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Abstract

The objective of this work is to characterize families of distributions which consist
of mixtures of the uniform distributions on the surface of the N-sphere in the -
norm. We discuss the characterization through distribution functions and stochastic
representations rather than through a measure theoretic approach. Connections
with the finite forms of de Finetti-type theorems are considered.
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1 Introduction

Characterizations of spherical multivariate distributions have been devel-
oped in several directions. One of them with interesting connections to
the Theory of Robust Inference, is presented in Fang, Kotz and Ng (1990).
Another direction is the de Finetti-style theorems related to the founda-
tional aspects of Bayesian Theory (see, for instance, Diaconis and Freedman
(1980, 1987), Diaconis, Eaton and Lauritzen (1992), Barlow (1991), Barlow
and Mendel (1992), Barlow and Spizzichino (1993)).

In each direction the characterizations of uniform distributions over I,
spheres (and mixtures of them) have been done. Connections to robust
Bayesian inference has been considered by Osiewalski and Steel (1993) and
modeling in finite populations has been considered by Barlow and Mendel
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(1992). Rachev and Riischendorf (1991) derived general results character-
izing uniform distributions on the surface of the g-sphere in R, namely,

N
Sng(r) = {(ml,... ,zN) € RY Z|xi|q = r}

=1

and discussed their applications to de Finetti-type theorems. In particular,
these last authors showed that those uniform distributions can be character-
ized through conditional distributions given the sum of X,,... , Xy, i.i.d.
positive random variables which satisfy the property that the distribution
of Y 1X:|9/ N X7 is a Beta(n/q,(N —n)/q) (n < N). The last
condition characterizes the distribution of X; as a member of an exponen-
tial class. The case ¢ = 00, is obtained in a similar way by considering the
weak limit of a sequence constructed from functions of quotients of sums.
We give characterizations in the last case using a more constructive and
geometric approach. Moreover, we exhibit characterizations of uniformity
on sets of the form

N .
Sn(ry,re) = {(wl,... ,ZN) € RY : lgzuan{zi} =ry, 1r_<11%)5v{xz} = 1"2}.
In each case we make the connections between the characterizations and
the de Finetti-type theorems in both finite and infinite versions.

In Section 2, we discuss the characterizations of uniformity on the sur-
face of N-sphere in the /—norm and the corresponding discrete version.
Furthermore, we characterize uniformity on the restricted sphere Sy (ry, ra).
In Section 3 we relate the characterizations to the finite and infinite frms of
de Finetti-style theorems. We omit the details about the finite form results
because they are given in a more general measure theoretical framework in
Iglesias, Matus, Pereira and Tanaka (1996).

We denote by By the Borel o-field on RN and by |[-|| the total variation

distance, i.e. if P and Q are two probability measures on (£2,.4) then

IP — Ql| = 2 sup |[P(4) — Q(4)|.
AcA

Also, xV will denote an N—fold product of a set x and Z4, R, the non-
negative integer and real numbers respectively. By X(,) and X(;) we denote
the maximum and the minimum of a sequence Xj,..., X, respectively.
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2 Characterization of Uniformity

In this section we define uniformity geometrically (see Fang, Kotz and Ng
(1990)) in the several considered spaces. We get the stochastic representa-
tions and from those the characterizations.

2.1 Uniformity on the /[, -sphere

Let us start with the N-sphere in |,—norm defined by

Sn(r) = {(z1,... ,z§) € RN : 1rslrlzanN{|acz|} =r}, r>0.

The uniform distribution on Sy (r) is defined through the (N — 1) dimen-
sional volume as follows. Let

M; (T(—l)j) = {(xl"'-,xN)ESN(T)ZIBi:T(—].)j}
ji=0,14i=1,... ,N, »>0.

