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A b s t r a c t  

The objective of this work is to characterize families of distributions which consist 
of mixtures of the uniform distributions on the surface of the N-sphere in the loo- 
norm. We discuss the characterization through distribution functions and stochastic 
representations rather than through a measure theoretic approach. Connections 
with the finite forms of de Finetti-type theorems are considered. 
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1 I n t r o d u c t i o n  

Characterizations of spherical multivariate distr ibutions have been devel- 
oped in several directions. One of them with interesting connections to 
the Theory of Robust  Inference, is presented in Fang, Kotz and Ng (1990). 
Another  direction is the de Finett i-style theorems related to the founda- 
tional aspects of Bayesian Theory (see, for instance, Diaconis and Freedman 
(1980, 1987), Diaconis, Eaton and Lauritzen (1992), Barlow (1991), Barlow 
and Mendel (1992), Barlow and Spizzichino (1993)). 

In each direction the characterizations of uniform distr ibutions over lq 

spheres (and mixtures of them) have been done. Connections to robust  
Bayesian inference has been considered by Osiewalski and Steel (1993) and 
modeling in finite populat ions has been considered by Barlow and Mendel 
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(1992). Rachev and Riischendorf (1991) derived general results character- 
izing uniform distributions on the surface of the q-sphere in I~ N, namely, 

SN,q(r) = ( x l , . . .  , x N )  e : iz i lq  = 
i----1 

and discussed their applications to de Finett i - type theorems. In particular, 
these last authors showed that  those uniform distributions can be character- 
ized through conditional distributions given the sum of X 1 , . . .  , XN ,  i.i.d. 
positive random variables which satisfy the property that  the distribution 
of ~ i n  11xi lq /~N=l  IZil q is a Beta(n/q ,  ( g  - n)/q) (n < N) .  The last 
condition characterizes the distribution of Xi as a member  of an exponen- 
tial class. The case q = oc, is obtained in a similar way by considering the 
weak limit of a sequence constructed from functions of quotients of sums. 
We give characterizations in the last case using a more constructive and 
geometric approach. Moreover, we exhibit characterizations of uniformity 
on sets of the form 

SN(rl'r2) -~ ( ( x l ' ' ' '  'xN) E ]~N : l < i < N m i n ( x i } : r l ' l I ~ i a ~ N ( X i } : r 2  I " 

In each case we make the connections between the characterizations and 
the de Finet t i - type theorems in both  finite and infinite versions. 

In Section 2, we discuss the characterizations of uniformity on the sur- 
face of N-sphere in the /co-norm and the corresponding discrete version. 
Furthermore,  we characterize uniformity on the restricted sphere SN (rl,  r2). 
In Section 3 we relate the characterizations to the finite and infinite fbrms of 
de Finetti-style theorems. We omit the details about the finite form results 
because they are given in a more general measure theoretical framework in 
Iglesias, Matus, Pereira and Tanaka (1996). 

We denote by BN the Borel a-field on  I~ N and by I1" II the total variation 
distance, i.e. if P and Q are two probability measures on (~, .4) then 

II P -  QII = 2 sup IP(A) - Q(A)I. 
AEA 

Also, X N will denote an N-fo ld  product  of a set X and Z+, I~+ the non-  
negative integer and real numbers respectively. By X(n) and X(1) we denote 
the maximum and the minimum of a sequence X1,. �9 �9 , Xn respectively. 



Multivariate spherical distributions 309 

2 Characterization of Uniformity 

In this section we define uniformity geometrically (see Fang, Kotz and Ng 
(1990)) in the several considered spaces. We get the stochastic representa- 
t ions and from those the characterizations. 

2.1 U n i f o r m i t y  o n  t h e / c o - s p h e r e  

Let us start  with the N-sphere  i n / c o - n o r m  defined by 

s N ( r )  = { ( X l , . . .  e : m a x  {l il} = r } ,  > 0. 
I < i < N  

The  uniform dis t r ibut ion on SN(r) is defined th rough  the  (N  - 1) dimen- 
sional volume as follows. Let 

214/(r(-1) j) = { ( x , , . . .  , x g )  e S ~ ( r ) :  xi = r(--1) j} 

j = 0 , 1 ,  i = l , . . . , N ,  r > 0 .  

