases of asymmetrical models, particularly in the presence of
censored data and for cases where the number of points to be estimated is larger than the sample
size. Although the method was developed for small samples, it appears that the proposed estimates
converge to the theoretical distribution, but more detailed studies are still needed.

The new method was also applied to data sampled from adults diagnosed with primary
obsessive-compulsive disorder. The estimate obtained by the method was appreciated by researchers
in psychiatry.

While the new method has practical advantages over the presented existing alternatives, some
aspects were not addressed here, namely: it will yet be necessary to further develop the new procedure
in several aspects that were not addressed here: (i) the study of asymptotic properties for large
sample size n and/or for higher polynomial degree m; (ii) a formal justification for the new procedure
under a decision-theoretical approach; (iii) the development of a more rational approach to the
selection of m, m1, . . . , mp (which could depend on n) using the approach suggested in (ii); and (iv) the
incorporation of prior knowledge, perhaps as in Petrone [43,44] and Petrone and Wasserman [45],
although these authors approached the problem from a univariate Bayesian perspective. These topics
will be the focus of future articles.
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