Then Sn(r) = Uj_o UL, M; (r(—1)7). Let ¢ : RV — R™¥-1 be defined
as @ (z1,...,2ZN) = (€1,... ,Ti—1,Titl,--- ,ZN), 1 =1,2,... ,N and X be
the (N — 1)-dimensional Lebesgue measure. For B € By define

pi(B) = A (BN M;(r)) + M¢*(B N Mi(—))) -

Definition 2.1. The probability measure Qn, : By — [0, 1], given by

N (B
Qw(B) = FEEE),

is called a uniform probability measure on Sy (r).

To illustrate this definition, let us take N = 2, r = 1 and B C R?. Then
Q@nr(B) will be the normalized length of the intersection of B and Ss(1),
the border of a square of size 2 and centered at the origin. If we take, for
instance, B = {(z1,72) € R? : 21 + x5 > 1} then

Q2(B)=2/8=1/4.

We notice that the function 9 : By x Ry — [0, 1], defined as ¢(B,r) =
Qn+(B), is a transition function, i.e., fixed r € Ry, 4(.,7) is a probability
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measure and fixed B € By, ¥(B,.) is a measurable function in r. The
above probability measure is defined on the border of the N-dimensional
hypercube centered at the origin. In the next proposition we give a char-
acterization of uniformity through a stochastic representation, similar to
Eaton (1981), who defined the uniform distribution on a N-sphere in lo-
norm.

Proposition 2.1. Let X;,X,,... , Xy be independent random variables
with common uniform distribution on (—1,1). Let My = max;<;<n{|Xi|}
and Y; = rﬁx;'v—, i =1,2,... ,N. Then the vector Y = (Y},...,Yy) is
uniformly distributed on Sy(r).

Proof. Let P be the law of (X1,...,Xn) and Q be the P-law of Y. It is
clear from the definition of Y that
Q(Sn(r)) = P(Y € Sp(r)) = 1.

For B € By we have
1

N
QB)=P(Y € B)=) > P(Y € BN M(r(-1))).

j=0i=1
But,
P(Y € BAM;(r)) =
X g Xi-1 Xi X i )
P(MN =1, r(x)ff; X X m%) ecp’(BnM,(r)))

=P(Xi>0, r(%ﬁm X T}%) ewi(BnMi(r))),

once (z1,...,2nv—1) € ¢(B N M;(r)) implies |zj| < r for j=1,... ,N — 1.
Therefore, :

P(Y € BN M;(r /A ¢'BﬂM())2 dz

_ z\!q)i!BﬂM.-!rn
~ NN-I2 :
Similarly, we can show that

My'(B N Mi(-r)))
N rN-19N !
concluding the proof. =)

P(Y € BN M;(—r)) =
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Remark 2.1. The uniform distribution on Sy (r) can also be characterized
by conditional distribution. In fact, if we allow minor changes in a result
presented by Rachev and Riischendorf (1991) then it can be shown that
if X1,Xs,... Xy are independent random variables with common uniform
distribution on (—1,1), then the conditional distribution of X;,..., Xy
given max)<i<n{|X;|} = r is uniform on Sy(r) for almost all r € [0,1].

The result in the previous remark is also true when X;,... , Xy is a
random vector with absolute continuous density f given by

f(@y,...,zn) = ¢n( max {|zi]}),

1<i<N

for some vy, a positive function such that f is a density on RY. The
function ¥ n(-) is usually called probability density function generator of
the lo-spherical distribution. The variable R = max;<;<n{|X;|} is called
radial variable. Moreover if g(-) is the density function of R then its rela-
tionship with ¥ (-) is

g(r) = N2NeN¥ 1y (r).

From this, a non-negative function ¢x(-) can be used to define a ly-
spherical density if and only if

/oo rN=lyn (r)dr < oo.

0

In such case, ¥n(') satisfies

* N-1 1
/0 T ?/)N(T)d’:" = j_V2_N

The quantity in the right-hand side of the last equality corresponds to the
(N-1) dimensional volume of Sy(1). See Osiewalski and Steel (1993) for
additional discussions about this property in the context of robust Bayesian
inference.