N Then  Sy(r) = UJ=oUi=l Mi ( r ( -1 ) J ) .  Let ~ i :  ~ g  __+ R(N-1) be defined 

aS ~gi(xl, . . .  ,XN) --~ ( X l , . . .  ,X i_ l ,X i+l , . . .  ,XN), i = 1 , 2 , . . .  , N  and A be 
the (N - 1)-dimensional Lebesgue measure. For B E BN define 

#i(B) = A((pi(B A Mi(r) ) ) + A(~pi(B N Mi(-r)  ) ) . 

Definition 2.1. The  probabil i ty measure QNr : BN --+ [0, 1], given by 

QNr(B) -- E ~ I  #i(B) 
2N(2r)g -1' 

is called a uniform probabil i ty measure on SN(r). 

To il lustrate this definition, let us take N = 2, r = 1 and B C_C_ IR 2 . Then  
QNr(B) will be the  normalized length of the intersection of B and S~(1), 
the border  of a square of size 2 and centered at the origin. If  we take, for 
instance, B = { (Xl ,  x2)  E I~ 2 : Xl 3 t- x 2 > 1} then  

Q21(B) = 2/8 = 1/4. 

We notice tha t  the funct ion r : B N X ~ - +  [0, 1], defined as r  = 
QNr(B), is a t ransi t ion function, i.e., fixed r E 11~_, r  is a probabil i ty 
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measure and fixed B E I3N, r  .) is a measurable function in r. The 
above probability measure is defined on the border of the N-dimensional  
hypercube centered at the origin. In the next proposition we give a char- 
acterization of uniformity through a stochastic representation, similar to 
Eaton (1981), who defined the uniform distribution on a N-sphere in 12- 
norm. 

P r o p o s i t i o n  2.1. Let X 1 , X 2 , . . .  ,XN be independent random variables 
with common uniform distribution on ( -1 ,  1). Let MN = m a , x l < i < g { l X i l }  

and Yi = r --~- i = 1,2,. , N .  Then the vector Y = (Y1, ,YN) is MN ~ . . . . .  
uniformly distributed o n  S g ( r ) .  

Proof. Let P be the law of ( X 1 , . . .  , X N )  and Q be the P-law of Y.  It is 
clear from the definition of Y that  

Q(Sn(r))  = P ( Y  E Sn(r)) = 1. 

For B E By we have 

1 N 

Q(B) = P ( Y  e B ) =  y ~  y ~  P ( Y  E B N Mi(r ( -1 )J ) ) .  
j = 0  i=1 

But, 

P ( Y  E B n Mi(r) ) = 

P = 1, r M l v '  " ' MN ' ' M N  ' '  * ' MN 

= P  X i > 0 ,  r " ' "  ' -~T- '  " " '  E ~ # ( B M M i ( r ) )  , 

once ( zx , . . .  ,ZN-1) E r N Mi(r))  implies [zjl < r for j = 1 , . . .  , N -  1. 
Therefore, 

P ( Y  E B M M , ( r ) )  = f r A ( x r  1--~dx 
Jo r z ,, 

_ ~(~o'(BnMi(r))  
N r2U-12 2v 

Similarly, we can show that  

P ( Y  e B n = 

concluding the proof. 

A(~oi(B n Mi(-r))) 
N r N - 1  2 N 

[] 
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R e m a r k  2.1. The uniform distribution on SN (r) can also be characterized 
by conditional distribution. In fact, if we allow minor changes in a result 
presented by Rachev and Riischendorf (1991) then it can be shown that 
if X1, X2, . . .  X/v are independent random variables with common uniform 
distribution On (-1 ,  1), then the conditional distribution of X1, . . .  ,XN 
given maxl<_~<_N{IXil} = r is uniform on SN(r)  for almost all r E [0, 1]. 

