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Abstract: A method for statistical analysis of multimodal and/or highly distorted data is presented.
The new methodology combines different clustering methods with the GAMLSS (generalized additive
models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering
GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the
response-variable (target). Any and all parameters of the distribution for the response variable can
also be modeled by functions of the new covariate added to other available resources (features). The
method of selecting resources to be used is carried out in stages, a step-based method. A simulation
study considering multiple scenarios is presented to compare the c-GAMLSS method with existing
Gaussian mixture models. We show by means of four different data applications that in cases where
other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms
mixture models, some recently developed complex distributions, cluster-weighted models, and a
mixture-of-experts model. Even though we use simple distributions in our examples, other more
sophisticated distributions can be used to explain the response variable.

Keywords: bimodal distributions; GAMLSS; mixture models; regression models; statistical learning

1. Introduction

Multiple regression models in which the response variables are generated by distri-
butions that belong to a family of parametric probability distributions have been widely
used. The goal is to explain the behavior of a response variable, denoted here as Y. The
increasing ease with which data can be collected and stored allows for quick construction of
databases of ever-increasing sizes. With large volumes of data available for study, patterns
of greater complexity are being observed, forcing the search for more flexible probabilistic
(regression) models to deal with such patterns. Examples of such complexities include
asymmetry around central values, the presence of a high excess kurtosis, multimodality,
and other aspects of separate subgroups with little variability. These anomalies, common in
a large database, can be caused by the effect of latent variables or latent categories, which
are variables or categories that are not observed or collected.

For example, consider the weight distribution of a certain animal species for which
the sexes of the sampled units are not recorded. A possible difference between the average
weights of males and females may lead to a bimodal distribution of frequencies. Other
aspects not noted in the database may also be responsible for additional anomalies. Another
common issue in establishing species profiles occurs when the variabilities of the two
subgroups determine the corresponding profiles. If latent characteristics are not considered,
marginal distributions of the response variables can produce anomalies such as those
illustrated in Figure 1—(a) bimodality with little variability between subgroups; (b) high
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asymmetry on the right with little difference between location parameters. This high
asymmetry can be explained by the variability differences among subgroups.
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Figure 1. Densities generated from two different Gaussian distributions: (a) N (60, 5) and N (90, 5);
and (b) N(60, 5) and N (75, 15).

Several methods of handling these kinds of behavior are described in the literature. It is
common for analysts not to have access to features that may be causing these distortions in
the target variable. Usually, it is assumed that the response variables have bimodal and/or
skewed distributions. New overly complex probabilistic distributions are being developed
to deal with these problems, such as in [1–3]. When one uses these new distributions to
explain such distortions, one is only considering the marginal distribution of the target
variable, and not the possibility that they might be due to one or more additional features.

Mixture distributions, such as in [4], are a promising alternative approach. The sim-
plest way to use this kind of model in problems such as those in Figure 1 is to consider the
observations of the response variable to have been generated by two distinct distributions
that although they belong to the same family of distributions, have different values between
their respective parameters. Mathematically, this can be written as

f (y; ξ) = p ω1(y, ξ1) + (1− p)ω2(y, ξ2), (1)

where p represents the proportion of observations generated by distribution ω1, (1− p)
is from ω2, and ξ1 and ξ2 are parameter vectors. For instance, if both generators are
considered to follow Gaussian distributions, then we have ω1 ∼ N(µ1, σ1) and ω2 ∼
N(µ2, σ2). Some other well-known options for dealing with such behavior available in the
literature are the class of mixture-of-expert models (MoE) [5] and cluster-weighted models
(cwm) [6].