Note that X1,... , Xy with the above assumption are exchangeable. In
fact, absolute continuous functions with joint density of the above form
are Schur-concave if ¢ is non-increasing. For non-negative random vector
it means that the joint survival distribution is also Schur-concave (Barlow
and Spizzichino (1993) and Hayakawa (1993)). This condition is relevant
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since, as it has recently been shown, it provides a probabilistic model for
aging in a subjectivist viewpoint.

In the next proposition we give the distribution of the first n-coordinates
of a point uniformly distributed on Sy (r) for n < N.

Propesition 2.2. LetY),... ,Yn be random variables with uniform distri-
bution on Sy(r). Then for n < N, the distribution function of |Y1|,... ,|Yn]
is given by

' 0 if z; < O for some i € {1,...,n}

Nonmn % if0<z <rforeachie {1,...,n}

=1 r

Fr(z,... ,20) = ¢ {N;](,‘"i}l'[” Z fz;=rforeachi €[y and0< z; <7

=17

forie Jg, k=1,2,...,n

{ 1 if z; > rforeachi € {1,... ,n},

where Iy = {i1,... i} C{1,...;n}, Jr={1,... ,n} — I

Proof. The proof follows from Proposition 2.1 and algebraic computations.

d
Remark 2.2. It follows from Proposition 2.2 that the distribution function
of Z, = max{|Y1|,...,|Yn|} is given by
0 fz<0
F.(z)={ (%) (B)" fo<z<r
1 if z>n

Rachev and Riischendorf (1991) proved that if X,,... , X is a sequence
of positive independent random variables, then the accumulative distribu-
tion function of X, v = mazi<i<n{X;}/maz1<i<n{X;} is Fi(-) for all
n < N if and only if X; ~ U[0,1]. Moreover, X, n is the weak limit as
p = 00 of Y, N Where Yy, v, = Z/P with Z ~ Beta(n/p, (N — n)/p).

Remark 2.3. A similar characterization can be obtained if we consider
the uniform distribution on the surface given by

+ = N, ) —
Sy(r) = {{z1,... ,zn) ERY : 12‘%}%{%} =r}.
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Let us denote this distribution by Q Nr. Note that Q Nr corresponds to

the Qny law of T, when T(z1,... ,zn) = (Jz1],... , |z N]). Hence
Z,\ Y(B N M;(r)))
QNT‘( )_ NrN-1 ) BGBN)
where M;(r) = {(z1,... ,zn) € Sf(r) 1 zi =1}

The characterization by stochastic representation follows as in Propo-
sition 2.1.

Proposition 2.3. Let X1, Xo,...,Xy be independent random variables
with common uniform distribution on (0,1). LetY; = r}%\"—)—, i=12,...,N.

Then the random vector Y = (Y1,Ys,...,Yn) is uniformly distributed on
Sy (r)-

Proof. It follows from the definition of Qn» in a similar fashion to Propo-
sition 2.1. The distribution of the n first coordinates of a point uniformly
distributed on S]T,(r) can be obtained directly from the above proposi-
tion. a

It follows from Remark 2.3 that the converse to Proposition 2.3 is also
true. In words, i.i.d random variables have [, -spherical distribution if and
only if they are uniformly distributed. In the next section we give a discrete
version of that result.

2.2 Discrete Case

Let us consider now the uniform distribution on the N-sphere in /,,—norm
in the discrete case, that is, the uniform distribution on the space

St(r) = {(z1,... ,2n) € Z¥ : 1I<naéx {z:} =r}, r€Zy.

If Qn, denotes such law, then by simple counting we get

Qnr(z1,...ay) = {(r+ 1)V - TN}_II{r}(lgl%{wz})
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Proposition 2.4. Let Y1,... ,Yy be discrete random variables with uni-
form distribution on Sy(r). Then for n < N, the distribution of Y1,...,Y,
is given by

1_(%)N—n .
(r+115n {_I:ﬁﬁﬂ_} i mangelul <r

Qg/r(yl, v ,yn) =

r+11 _ {ﬁ} if maxicicn{yi} =

1)
Proof. By marginalization we have that

QTII\']T(yl ,yn) = Z QNr(yla"' yYn, 21, .- ’ZN—-n)a

(21,22, 2N —n)€EC

with

N-—
C = {($n+1,--- yIN) €LY 1ISnianN{yl,-.. s Yns Tnt1y---Tn} =r}.

