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Abstract—Series system reliability is based on the minimum life 
time of its components. Its dual, the parallel system, is based on 
maximum. Here, we consider the statistical analysis of both, 
series and parallel, systems where the components follow the 
Weibull parametric model. Our perspective is Bayesian. Due to 
the mathematical complexity, to obtain the posterior distribution 
we use the Metropolis-Hasting simulation method. Based on this 
posterior, we evaluated the evidence of the Full Bayesian 
Significance Test (FBST) for comparing the reliabilities of the 
components. The reason for using FBST is the fact that we are 
testing precise hypotheses. We also compute the probability of a 
particular component be responsible for the system failure. An 
example illustrates the methodology.  
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I.  INTRODUCTION 
We address the case of k (≥ 2) components for both, series 

and parallel, systems. In other words, we deal with both, k-out-
of-k and 1-out-of-k, reliability systems. Recall that for the 
series system to work all k components must be working -- k-
out-of-k, on the other hand, for the parallel system to work at 
least 1 component must be working -- 1-out-of-k. In this paper, 
all the components are considers to follow the Weibull survival 
model. That is, the lives of all the components have two-
parameter Weibull distributions. Our main objective is the 
estimation of all parameters -- of the Weibull distributions -- 
involved in the whole system.  

Consider a system with k components and let Xj, j=1,...,k, 
and denoting the failure time of the j-th component. The first 
assumption is that X1,...,Xk are statically independent Weibull 
random variables. The series system fails as soon as one 
component fail and the parallel system fails only when all 
components fail. The sample observation of a system is random 
vector, (T,δ), with T = min(X1,...,Xk) for the series system and T 
= max(X1,...,Xk) for parallel system, and δ = j if T = Xj, j=1,...,k. 
Note that δ indicates the component that is responsible for the 
system failure.  

Consider now a sample of n systems (all series or all 
parallels) that are independent and identically distributed. The 
set of n sample observations is (T,δ) = {(Ti,δi), i=1,...,n}. Note 
that, to obtain the sample we have considered for the i-th 
observation a vector (X1i,...,Xki), i=1,...,n, of latent or invisible 
observations of all j components. In fact, we only record the 

minimum (maximum) life time of all components of this i-th 
series (parallel) system. In addition, we record which 
component produce that value of T. For example, suppose that 
we have 1-out-of-3 system and have the observation (T=59 min, 
δ=2). That is, the second component was the last to fail and its 
failure time was 59 minutes. Although, the other two 
components fail before the second, their failure time could not 
be recorded. Suppose the data above was from 3-out-of-3 
system. In this case the second component was the first to fail 
and the other two will fail after 59 minutes.  

The unknown reliability function of the j-th component is 
Rj(t) = Pr(Xj > t), for j=1,...,k. Consequently the system 

reliability function is given by , for the series 

system and , for the parallel system. 

The present paper is the parametric Weibull counterpart of 
the nonparametric papers of Salinas-Torres, Pereira and Tiwari 
[1], Salinas-Torres, Pereira and Tiwari [2] and Polpo and 
Pereira [3]. Coque Jr. [4] developed the parametric estimator 
under Weibull model for the two component series system. On 
the other hand, the two component Weibull parallel system was 
introduced by Polpo, Coque Jr. and Pereira [5]. The use of 
Weibull model was motivated by the work of Irony, Lauretto, 
Pereira and Stern [6]. 

In the next section we establish the likelihood function for 
the Weibull model and the posterior distribution for its 
parameters. In the sequel we show how to use the Metropolis-
Hasting to perform the parameters estimation. A simulated 
example to show how the estimation process works is then 
considered. For Hypothesis testing, we use the FBST to 
compare the parameters of the components. The FBST is based 
on the evidence given by Pereira and Stern [7]. At the end we 
discuss the future projects of the authors for general coherent 
system.  

We end this section with the notation used.  

f(t | θ)  density function with parameter vector θ at point t.
R(t | θ) reliability function with parameter vector θ at point t.
L(θ | t)  likelihood function at point θ. 

II(.)  unit function: II(TRUE) = 1, II(FALSE) = 0. 
Δ  the responsible component to fail. 
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R(.)  reliability function of the system. 
Rj(.)  reliability function of the j-th component. 

max(a,b)  maximum between a and b. 
min(a,b)  minimum between a and b. 

N  sample size, number of systems observed. 
Pr(E)  probability of event E. 

T  system failure survival time. 
(T, δ) = {(Ti, δi), i=1,...,n}, random sample to be 

observed.  
Xj j-th component failure time. 

II. LIKELIHOODS, PRIORS AND POSTERIORS  
Considering now the Weibull model with standard 

parameters θj = (βj, ηj), the reliability function of a random 
variable X is  

  (1) 

x > 0, shape β > 0 and scale η > 0. The hazard function, 
the mean and the variance of this Weibull are respectively:  

,  and  

 

A. Likelihoods 
The likelihood function of the system sample is as follows:  

series system 

 (2) 

parallel system 

 (3) 

where f is for densities, θ = (θ1,..., θk), θj = (βj, ηj), j=1,...,k, 
and IIA is 1 if A occurs and 0 otherwise. Recall that here t is the 
minimum (maximum) for series (parallel) system. 

B. Priors 
Jefrrey's noninformative distribution was the prior chosen 

here. For standard Weibull model, Equation (1), Jefrrey's 

improper prior is . This prior was used for both, series and 
parallel, system; that is 

  (4) 

C. Posteriors 
The posterior distribution is obtained by the normalized 

product of the prior times the likelihood. We simple multiply 
the prior (4) by the likelihood functions given in Equations (2) 
and (3).  

series system 

 (5) 

parallel system 

 (6) 

III. ESTIMATION AND FBST 

A. Estimation steps 
For parameter estimation we use the posterior mean, 

although there is no closed form for it. The Metropolis-Hasting 
method should be appropriate for our solutions.  