The present work provides another alternative approach in which clustering tech-
niques are used early in the modeling process. The use of these tools has the following
objectives: (i) identify different clusters in the data set from a possible latent explanatory
variable (e.g., in a bimodal data set, two different clusters would be created, producing a
new dummy variable, while a trimodal data set would lead to three clusters, generating
a factor with three levels, and so on); and (ii) include this new covariate in a regression
model to explain the specific behavior observed in the response, as in [7]. In our approach,
we use the GAMLSS framework, short for “generalized additive models for location,
scale and shape” [8] with simple distributions. As stated in [9] the use of simple distri-
butions with highly sophisticated regression-type models may return reliable and easily
interpreted results.
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The paper is organized as follows. In Section 2, we briefly describe some clustering
methods that could be used in the proposed methodology. In Section 3, we incorporate
clusters as latent variables into the GAMLSS framework. In Section 4, we perform some
simulation studies to validate the proposed modeling process. In Section 5, four different
applications are discussed. In the first two, no extra covariates are available, and we
compare the proposed methodology to both mixture models and sophisticated distributions.
In the others, authentic explanatory variables are also considered, and we compare our
approach with cluster-weighted regression models and the mixture-of-experts model.
Finally, Section 6 contains concluding remarks.

2. Clustering Methods

In this section, we present a brief summary of four well-established clustering methods
that will be considered to identify different groups in both Sections 4 and 5. Nevertheless,
it is worth noting that any clustering method may be applied in the proposed framework in
this paper (e.g., the ones presented at https://cran.r-project.org/web/views/Cluster.html,
accessed on 1 July 2021), as we show in the last two applications in Sections 5.3 and 5.4.

2.1. k-Means Clustering

The k-means clustering method is the most well-known and popular grouping method
in the literature. The basic idea of the k-means method is to minimize intra-cluster variation.
There are several algorithms available to minimize that variation, of which the best-known
were pioneered by [10,11]. Here we focus only on the algorithm available in [11], which
defines the total intra-cluster variation as the sum of squared Euclidean distances between
items and the corresponding centroid ∑yi∈Ck

(yi − µk)
2, where yi is a point that belongs

to cluster Ck and µk is the mean value of the points assigned to the cluster Ck. The main
idea of this method is to minimize J(C) = ∑K

k=1 ∑yi∈Ck
(yi − µk)

2, the sum of the squared
distances between points and their respective clusters’ centroids over all K clusters. This is
known to be an NP-hard problem [12].

2.2. Ward’s Hierarchical Clustering

Ward’s hierarchical clustering method is the only one among the agglomerative
methods that is based on a sum-of-squares method and produces groups that minimize
intra-group dispersion at each binary fusion [13]. The function to be minimized is given by

D(C1, C2) =
|C1||C2|
|C1|+ |C2|

||C1 − C2||2.

As can be seen in [13], Ward’s method shares the sum-of-squares minimization cri-
terion with k-means partitioning. A full flowchart regarding the hierarchical grouping
procedure is available in the original paper by [14].

2.3. Fuzzy Clustering

Fuzzy clustering allows a given observation (or an individual) to belong to more than
one cluster, generalizing partitioning methods such as k-means [15]. Here, the objective
function to be minimized is

K

∑
k=1

n

∑
i,j=1

u2
iku2

jkd(i, j)

2
n

∑
j=1

u2
jk

,

where uik represents membership of object i in cluster k, d(i, j) are the dissimilarities and n
is the number of observations. The considered objective function may vary in this method,

https://cran.r-project.org/web/views/Cluster.html
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however, as mentioned above, any clustering method (and objective function) can be used
in the proposed methodology.

2.4. Model-Based Clustering

Model-based clustering is based on finite Gaussian mixture modeling [16] and may be
achieved using an EM (expectation-minimization) algorithm as described in [17]:

1. A maximum number K of clusters is defined and a mixture model is considered;
2. A hierarchical agglomeration to approximately maximize the classification likelihood

for each model is carried out, followed by obtaining classifications for up to K groups;
3. The EM algorithm is performed for each model and each number of clusters;
4. A goodness-of-fit measure (such as Bayesian information criterion) is computed for

the one-cluster case for each model and for the mixture model based on the estimates
obtained in Step 3.