The result follows by computing the above summation. a
We now consider the class Cy consisting of probability measures P

‘obtained by mixing the elements of the family {Qy, : 7 € Z} in the radial
variable.

Proposition 2.5. If P € Cy then P" € C, for each 1 < n < N, where P"

s a n-dimensional law from P.

Proof. If X;1,Xs,... , XN are random variables with P € Cy then

P(Xl =T1y... ,Xn = :L'n|X(n) =’I‘s) =
P(X1 =T1,... ,Xn Zr")IX(;l)(Ts)(xl"" y Iy

P(X(n) = 7"5) ’

if P(X(ny =r5) >0 and ry € Z. Now,

P(Xpmy=rs) = > P(Xi=21,...,Xn = 2y)
(zl,xg,.‘.,xﬂ)eX(:ll)(rs)

_ ) /Q’]{,t(zl, o zn)dun (B),

(EI,IZ)"' )Iﬂ)ex(_n]j (Ts)
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where py is the P-law of X(ny- But

Q21,29 ... y2n) = QRy(z1, ... ,2n) if 1rélax {z;} = 1121a<x {z}.

Therefore,
P(X(n) =7"s) |X( ) 7'5 lP(Xl =T1,... ,ana;n),

where |A| denotes the cardinality of A. Consequently,

1

P(Xi=1x,...,Xp= .’I)an(n) =r) = mlx(_nl)(”)(xl"“ y Tn)-
(n)

a

Thus, if PoN is the law of n independent random variables uniformly
distributed on {0,1,... ,6}, then P € Cy.

Moreover, the probability measures in P = {P}¥ : 6 € Z} are the
unique product probability measures in Cy as can be seen from the next
result. That result is a discrete version of the result given by Rachev and
Riischendorf (1991) for the continuous case.

Proposition 2.6. If X1, X,,... , Xy are independent and identically dis-
tributed random variables with law P € Cy and N > 2, then X1, Xa,... , XN
are uniformly distributed.

Proof. By assumption,

H?:l P(Xl = wi)Ix(—Qi(r)(l'l,xz)
[P(X <) = [P(X1 <r—1P

P(Xl = mlaXZ = I3 | X(2) = ”‘) =

if P(X(3) =) > 0. But, P € Cy implies that P, € C,. Hence,

[, P(X, = xi)fxé;(r)(xl,wz) ~ IX(;;(T)(wl,m)
PX1 <) —-[PX1 <r-1]2  (r+1)2—r2

Taking 21 = z9 = r in the above expression we get

[P(X) =r)]? 1
[PXi<m)P—[P(X;<r—-1 2r+1°
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After some computation this yield

PX,=r) 1
P(Xlgr)_r-i-l '

Evaluating the above equality at 7 =0,1,2,..., we see that
P(Xy=1z)=P(X;=0) foreachzeZ,.

Adding the fact that P is a probability measure we conclude that there
exists a k € Z so that P(X, > k) = 0. Therefore,

1
k+1

P(X,=1)= Iio,,... k3 ()

a

Remark 2.4. Note that a probability measure P belongs to C if and only
if for each (z1,... ,zn) € Z%,

P((‘Tla e ,II:N)) = (pN(lrgiast{xi})’

where x is an appropriate non-negative function.