The result in the previous remark is also true when X1, . . .  ,XN is a 
random vector with absolute continuous density f given by 

f ( x l , . . .  , X y ) = Cy(l  g(IX l} ), 

for s o m e  ~/)N, a positive function such that f is a density on l~ N. The 
function CN(') is usually called probability density function generator of 
the loo-spherical distribution. The variable R = maxl<_i<N{IXil} is called 
radial variable. Moreover if g(.) is the density function of R then its rela- 
tionship with CN(') is 

g(r) = N 2 N r N - I C N ( r  ). 

From this, a non-negative function Cg(')  can be used to define a Ice- 
spherical density if and only if 

f0 < rN- ICN(r )dr  

In such case, CN(') satisfies 

~o cr rN_lCN(r )dr  -= 1 
N 2  N" 

The quantity in the right-hand side of the last equality corresponds to the 
(N4) dimensional volume of SN(1). See Osiewalski and Steel (1993) for 
additional discussions about this property in the context of robust Bayesian 
inference. 

Note that X1,. .  �9 , X N  with the above assumption are exchangeable. In 
fact, absolute continuous functions with joint density of the above form 
are Schur-concave if CN is non-increasing. For non-negative random vector 
it means that the joint survival distribution is also Schur-concave (Barlow 
and Spizzichino (1993) and Hayakawa (1993)). This condition is relevant 
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since, as it has recently been shown, it provides a probabilist ic model  for 
aging in a subjectivist  viewpoint.  

In the next proposi t ion we give the dis t r ibut ion of the first n-coordinates 
of a point  uniformly dis t r ibuted o n  SN(r) for n < N.  

P r o p o s i t k ) n  2.2. Let Y1, . . .  , YN be random variables with uniform distri- 
bution on SN(r).  Then for n < N,  the distribution function of ]Yll, . . . , IYnl 
is given by 

N - n  l I n  z_t 
N i • l  r 

" ~ i = 1  r 

1 

where Ik = { i l , . . .  , ik} C {1 , . . .  ~n}, Jk = {1 , . . .  ,n}  -- Ik. 

if zi _< 0 for some i �9 {1, . . .  ,n} 

if 0 < zi < r for eachi �9 {1, . . .  ,n} 

if zi = r for eachi  �9 Ik and O < zi < r 

f o r / � 9  Jk, k = 1 ,2 , . . .  ,n 

if zi >_ r for each i �9 {1, . . .  ,n}, 

Proof. The  proof  follows from Proposi t ion 2.1 and algebraic computat ions .  
[] 

R e m a r k  2.2. It follows from Proposi t ion 2.2 tha t  the d is t r ibut ion function 
of Zn = max{IYl l , . . .  , IYnl} is given by 

{ i _ ~  ) i f z_<O 
F r ( z ) :  (})n i f O < z < r  

i f z> _r .  

Rachev and Rfischendorf (1991) proved tha t  if X 1 , . . .  , X N  is a sequence  
of positive independent  r andom variables, then  the accumulat ive distribu- 
t ion function of Xn,N = maxl<i<n{Xi} / rnax l<i<N{Xi}  is FI( ' )  for all 
n _< N if and only if X1 ",, U[0, 1]. Moreover, Xn,N is the weak limit as 
p -+ co of Yn,N,p where Yn,N,p = Z1/P with Z ~ Be ta (n /p ,  (N  - n)/p).  

R e m a r k  2.3. A similar characterizat ion can be obta ined if we consider 
the  uniform dis t r ibut ion on the  surface given by 

= : r } .  
I < / < N  
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Let us denote this distribution by ONr. N o t e  that  ONr corresponds to 
the Qyr law of T, when T(x l , . . .  , xg)  = ( Ix l l , . . .  ,IXNI). Hence 

N 

QNr(B) : i : i  
NrN-1 , B 6 B N ,  

where Mi(r) = { (x l , . . .  ,XN) 6 S+( r )  : xi = r}. 

The characterization by stochastic representation follows as in Propo- 
sition 2.1. 

Proposit ion 2.3. Let X a , X 2 , . . .  , X N  be independent random variables 
with common uniform distribution on (0,1). Let Yi = r~(N~ , i = 1, 2, . . .  , N. 