3. Incorporating Clustering into GAMLSS

As highlighted in Section 1, many different sophisticated statistical distributions have
been proposed to deal with some specific patterns presented in the marginal distributions
of the response Y. In this paper, we use simpler distributions, modeling not only the mean
(location) parameter µ in terms of the latent variable (clusters) and any other known features
(explanatory variables) through the GAMLSS (generalized additive models for location,
scale, and shape) framework [8], a generalization of both well-established generalized
linear models (GLM) [18] and generalized additive models (GAM) [19].

Generically, let Y ∼ D(θ), i.e., Y follows any distribution (that does not necessarily
belong to the exponential family) with parameter vector θ. For an extensive list of distri-
butions used in GAMLSS, see [20]. Clustering GAMLSS (c-GAMLSS), which considers
different clusters obtained through one of the methods described in Section 2, can then be
described as follows:

gr(θr) = Xrβr +
Jr

∑
j=1

sjr(xjr) +
K

∑
k=2

Ckψkr, r = 1, . . . , R, (2)

where gr(·) denotes an appropriate link function for parameter θr, usually determined by
the range of the parameter, mr denotes the number of explanatory variables related to the
rth parameter, Xr is a known n× (mr + 1) model matrix, βr = (β0r, β1r, . . . , βmrr)

> is a
parameter vector of length (mr + 1), sjr(·) are smooth functions of xjr (e.g., p-splines [21]),
Ck denotes latent variables (clusters) and ψkr is a parameter vector of length (K− 1). Note
here that any and all of the parameters of the response distribution may be modeled as
functions of a given set of explanatory and latent variables. As in the classical GAMLSS
framework, it is possible to consider interactions between covariates and varying coefficient
terms (as introduced in [22]), where the varying coefficient function fits separate smooth
curves against X for each cluster [23]. Finally, model (2) can be seen as a flexible expert-
network mixture of experts [24]. However, in this approach, the mixing proportion does
not depend on the covariates.

Due to the high flexibility of GAMLSS, there are multiple techniques that may be
used to select and fit a suitable model for the response variable considering the available
covariates. They are extensively described in [23]. In the c-GAMLSS framework, we can
use the following steps in the model-selection process:

• Step 1: Select a clustering method (e.g., among the ones presented in Section 2) to
create different groups (estimating the number of clusters can be achieved using one
of multiple available strategies. See, for instance, [25]).

• Step 2: Select subsets of authentic and latent variables for each of the parameters of
the response-variable distribution, using any of the applied strategies for GAMLSS
models [23]. The most common procedure is a stepwise procedure called “Strategy
A” [23,26,27]).
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Strategy A uses a goodness-of-fit measure to select the most suitable model to describe
the data being studied. One may say that the Bayesian information criterion (BIC) [28]
would perform better than the Akaike information criterion (AIC) [29] in the c-GAMLSS
framework [30,31]. However, since we may consider smoothing functions within model
(2), BIC can lead to underfitting (i.e., oversmoothing) [32]. A richer discussion regarding
this topic can be seen in [27]. Furthermore, as in MoE, an important issue to be addressed
in the future is whether a given covariate may be (or not) considered in either or both of
the above-mentioned steps.

If only latent variables (clusters) are used to explain the behavior of a given response,
then model (2) reduces to

gr(θr) = ψ1r +
K

∑
k=2

Ckψkr, r = 1, . . . , R, (3)

which can be seen as a mixture model [24] with no covariates affecting the mixing propor-
tion. It is worth mentioning that the new coefficient ψ1r in (3) is the intercept associated
with each of the regression structures related to the first cluster obtained from any of the
methods described in Section 2. In model (2), the intercept is the first element of each vector
of parameters βr.

As a straightforward example, letting Y have a Gaussian distribution, with vector of
parameters θr = (θ1, θ2)

> = (µ, σ)> in (3), results in the following:

g1(θ1) = µ = ψ11 +
K

∑
k=2

Ckψk1

g2(θ2) = log(σ) = ψ12 +
K

∑
k=2

Ckψk2. (4)

Note that we choose appropriate link functions for both parameters (identity and
logarithm functions for µ and σ, respectively). See [23] for more information.