2.3 Extensions

A natural extension of the uniform distribution on the N-sphere in [,—
norm is the uniform distribution on the surface of the form

12235‘)(1\,{1"5} = 7‘2} ’

Sn(ri,re) = {(xl,--- ,zyn) ERN Z

in {x;} =r,

i ) =
withri and o in R, 7y <rp and N > 3. Set

Mij(ri,72) = {(z1,--. ,zN) € SN(r1,m2) 1 Zi = 71,05 = T2}, i # §

a.nd 1,] € {1,2, cee ,N}. Then Sy(r1,72) = Ui’je{l,“.’N},i¢jMij(r1,r2). Let
¢ : RN — RV-2 be defined by

‘Pm(zl, O ,.’L‘N) = (xlazQ’ A PE. RS EEE R ES PR B CRR ’IN)
and A denote the N — 2 dimensional Lebesgue measure. For B in By define

pis (B) = M@ (B N Mij(r1,72)).
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‘Definition 2.2. The probability function Qp(r, r,) : By = [0,1] defined

” (8
- pij (B
e B = D NIy
1,j€{1,2,... ,N}
is a uniform probability distribution on Sy (r1,72). The function @y, ry)
is a transition function.

In terms of random variables, the uniform distribution can be charac-
terized as follows.

Proposition 2.7. Let X;,X5.... ,Xy be independent random variables
with common uniform distribution on (0,1) and
Xi— X .
= (1) { W) th <7y
Y= (ro—11) {X(N) ~ X } +ry, wi 1 < T2

then Y = (Y1,Ya,...,Yy) is uniformly distributed on Sn(r1,72).
Proof. Similar to the proof to Proposition 2.1. a

The distribution of the first coordinates of a point uniformly distributed
on the set Sy(r1,72) can be obtained from the previous propositions in a
similar fashion as in the other cases. Proposition 2.6 and extensive compu-
tations yield the next result.

Proposition 2.8. LetY,,Ys...,Yn be random variables with uniform dis-
tribution on Sn(0,1) and Zin = mim<i<n{Yi}, Zon = max;<i<n{Yi} with
n < N. Then the joint distribution of (Z1n, Zan) is given by

f

0 ifz7 <00rz <0

O ifz =0and0 <z <1

SR — (o)) -
F(zy,22) = 4 TN#}(‘_]’E za"ll if0< 2 <z <1

Wonyrond) gy 2OCHE if0<z<n <]

gN—;)%V_—ln—lg{l - (1—2z)"}
VIl 4 ifa=10<a<]
1 if 21,29 Z 1.

\
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Proof. The result follows by using Proposition 2.7 and algebraic computa-
tion. O

3 Connections with de Finetti-type theorems

In this section we connect the uniform distributions (and mixtures of them)
discussed in the previous section with de Finetti-type theorems. Infinite
versions of this type of Theorem characterize the law of infinite sequences
in a class of exchangeable random variables as a mixture of conventional
parametric models. The purpose is to provide a predictivistic justifica-
tion (by judgment about observables) for models typically used in infinite
populations. However, finite sequences in a class of exchangeable random
variables cannot necessarily be represented as a mixture of i.i.d processes.
When such representation does not exist finite forms of de Finetti-type
theorem have been established. The idea is to estimate the total varia-
tion distance between the law of the finite sequence and the mixture of an
appropriate product measure law. The statistical interest in this type of
result comes from modeling in finite populations. For instance, Barlow and
Mendel (1992) use the uniform models on I,-spheres to provide justifica-
tion of their analysis of life data in finite populations. Finite form provides
an alternative and more constructive form for obtaining the infinite ver-
sion and from this the relationship with models typically used in infinite
populations can be established.

What we are going to do now is to see how the results we have obtained
can be used to show some finite forms for the uniform distribution. Es-
sentially, if interest is on proving finite forms in this context, we need to:
show that the distribution of the n—first coordinates of a point uniformly
distributed on Sy(r) (or (Sn(r1,72)) is close to the law of n independent
random variables with appropriate common uniform distribution. This last
distribution is uniform on the interval (—6,6) in the continuous case, uni-
form on the set {0,1,... ,6} in the discrete case and uniform on the interval
(61,0) when we consider the surface Sy(r1,r2). Let us denote by Q%, or
(Q]”V(Th”)) the distribution of the n—first coordinates just mentioned.