Then the random vector Y -- (]I1, Y2,-.- , YN) is uniformly distributed on 
S%(r). 

Proof. It follows from the definition of QNr in a similar fashion to Propo- 
sition 2.1. The distribution of the n first coordinates of a point uniformly 
distr ibuted on S+(r) can be obtained directly from the above proposi- 
tion. [] 

It follows from Remark 2.3 that  the converse to Proposit ion 2.3 is also 
true. In words, i.i.d random variables have l~-spherical  distr ibution if and 
only if they  are uniformly distributed. In the next section we give a discrete 
version of that  result. 

2.2 Discrete Case 

Let us consider now the uniform distribution on the N-sphere  in loo-norm 
in the discrete case, that  is, the uniform distribution on the space 

SN+(r)={(xl,... XN) Z+N: max feZ+.  
' l < i < N  

If QNr denotes such law, then by simple counting we get 

Qua(x1,. . .  XN) = {(r + 1) N -- r N } - l I ~ (  max {xi}). 
' ~ " I<i<N 



314 P.L. Iglesias, C.A.B. Pereira and N.I. Tanaka 

Proposition 2.4. Let Y1, . . .  ,YN be discrete random variables with uni- 
form distribution on Sg(r).  Then for n < N, the distribution of Y1, . . .  , Yn 
is given by 

,y.)= { l r N--n / 
: 1-(:-+-:+1) if 

1-(--~)~ 

1 { 1 } if 

maxl<i<n{yi} < r 

maxl</<n{yi} = r. 

Proof. By marginalization we have that 

Q~N~(Y:". ,Yn)= E QN~(Y:,. . .  ,Y, ,  z : , . . .  ,ZN-n), 
(Z:,Z2,... ,ZN-~)~C 

with 

C ~-~ {(Xn+l,... ,XN) E Z :  -n : max {Yl,... , yn ,Xn+l , . . . xn}  = r } .  
l<i<N ) 

The result follows by computing the above summation. [] 

We now consider the class CN consisting of probability measures P 
obtained by mixing the elements of the family {Qyr : r E Z+} in the radial 
variable. 

P ropos i t i on  2.5. If P E CN then pn E Cn for each 1 <_ n < N, where pn 
is a n-dimensional law from P.  

Proof. If Xl, X2,... , X N are random variables with P E CN then 

P(X:  = x : , . . .  ,Xn = xnJX(n) = rs) = 

P (X:  = x l , . . .  , Xn = X n ) I x ~ , ~ ( r s ) ( X l , . . .  , Xn) 

P(X(n) = rs) 

if P(X( , )  = r~) > 0 and rs E Z+. Now, 

P(X( , )  = rs) = E 

E 

P(X:  = x : , . . .  ,Xn = xn) 

f Q~Nt(X:,... xn)d#N(t), 
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where ]A N i,s the P - l a w  of X ( N  ) . But 

n n . ~ m a x  }. QNt(Zl, z2, . . .  ,Zn) = QNt(Xl, . .  Xn) if max {xi} = {zi 
l<i<n l<i<n 

Therefore, 

P ( X ( n )  = rs)  = [X(. (rs)IP(X1 = x l , . . .  , x .  = x . ) ,  

where IAI denotes the cardinality of A. Consequently, 

P ( X 1  = X l , . . .  , X n  = xn[X(n ) = rs) =- 
1 

( r s ) l  Ix:o  i s) ( x ' '  ' ' " ' 

[] 

Thus, if p N  is the law of n independent random variables uniformly 
distr ibuted on {0, 1 , . . .  , 8}, then p N  E CN. 

Moreover, the probabil i ty measures in P = { p N  : 0 6 Z} are the 
unique product  probabil i ty measures in CN as can be seen from the next 
result. Tha t  result is a discrete version of the result given by Rachev and 
R/~schendorf (1991) for the continuous case. 