Regarding the inference processes, all model parameters can be estimated by the
penalized maximum-likelihood method through the Rigby and Stasinopoulos (RS) and/or
Cole and Green (CG) algorithms described in [8,33]. As stated in [23], both algorithms are
stable and fast using simple starting values, such as constants.

Implementation of fitting a c-GAMLSS model (including or not extra covariates
and considering different response-variable distributions) is easily achieved using a new
generic function called gamlss.cluster(), based on the gamlss package [33] for the R
software environment [34] and available at https://git.io/JtOZW (accessed on 1 July 2021).

4. Simulation

In this section, we conduct some Monte Carlo simulation studies to understand the
behavior of the c-GAMLSS framework based on the Gaussian distribution and compare
it to the usual Gaussian mixture model approach, considering four different scenarios
(marginal response-variable shapes) where each is composed of two different clusters.
All observations were generated in the R software environment via the rnorm() function.
The averages (µ) and standard deviations (σ) for each cluster and scenario are reported
in Table 1 and the resulting empirical densities (considering both scenarios together) are
displayed in Figure 2.

https://git.io/JtOZW
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Table 1. Means and standard deviations of each cluster (from a Gaussian distribution) considered in
four different scenarios.

Cluster 1 Cluster 2

Scenario µ1 σ1 µ2 σ2

A 15 1 25 1
B 14 5 28 5
C 10 3 25 6
D 10 1 25 8
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Figure 2. Shape of the empirical marginal density in each scenario.

For each scenario, we evaluate the maximum-likelihood estimates (MLEs) of the
parameters for both approaches and then, after all replications, we compute the biases
and mean squared errors (MSEs) based on the average estimates. In order to obtain the
MLEs for the mixture models, we are using the normalmixEM() function available in the
mixtools package for the R software environment, which returns the best fitted model after
five attempts. All results here are obtained from 1000 Monte Carlo replications. Here we
are considering two different sample sizes for each cluster, 50 and 300, totaling n = 100
and n = 600 observations for each data/replication. Results are displayed in Table 2.
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Table 2. The biases and MSEs for the c-GAMLSS and mixture models based on 1000 simulations using different sample sizes.

n = 50 in Each Cluster n = 300 in Each Cluster

c-GAMLSS Mixture c-GAMLSS Mixture
Scenario Parameter Bias MSE Bias MSE Bias MSE Bias MSE

µ1 0.001 0.020 0.016 0.091 0.000 0.003 0.025 0.124
σ1 −0.038 0.009 −0.061 0.060 −0.010 0.001 −0.004 0.084

A µ2 −0.009 0.019 −0.023 0.095 −0.003 0.003 −0.028 0.126
σ2 0.006 0.008 −0.061 0.060 0.006 0.001 −0.004 0.084
p 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.001

µ1 −0.401 1.650 0.330 5.931 −0.355 0.283 0.095 1.317
σ1 −0.747 0.858 −1.198 2.848 −0.580 0.357 −0.300 0.417

B µ2 0.427 1.724 −0.193 5.638 0.377 0.291 −0.132 1.331
σ2 −0.529 0.510 −1.196 2.845 −0.556 0.329 −0.300 0.417
p 0.046 0.005 0.127 0.031 0.015 0.000 0.046 0.005

µ1 0.197 0.585 0.178 1.396 0.003 0.048 −0.005 0.107
σ1 0.022 0.398 −0.114 0.327 −0.120 0.037 −0.017 0.034

C µ2 0.822 2.123 −0.016 2.074 0.525 0.459 −0.043 0.324
σ2 −0.860 1.508 −3.110 10.007 −0.583 0.415 −3.015 9.127
p 0.044 0.004 0.048 0.007 0.019 0.000 0.016 0.001

µ1 0.007 0.023 0.052 0.401 0.006 0.004 0.007 0.058
σ1 0.005 0.018 −0.005 0.022 0.009 0.003 −0.003 0.003

D µ2 0.730 1.908 0.165 1.749 0.659 0.674 0.023 0.310
σ2 −0.622 1.129 −6.997 49.048 −0.491 0.378 −6.996 48.992
p 0.024 0.001 0.021 0.002 0.021 0.001 0.007 0.000

Note: Based on model (4), in c−GAMLSS µ1 = ψ11, µ2 = ψ11 + ψ21, σ1 = ψ12 and σ2 = ψ12+ ψ22, where ψ1r and ψ2r , r = 1, 2, are
coefficients associated with the first and second clusters, respectively.