Let P be the law of n independent random variables uniformly dis-
tributed over (—6,6). Let Qi be the Q% - law of ¥{,) = maxi<i<n{|Yi]},
where (Y1,...,Y;,) has the joint law given by Q7%; and P, be the Pl-law
of Y,) when (Y1,...,Y;) has the joint law PP.
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The total variation distance between Q%,. and P* may be computed by
adapting the arguments given in Diaconis and Freedman (1987). Observe
that Yy, is a sufficient statistic for { *, > 0}. Furthermore, by comput-
ing conditional distributions, it can be shown that Y{,) is also a sufficient
statistic for {Q%,,r > 0}. Thus, by using properties of the total variation
distance, we have that

1Q%: — PPl = |Q% — Pl = 1@ — Au|-

But,
0 ifw<0
Q1(w) = (NA‘,")w" ifo<w«1
1 if w > 1,
and
0 ifw<0
P(w)=¢ w" if0<w<1
1 ifw>1.

Putting these facts together one can show that

2n

IQ%, — PPl = 3.

We can then get the finite form of de Finetti-type theorem in the con-

tinuous case. Let P, = / Pfdu(8), and Cn be the class of probability
R+

measures P on RN so that P = @nrdu(r) for some probability measure
+

R
p on R, and where P, is a n—dimensional law from P € Cy.
Proposition 3.1. If P, and P, are the previously defined probability mea-
sures then there exists a probability measure p on Zy such that for each

1<n<N,

2n
1P = Pl < -

Proof. 1t suffices to choose p as the P-law of My = max;<i< ~{Xi}, where
Xi,...,Xn has joint law—-P in Cp. The result follows from the fact that

[ @tyantr) - [ R < [ 10804 - PRI < 5,

for any A, Borel subset of R". a
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Remark 3.1. Using Proposition 2.3 in an analogous way we get the finite
form for the discrete case.

Next, we obtain a similar characterization for the distribution of the n—
first coordinates of a point uniformly distributed on Sy(ry,72). Let P(’},l )
be the law of n i.i.d. random variables uniform on the interval (6;,6,) and
let er(rl r2) be the law of the n-first coordinates of a point uniformly dis-
tributed on Sy (rir2). We denote by Q; the Q}{,(O’l)—law of Z = (Y1), Yn)),
where Yi,...,Y, has joint law Q’]{,(O ) and Py is the corresponding P(’(l),1)
-law when Y7, ... ,Y, has joint law P(o 1)

Using the fact that Z is a sufficient statistic for both families, {P(T;h,ﬁz) :

0 < 6y, (91,92) € R2} and {QN(TI,Tz) i1 < 19y (r1,7m2) € R2} we have
that

HQ%(r,,m) - P,'\’,(Tmz)H = HQ?V(O,l) - (76,1)” = ||Q1 - PIH'

The Pg,1)-law of Z is given by the density

[ an=-D(2—2z1)""% f0<z1<z:<1
9(z1,22) _{ 0 otherwise.

Proposition 2.8 gives the distribution function associated to Ql. From this

we can show that

2n(4N - n -3)
N(N-1)

1Q1 - Py|| < if2<n<N.

The finite form of a de Finetti style theorem is a consequence of this fact.

~ Let Cy be the class of probability measures P on RY such that

P:/QN(rl,rz)dﬂ(rl,"'?)

for some probability measure 4 concentrated on S = {(z,y) € R? sz <y}
and let P" denote the n—dimensional distribution (n < N) from P € Cy.

Let P, = / P(',‘,1 ’az)du(Gl,Hz) for some probability measure x in S. From
the last characterization we can show that for 2 <n < N,

2n(4N —n — 3)
N(N -1)

IP™ = P, |l <
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Another application of this characterization is the infinite form of de Finetti-
type theorems. For the sake of simplicity we only describe the infinite
version in the continuous ease. The other ones follow in a similar manner.