P r o p o s i t i o n  2.6. I f  X 1 ,  X 2 , . . .  , XN are independent and identically dis- 
tributed random variables with law P 6 Cg and N > 2, then X1, ) (2 , . . .  , XN 
are uniformly distributed. 

Proof. By assumption,  

2 
l - I i = l  P ( X 1  = X i ) I x ~ ( r ) ( X l , X 2  ) 

P(X1 = Xl, X2 = x2 [ X(2) = r) = [P(X1 <_ r)] 2 [ P ( X l  ~ r - 1)] 2 

i f  P ( X ( 2  ) - -  r )  > 0. But,  P 6 CN implies that  P2 6 C2. Hence, 

2 
l-L=1P(X1 = xi)Ix~(r)(Xl,X2) 

[P(X1 ~_ r)] 2 -[P(X1 <_ r - 1)] 2 

Ixs ( ) (xl, x2) 

Taking xl = x2 = r in the above expression we get 

[P(X1 = r)] 2 1 

[P(X1 ~ r)] 2 - [P(X1 ~ r - 1)] 2 2r + 1 

(r + 1) 2 - r 2 
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After some computat ion this yield 

P(X,  = r) 1 

P(X~ <_ r) r + 1 

Evaluating the above equality at r = 0, 1, 2 , . . . ,  we see that  

P ( X 1  = x) = P ( X 1  = 0) for each x �9 Z+ . 

Adding the fact that  P is a probability measure we conclude that  there 
exists a k �9 Z+ so that  P ( X 1  > k) = O. Therefore, 

1 
P ( X 1  = x) - k + l I (~  ..... k}(X). 

[] 

R e m a r k  2.4. Note that  a probability measure P belongs to .CN if and only 
if for each ( x l , . . .  ,XN) �9 Z N, 

P (  (xl ,  . . . ,XN) ) = ~N(a~a~y {Xi}), 

where ~N is an appropriate non-negative function. 

2.3 Extens ions  

A natural  extension of the uniform distribution on the N-sphe re  in lee- 
norm is the uniform distribution on the surface of the form 

S N ( r l ' T 2 ) = {  ( x l ' ' ' ' ' x N )  E R N :  l<i<Nmin {xi} = r l ,  l<i<Nmax (x i )  = r 2 ) ,  

with r l  and r2 in R, r l  < r2 and N :> 3. Set 

Mi~(r l , r~)  = { (X l , . . .  ,XN) e S N ( r l , r 2 ) :  ~i = ~l,x~ = ~2},i # j 

and i, j �9 (1, 2 , . . . ,  N}. Then SN(rl, r2) = U i , j e { 1  ..... N } , i c j M i j ( r l ,  r2). Let 
r : RN _+ ~g-2 be defined by 

~p'3(Xl,.. " ,XN ) = (Xl ,X2, . . .  ,Xi-1 ,x i+l , . . .  ,Xj-1 ,x j+I , . . .  ,XN ) 

and )~ denote the N - 2 dimensional Lebesgue measure. For B in B g  define 

p i t ( B )  = A(~iJ(B A Mi j ( r l ,  r2)). 
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D e f i n i t i o n  2.2. The probability function QN(rl , r2)  : •N -+ [0, l] defined 
by 

,ij(B) K-" 
QN(r:,r,)(B) Z.., N ( N  - l)(r2 - r:) N-2 

i,jE{1,2 ..... N} 

is a uniform probability distribution on Sg(r: ,  r2). The function Qg(r:,r2) 
is a transit ion function. 

In terms of random variables, the uniform distribution can be charac- 
terized as follows. 

P r o p o s i t i o n  2.7. Let X1,X2 . . . .  , X N  be independent random variables 
with common uniform distribution on (0, 1) and 

Y / = ( r 2 - r : ) {  Xi-X(1)}q-r1, with r : < r 2 ,  
X(N ) -- X(1  ) 

then Y = (Y:, Y 2 , . . .  , YN) is uniformly distributed on SN(rl, r2). 

Proof. Similar to the proof to Proposition 2.1. [] 

The distribution of the first coordinates of a point uniformly distr ibuted 
On the set SN(rl,r2) can be obtained from the previous propositions in a 
similar fashion as in the other cases. Proposition 2.6 and extensive compu- 
tations yield the next result. 