Here we use, as the starting distribution, the gamma 
distribution for the parameters θj, j=1,...,k. The posterior 
distributions obtained from this method is used to obtain the 
estimates (the means of these distributions) of the parameters.  

B. FBST 
The Full Bayesian Significance Test (FBST) reviewed by 

Pereira, Stern and Wechsler [8] is the testing procedure for 
comparing the reliabilities of the components. The following 
null hypothesis are the ones of interest: 

• H0: [(β1 = ... = βk) and (η1 = ... = ηk)]. 

• H0: [E(X1) = … = E(Xk)]. 

The FBST consists of two steps: 

1. to evaluate the tail of the posterior distribution up to 
the manyfold defined by H0; 

2. to decide if the evidence, the volume of the tail, is 
large or small, exactly as we do with the standard p-
values. 
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Next section presents an example to illustrate the use of the 
procedure described above. 

C. Example: Simulated Observations 
Consider a simulated sample of size n = 100 of a three 

component's system. In fact we have simulated a hundred 
observations for each one of the following distributions.  
 component 1: X1 ~ Weibull, with E(X1) = 2 and sd(X1) = 2 

 component 2: X2 ~ gamma, with E(X2) = 2 and sd(X2) = 0.816 

 component 3: X3 ~ log-normal, with E(X3) = 2.014 and sd(X3) = 2.639 

We also evaluated the probability of each one of the 
components to be responsible for the system failure, for both 
systems (series and parallel).  

The goal of such example is to evaluate the quality of the 
Bayesian estimation. Since we have fixed the distributions, we 
can check how good are the estimates comparing them with the 
true values of the parameters. We used the same components in 
both, series and parallel, system.  

All chains produced by the Metropolis-Hasting method 
converged. We use a burn-in of size 10000, a jump of 10 
simulated points of the posterior and the number of generate 
points from the Metropolis-Hasting method to built the 
posterior distributions was 10000.  

Table 1 and Table 2 list the estimates and the standard 
deviation of each parameter. Also, we present the higher 
posterior (HPD) credible interval of 95% for these parameters. 
These intervals were obtained from the marginal posterior 
distributions.  

TABLE I.  SERIES: PARAMETER ESTIMATES 

 

TABLE II.  PARALLEL: PARAMETER ESTIMATES 

 
For the series system, Figure 1, Figure 2 and Figure 3 

present the estimates of the reliability functions for components 

1, 2 and 3 respectively. Figure 4 illustrates how good is the 
system estimate, compared with the actual distribution, even 
with the presence of censored data. Also, for the series system 
we have that ρ1 = Pr(X1 < min(X2, X3)) = 0.5050, ρ2 = Pr(X2 < 
min(X1, X3)) = 0.1420 and ρ3 = Pr(X3 < min(X1, X2)) = 0.3531. 
Figure 5 shows the estimates of the probabilities of component 
Cj be responsible for the system failure at a given time t. 

Now, for the parallel system, Figures 6, 7, 8 and 9 present 
the corresponding estimates of the components and system 
distribution functions. The figures here are ρ1 = Pr(X1 > 
max(X2, X3)) = 0.2252, ρ2 = Pr(X2 > max(X1, X3)) = 0.4477 
and ρ3 = Pr(X3 > max(X1, X2)) = 0.3271. Figure 10, for parallel 
systems, is the correspondent to Figure 5, for series systems. In 
all figures the dash line represents the true distribution and the 
gray line represents the estimate distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Series: Estimates of component 1 reliability function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Series: Estimates of component 2 reliability function. 
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Figure 3.  Series: Estimates of component 3 reliability function. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Series: Estimates of system reliability function. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Series: Probability of Ci, i=1,2,3, be responsible of the system 
failure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Parallel: Estimates of component 1 reliability function. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Parallel: Estimates of component 2 reliability function. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Parallel: Estimates of component 3 reliability function. 
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Figure 9.  Parallel: Estimates of system reliability function. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Parallel: Probability of Ci, i=1,2,3, be responsible of the system 
failure. 

Figure 11.  SERIES FBST 

 

TABLE III.  PARALLEL FBST 

 
To evaluate the evidence index from FBST procedure we 

compute probability of the tangential set to the hypothesis, 
describe in Section 3.2.  

A set  is said to be tangential to H0 if all his points have 
density higher than the density of any parameter point 
satisfying H0. The evidence in favoring H0 is 1- . Tables 3 
and 4 present the evidence values for the hypothesis of equal 
expected lives of the components. These null hypothesis, as 
expected, must not be rejected. Recall that in our simulated 
samples the original generator life distributions have closed 
expected values. On the other hand, we could not accept the 
equivalence among the parameters of those distributions. This 
conclusion also agrees with the generator distributions.  

IV. FINAL REMARKS 
In this paper we present statistical analysis of series and 

parallel systems. The example presented shows the force of the 
method. Data were generated from different known 
distributions. However, in real life one does not known the 
distributions that better fits the problem and consequently the 
observations. The family of Weibull distributions is very rich 
and accommodates many kinds of situations. There is still a 
larger family that is the Weibull with three parameters 
considered in Irony, Lauretto, Pereira and Stern [6]. This 
parametric family is still more closed to produce solutions as 
the nonparametric ones. It would not be an absurd to name this 
last family as a semi-parametric distribution family for survival 
random variables.  

With the nonparmetric solutions together with the Weibull 
ones for the parallel and series systems, it should be interesting 
to look for equivalent solutions for some coherent systems like 
the bridge one, see Barlow [9] and Barlow and Proschan [10].  
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