Please note that we have five different parameters in Table 2: µ1, σ1, µ2, σ2 and p.
Regarding the mixture model, all parameters were already introduced in Equation (1) and
refer to the mean and standard deviation of the first cluster, mean and standard deviation
of the second cluster and the proportion of observations that will be modeled by the
first Gaussian distribution, respectively. However, we note here that we temporarily
reparameterize the c-GAMLSS model in this subsection to compare the performance of
the two approaches, since they will have the same interpretation. This reparameterization,
based on model (4), is given as follows: µ1 = ψ11, µ2 = ψ11 + ψ21, σ2 = ψ12, σ2 = ψ12 + ψ22
and p is the proportion of observations in the first cluster obtained through the best
clustering method available in Table 1 for each of the scenarios (Scenario A: k-means;
Scenario B: Fuzzy; Scenario C: model-based; and Scenario D: model-based).

In Scenario A we may note that the c-GAMLSS method clearly performs better than
the Gaussian mixture models for both sample sizes considered (nevertheless, as expected,
biases and MSEs decrease for both methods in the greater sample). For Scenario B (n = 50
in each cluster), we may note that the absolute biases for the standard deviation (σ1 and σ2)
estimates are greater for the c-GAMLSS method; however, the MSEs are drastically smaller,
indicating a better accuracy. Considering n = 300 in each cluster, all results are clearly
favorable to the new proposed alternative. In Scenario C, the MSEs obtained for σ2 by the
mixture model are 6.67 and 21.99 times greater than the one returned by the c-GAMLSS
method for n = 50 and n = 300 in each cluster, respectively. Finally, for Scenario D,
the MSE returned by the Gaussian mixture when n = 300 in each cluster for the standard
deviation σ2 was almost 130 times greater than the one returned by c-GAMLSS. We can
conclude that our proposed methodology clearly outperformed the already well-known
Gaussian mixture model in all simulated scenarios.

5. Applications

In this section, we provide two applications comparing the adequacy of the c-GAMLSS
framework, Gaussian mixture models, and some sophisticated bimodal distributions for
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marginally modeling the response variable (i.e., not considering any further explanatory
variables), and another two applications where extra authentic covariates exist, comparing
c-GAMLSS to the mixture-of-experts models (MoE; Gaussian parsimonious clustering
models with covariates) and cluster-weighted models (cwm). In order to compare these
approaches, both AIC and BIC statistics are calculated.

The flexible recently proposed four-parameter distributions considered in the first
two applications, where only the target variable is available, are: the odd log-logistic
exponentiated Gumbel (OLLEGu) [1], extended generalized odd half-Cauchy log-logistic
(EGOHC-LL) [2], and exponentiated log-sinh Cauchy (ELSC) [3] distributions. All param-
eter roles and their respective ranges from each of these distributions are described in
Table 3.

Table 3. Parameter ranges and roles in the four-parameter distributions considered.

OLLEGu EGOHC ELSC

Range Role Range Role Range Role

µ IR Location IR+ Shape IR Location
σ IR+ Scale IR+ Scale IR+ Scale
ν IR+ Shape IR+ Shape IR+ Skewness
τ IR+ Shape IR+ Shape IR+ Shape

5.1. Actuarial Sciences Data

In the first application, we present a data set already studied in [1], where the authors
compare their new model with some of its sub-models and other alternative distributions.
The data consist of the lifespans (in years) of 280 retired women covered by the Mexican
public health-insurance system who had temporary disabilities and died during 2004.
The data are more fully reported in [35].