P r o p o s i t i o n  2.8. Let Y1, ]I2... , YN be random variables with uniform dis- 
tribution on SN(O, 1) and Z:n = minl<i<n{Y/}, Z2n = maxi<i<n{]~} with 
n < N. Then the joint distribution of (Z:n, Z2n) is given by 

F ( z : ,  z2) = 

0 

z 2 

( N - n ) ( N - n - 1 )  
N ( N - 1 )  {Z~ - -  (Z 2 - -  Z l )  n}  

(N-n)(N-n-1) ~,n ~ Z  n 
N ( N - 1 )  '~ "['- lv( lv- . t )  - 

(N-n)(N-n-1) f l  (1 --  Zl) n} 
N ( N - 1 )  t ~ - -  

+ 

i 

if Zl ( 0 or z2 < 0 

if z: = 0 and 0 < z2 < 1 

if 0 _< z: _< z2 < 1 

i f O < z 2 < _ z :  <1 

i f z 2 = l , 0 < z :  < 1  

if z:,z2 _> 1. 
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Proof. The result follows by using Proposition 2.7 and algebraic computa- 
tion. [] 

3 C o n n e c t i o n s  w i t h  de  F i n e t t i - t y p e  t h e o r e m s  

In this section we connect the uniform distributions (and mixtures of them) 
discussed in the previous section with de Finett i- type theorems. Infinite 
versions of this type of Theorem characterize the law of infinite sequences 
in a class of exchangeable random variables as a mixture of conventional 
parametric models. The purpose is to provide a predictivistic justifica- 
tion (by judgment about observables) for models typically used in infinite 
populations. However, finite sequences in a class of exchangeable random 
variables cannot necessarily be represented as a mixture of i.i.d processes. 
When such representation does not exist finite forms of de Finetti-type 
theorem have been established. The idea is to estimate the total varia- 
tion distance between the law of the finite sequence and the mixture of an 
appropriate product measure law. The statistical interest in this type of 
result comes from modeling in finite populations. For instance, Barlow and 
Mendel (1992) use the uniform models on /q-spheres to provide justifica- 
tion of their analysis of life data in finite populations. Finite form provides 
an alternative and more constructive form for obtaining the infinite ver- 
sion and from this the relationship with models typically used in infinite 
populations can be established. 

What we are going to do now is to see how the results we have obtained 
can be used to show some finite forms for the uniform distribution. Es- 
sentially, if interest is on proving finite forms in this context, we need to  
show that the distribution of the n-first coordinates of a point uniformly 
distributed on SN(r) (or (SN(rl,r2)) is close to the law of n independent 
random variables with appropriate common uniform distribution. This last 
distribution is uniform on the interval ( -0 ,  0) in the continuous case, uni- 
form on the set {0, 1, . . .  , 0} in the discrete case and uniform on the interval 
(01,02) when we consider the surface SN(rl, r2). Let us denote by Q~vr or 
(Q~v(rl,r2)) the distribution of the n-first coordinates just mentioned. 

Let P~ be the law of n independent random variables uniformly dis- 
tributed over ( -0 ,0) .  Let Q1 be the Q~vl - law of ~n) = maxl<i<n{IY/l}, 
where (Y1,... , Yn) has the joint law given by Q~vl and P1 be the P~-law 
of Y(n) when (]I1,... , Yn) has the joint law P~. 
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The total variation distance between QnNr and P~ may be computed by 
adapting the arguments given in Diaconis and Freedman (1987). Observe 
that Y(~) is a sufficient statistic for {Pr n, r > 0). Furthermore, by comput- 
ing conditional distributions, it can be shown that Y(n) is also a sufficient 
statistic for {Q~vr, r > 0}. Thus, by using properties of the total variation 
distance, we have that 

- P II = IIQ vl - = IIQ1 - Pill. 