Now,CN is the class of probability measures P on RY such that P =
Qnrdu(r) for some probability measure g on Ry and P, is a n-dimen-

R
sional (n < N) distribution from P € Cy, so that

P, = / Qndpin(r),

where py is the law of My = maxi<i<n{|Yi|} with (¥1,...,Yn) having
the distribution given by P. Note that P € Cy implies that the conditional
distribution of (¥1,...,Yy) given My = r is uniform on Sy(r).

Proposition 3.2. Let Y7,Ys,... be an infinite sequence of random vari-
ables taking values on R and let P, be the law of Y1,... ,Yn. If for each
n €N, P, € C, then there exists a probability measure p on Ry so that for
each (y1,-.. ,yn) € R?,

yi +0

PY1<y1,..., Yo <un) =/R o, {—25* I_g,6y(y:) + 1[0,+oo)(yi)} du(6).
+

Proof. 1t is sufficient to show that the sequence {un} is tight and use
Proposition 3.1. Additionally, the assumptions imply that

P(Yi| > k) = /(k+ @l +oo)dun )

By using the Remark 2.2 we have that Q},, has distribution function

0 ifz<0
flz) = NT‘I-(-":—) fo<z<r
1 >

Hence,

P(Vi|> k) = /( " (1- (—N—-];—l) £ duntr

> [ + (1- £ Koo ean ).
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The function inside the integral goes to 1 as r goes to oco. Therefore, given
0 > 0, there exists M = M(d) > ko such that if r > M

/ (1 = 8)dun(r) 2 1.
(M,+00)

From this we conclude that {un} is tight.

By choosing p as the limit of this subsequence, and using Proposition
3.1 we conclude the proof. a

The tightness argument used above is adapted from Diaconis and Freed-
man (1987). See, also, Diaconis, Eaton and Lauritzen (1992).

Remark 3.2. If in Proposition 3.2, we replace C,, by the class of probabil-
ity measures P on Z'} such that

P(Y1=y1,.-. ;Yo = yn) = ¢n(max {y:})
1<ikn
for some appropriate non-negative function ,, then we can derive an in-
finite version of de Finetti’s theorem in the discrete case. By using similar
arguments to Proposition 3.2 we can show that there exists a probability

measure x4 on Z, such that for each (y1,... ,yn) € Z},n €N
1
PYi=y,...,Ya=ya) = / @5 ot 0 (Bax vh)du®).

Similarly, if in the previous proposition we replace Qnr by the uniform
distribution on Sy*(r) (as in Remark 2.3) then we can obtain the cor-
responding infinite de Finetti result for the uniform(0,0) case, after mi-
nor changes. This result has previously been established in Diaconis and
Freedman (1984) and in Ressel (1985) using different approaches. See also
Rachev and Riischendorf (1991) for finite and infinite results using a slightly
different definition of uniformity. Finally, if C denotes the class of proba-
bility measures P on R™ such that

P=/QN(TI,T2) du(ri,r2)

for some probability measure  concentrated on S = {(z,y) € R? : z < y},
then we can derive an infinite version. In fact we can show after some
calculations, that if Y7,Y5, ... is a sequence of infinite exchangeable random
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variables taking values on R such that (Y3,...,Y}) has law P, € C, for
each n € N, then there exists a probability measure p on S such that for
eachne N B e B,

P10 X) € B) = [ Pi s, (B)du(61,60),

where Py 0, 1s the law of n i.i.d. random variables uniformly distributed
on (01,6,).

4 Conclusions

We presented characterizations of a family which consists of the radial
mixture of the uniform distribution on the surface of the {o,—norm N—sphere
by means of a stochastic characterization of this uniform distribution. We
also considered —through the infinite version of de Finetti-type theorems- an
important subset of this family which is constructed as a mixture of random
vectors with i.i.d. uniform components. In a more applied context, Barlow
and Tsai (1995) considered these models in lifetime data analysis.

Extensions of these results in a measure-oriented framework has been
studied in a related paper by Iglesias, Matus, Pereira and Tanaka (1996).
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