Table 4 contains the MLEs, their respective SEs, and the AIC and BIC statistics for
all fitted models. The c-GAMLSS framework based on the Gaussian distribution clearly
performs better than all other approaches, yielding the lowest AIC and BIC values (1788.35
and 1802.90, respectively). Please note that in this particular case, the latent variable
(clusters) was considered only for the parameter µ, i.e., both clusters present the same
dispersion (σ), and hence no estimates for ψ22 are displayed. This was achieved through
the stepwise method (Strategy A), which also selected the k-means clustering method as
the most appropriate to divide these data.

Table 4. MLEs of all model parameters on actuarial sciences data, their corresponding SEs (in
parentheses), and the AIC and BIC values.

Model Estimates AIC BIC

c-GAMLSS 37.967 17.400 1.760 1788.35 1802.90
(ψ11, ψ21, ψ12) (0.526) (0.701) (0.042)

EGOHC-LL 44.837 13.375 0.511 8.688 2091.69 2106.23
(µ, σ, ν, τ) (1.454) (1.210) (0.095) (2.935)

OLLEGu 62.140 13.372 14.716 0.380 2106.3 2120.9
(µ, σ, ν, τ) (4.002) (0.213) (0.304) (0.328)

ELSC 3.828 0.098 0.355 1.014 2113.80 2128.34
(µ, σ, ν, τ) (0.037) (0.084) (0.184) (0.187)

Gaussian mixture 35.429 5.440 51.554 8.471 0.234 2116.10 2134.30
(µ1, σ1, µ2, σ2, p) (1.688) (0.856) (1.601) (0.936) (0.094)

The Gaussian mixture model did not perform well when compared to the other
approaches (Table 4), returning the highest AIC and BIC values among all models (2116.10
and 2134.30, respectively), presenting a roughly unimodal curve in Figure 3a. Moreover,
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the c-GAMLSS method was able to precisely identify two different clusters (red and
blue curves).
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Figure 3. The actuarial sciences data and all fitted models: (a) c-GAMLSS framework and mixture
model (b) ELSC, OLLEGu and EGOHC-LL distributions. Please note that the blue and red colors on
the c-GAMLSS approach indicate the two different selected clusters.

Although the OLLEGu distribution was elected as the best one to describe these data
according to [1] when compared to some other models, we can see that the EGOHC-LL
distribution, proposed two years earlier by [2], returned better AIC and BIC statistics
(2091.69 and 2106.23, respectively). Their fitted densities are displayed in Figure 3b.

5.2. Ozone Data

The second application corresponds to daily ozone-level measurements (in ppb = ppm
× 1000) collected in New York during 1973 and is available in [36]. As with the previous
application, we provide in Table 5 the MLEs, their corresponding SEs and AIC and BIC
statistics. Once again, the proposed methodology is the best alternative to explain the
behavior of the data since it returned the lowest AIC and BIC values (936.18 and 947.78,
respectively) and the Gaussian mixture approach performed poorly. In this application,
the c-GAMLSS framework based on the Gaussian distribution uses the model-based
clustering selected via Strategy A, where the generated latent variable was included in
both regression structures (µ and σ).

Table 5. MLEs of the model parameters for the ozone data, the corresponding SEs (given in parenthe-
ses), and the AIC and BIC statistics.

Model Estimates AIC BIC

c-GAMLSS 20.776 55.291 2.302 1.008 936.18 947.78
(ψ11, ψ21, ψ12, ψ22) (1.221) (4.261) (0.086) (0.136)

OLLEGu 29.628 10.071 1.096 0.334 1054.41 1065.28
(µ, σ, ν, τ) (0.278) (3.598) (5.259) (0.472)

EGOHC-LL 22.995 2.647 0.830 6.572 1062.50 1073.40
(µ, σ, ν, τ) (5.259) (0.472) (0.278) (3.598)

Gaussian mixture 21.410 10.910 69.950 31.457 0.555 1063.93 1077.52
(µ1, σ1, µ2, σ2, p) (2.297) (1.743) (7.895) (3.818) (0.090)