But, 

and 

0 
Ql(w) = ( ~ ) w  ~ 

1 

if w < 0  
i f 0 _ < w < l  
i fw  _> 1, 

0 i f w < O  
PI(W) = w n if 0 < w < 1 

1 ifw_> 1. 

Putting these facts together one can show that 

2n 

We can then get the finite form of de Finetti-type theorem in the con- 
/ *  

tinuous case. Let P ~  = / P~d#(0), and C/v be the class of probability 
JR + 

P on I~ N so that P = ] Qgrdp(r) for some probability measure measures 
JR + 

# on IR+ and where Pn is a n-dimensional law from P E CN. 

P r o p o s i t i o n  3.1. If  Pn and P~n are the previously defined probability mea- 
sures then there exists a probability measure # on Z+ such that for each 
l < n < N ,  

2n 
lIPn- P,nll < 

Proof. It suffices to choose # as the P- law of MN = maxl<i<_N{Xi}, where 
X1 , . . .  , XN has joint law-P in CN. The result follows from the fact that 

/ / / 2n 
I Q~vr(A)d#(r) - Prn(A)d#(r)l < IQ~r(A) -Prn(A)ld#(r)  < -'-~, 

for any A, Borel subset of IR n . [] 
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R e m a r k  3.1.  Using Proposi t ion 2.3 in an analogous way we get the finite 
form for the discrete case. 

Next, we obtain a similar characterization for the d is t r ibut ion of the n -  
first coordinates of a point  uniformly d is t r ibuted  on SN (rl, r2). Let P(~l,e2) 

be the law of n i.i.d, r andom variables uniform on the interval (91,92) and 
let Q~v(n,r2) be the law of the n-first  coordinates of a point  uniformly dis- 

t r ibu ted  on SN(rlr2). We denote  by (~1 the  (~V(0,1)-law of Z = (]Jl), ]Jn)), 

where Y1,. . .  , Yn has joint  law Q~v(0,1) and/51 is the corresponding PI%,1) 
- law when Y1,. . .  , Y• has joint law P~,I)" 

Using the fact tha t  Z is a sufficient statist ic for bo th  families, (P(~l,e2) : 

91 < 92, (91,02) E ]l~ 2} and {QN(rl,r2) : rl < r2, (rl,r2) G ]l( 2} we have 
that 

n n Q n  n - -  IIQN(r,,r~)- P~(rl,r2)ll = II N(0,1)- P~0,1)ll = lIQ1 /5111. 

The  P(0,1)-law of Z is given by the  density 

n ( n -  1)(z2 - z l )  
9(Zl, z2) ---- 0 

if 0 < Zl < z2 < 1 
otherwise. 

Proposi t ion 2.8 gives the  dis t r ibut ion funct ion associated to Q1. From this 
we can show tha t  

[[(~1 - ]5111 _< 2 n ( 4 N -  n -  3) if 2 < n < N. 
N(N - i) 

The finite form of a de Finetti style theorem is a consequence of this fact. 

Let CN be the class of probability measures P on IR N such that 

f QN(rl,r2)d~(rl, r2) .... P 

for some probabil i ty measure # concentrated on S = {(x, y) E ]~2 x < y} 
and let pn denote  the n -d imens iona l  d is t r ibut ion (n < N)  from P E CN. 

P~n = /P~81,o2)d#(01,02) for some probabil i ty measure  # Let in S. From 

the last characterization we can show tha t  for 2 < n < N, 

2n(4N - n - 3) 
[[pn _ p~[[ <_ N ( N -  1) 
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Another application of this characterization is the infinite form of de Finetti- 
type theorems. For the sake of simplicity we only describe the infinite 
version in the continuous ease. The other ones follow in a similar manner. 

NOWICN is the class of probability measures P on  ]i~ y such that P = 

~ Q N r d # ( r )  for probability on R+ and Pn is a n-dimen- some measure # 

sional (n < N) distribution from P E CN, so that 

Pn = f Qnyrd#N(r), 

where #N is the law of MN = maxl<~<N{IY/I} with (Y1,... ,YN) having 
the distribution given by P. Note that P E CN implies that the conditional 
distribution of (Y1,-. �9 , YN) given MN = r is uniform on SN(r). 

P r o p o s i t i o n  3.2. Let Y1,Y2,. . .  be an infinite sequence of random vari- 
ables taking values on I~ and let Pn be the law of Y1, . . .  , Yn. If  for each 
n E N, Pn E Cn then there exists a probability measure # on IR+ so that for 
each (Yl,. . .  ,Yn) E N n, 

P(Y1 <_ yl , . . .  ,Yn <_ Yn) = IIi=1 - - - ~  I(-o,o)(Yi) + I[o,+oo)(Yi) d#(O). 
+ 

Proof. It is sufficient to show that the sequence {#N} is tight and use 
Proposition 3.1. Additionally, the assumptions imply that 

P(IYll > k )  = Q1Nr((r'+~176 
,+oo) 

By using the Remark 2.2 we have that Q~vr has distribution function 

{ _~10(~) ifx<_O 
f ( x )  = if 0 < x < r 

x ~ r .  

Hence, 

P(IY I > k) 
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The function inside the integral goes to 1 as r goes to oo. Therefore, given 
> 0, there exists M = M(~) > k0 such that  if r > M 

~(M (1 -- ~ ) d # g ( r )  > ~1. 
,+oo) 

From this we conclude that  {#Y} is tight. 

By choosing # as the limit of this subsequence, and using Proposition 

3.1 we conclude the proof. [] 

The tightness argument  used above is adapted from Diaconis and Freed- 
man (1987). See, also, Diaconis, Eaton and Lauritzen~(1992). 

R e m a r k  3.2. If in Proposition 3.2, we replace Cn by the class of probabil- 
ity measures P on Z~ such that  

P(Y1 = Y l , . . .  , Yn = Yn) = r 

for some appropriate non-negative function Cn, then we can derive an in- 
finite version of de Finetti 's  theorem in the discrete case. By using similar 
arguments to Proposition 3.2 we can show that  there exists a probability 
measure # on Z+ such that  for each (Yl, . . .  ,Yn) E Z~_,n E N 

1 i{o,1,...,o}(m<a<x{yi})d#(O)" P(Y1 = Y l , . . .  , Yn = Yn) = (0 + 1) '~ 

Similarly, if in the previous proposition we replace Qgr  by the uniform 
distribution on SN+(r) (as in Remark 2.3) then we can obtain the cor- 
responding infinite de Finett i  result for the uniform(0, 0) case, after mi- 
nor changes. This result has previously been established in Diaconis and 
Freedman (1984) and in Ressel (1985) using different approaches. See also 
Rachev and Rfischendorf (1991) for finite and infinite results using a slightly 
different definition of uniformity. Finally, if CN denotes the class of proba- 
bility measures P on ~n su.ch that  

: / QY(rl,r2) d#(rl ,  P r2) 

for some probability measure # concentrated on S = {(x, y) e ]R 2 : x < y}, 
then we can derive an infinite version. In fact we can show after some 
calculations, that  if ]I1, Y2, �9 �9 �9 is a sequence of infinite exchangeable random 
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variables taking values on ~ such that  (Y1,... ,fin) has law Pn E Ca for 
each n E N, then there exists a probability measure # on S such that  for 
e a c h n E N ,  B EBn  

P((X1 , . . .  ,Xn) �9 B) = P~,o2(B)d#(01,02), 

where P~,o2 is the law of n i.i.d, random variables uniformly distributed 
on (01,02). 

4 C o n c l u s i o n s  

We presented characterizations of a family which consists of the radial 
mixture of the uniform distribution on the surface of the loo-norm N-sphere  
by means of a stochastic characterization of this uniform distribution. We 
also considered - th rough  the infinite version of de Finet t i - type theorems-  an 
important  subset of this family which is constructed as a mixture  of random 
vectors with i.i.d, uniform components. In a more applied context, Barlow 
and Tsai (1995) considered these models in lifetime da ta  analysis. 

Extensions of these results in a measure-oriented framework has been 
studied in a related paper by Iglesias, Matus, Pereira and Tanaka (1996). 
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