ELSC 3.790 0.294 0.364 0.942 1095.32 1106.19
(µ, σ, ν, τ) (0.412) (0.111) (0.216) (0.461)
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These data were also analyzed in [2], where the EGOHC distribution was the model
selected when compared to some of its sub-models and other distributions. Nevertheless,
we can see that the OLLEGu model returns better AIC and BIC values (1054.41 and 1065.28,
respectively). Finally, all fitted densities are displayed in Figure 4.
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Figure 4. The ozone data and all fitted models: (a) c-GAMLSS framework and mixture model
(b) ELSC, OLLEGu, and EGOHC-LL distributions. Note that the blue and red colors on the c-
GAMLSS approach indicate the two different selected clusters.

5.3. Two-Moon

The two-moon is a well-known synthetic data set introduced by [37] which can be
obtained in the clusterSim package in the R software environment, and is mainly used
in studies regarding clustering methods. The generated data consist of two variables: the
response Y and an authentic covariate X, both defined on the real numbers. The relationship
between Y and X, as well as the two clusters (in red and black colors) are shown in Figure 5.
We may note a clear nonlinear relationship between response and the explanatory variable,
and hence clustering algorithms that consider linear separations may not be suitable
for this example. Here we are considering the cluster classification already available
in the data set [37]. Furthermore, this nonlinear relationship indicates that the use of
smoothing functions in the regression structure would be appropriate, and the shape of
such relationship may depend on each cluster, so considering an interaction between each
cluster and the explanatory variable X may also be necessary.

Now we compare c-GAMLSS based on the Gaussian distribution, considering the
presence of an authentic explanatory variable, against three different models: (i) fitting a
regression structure only for the location parameter, with a constant variance (reducing
to a c-GLM); (ii) incorporating smoothing functions in this regression structure (reducing
to a c-GAM); and (iii) considering a mixture-of-experts model (Gaussian parsimonious
clustering models with covariates, obtained using the MoEClust package for the R software
environment). We shall highlight here that due to the behavior observed in Figure 5, in the
c-GLM structure, we are considering a quadratic term and interactions between covariate
X and the clusters, whereas in both c-GAM and c-GAMLSS, we fit a varying coefficient
term (pvc).
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Figure 5. Scatter plot of Y against X for the moon data.

Table 6 displays all regression structures for each fitted model. c-GAMLSS presented
the lowest AIC value (−279.4), whereas the c-GLM model returned the lowest BIC value
(−202.7). We emphasize here that the BIC criterion highly penalizes models that consider
smoothing functions to explain a given response-variable parameter. However, as can be
seen in Figure 6, such functions are quite important to explain the nonlinear effect of X on
each of the response-variable parameters (mean µ and standard deviation σ).

Table 6. Regression structures for all fitted models applied to the two-moon data and their corre-
sponding AIC and BIC statistics.

Model Regression Structure AIC BIC

c-GAMLSS µ = β01 + pvc(x, by = C) −279.4 −159.3
σ =exp[β02 + pvc(x, by = C)]

c-GAM µ = β01 + pvc(x, by = C) −248.1 −191.5
σ =exp(β02)

c-GLM µ = β01 + β11x + β21x2 + ψ21C + ψ31xC + ψ41x2C −230.7 −202.7
σ =exp(β02)

MoE µ1 = β01 + β11x + β21x2 p = logistic(β03) −186.3 −154.38
µ2 = β02 + β12x + β22x2 σ =exp(β04)
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Figure 6. For “two-moon” data and c-GAMLSS, partial effects of the interaction between X and
clusters on (a) µ and (b) σ.

5.4. Eruption Data

In this last application we revisit the well-known Old Faithful Geyser data from
Yellowstone National Park in Wyoming, USA [38]. This data set contains 299 pairs of
measurements regarding the times between the beginnings of successive eruptions, contin-
uously collected over the first 15 days of August of 1985, and can be obtained in the MASS
package for the R software environment. The explanatory variable X, which represents
eruption duration, can also be used here to explain the response variable.

Here, we apply the full model displayed in Equation (2) to these data, disregarding
the smoothing functions, i.e., the eruption duration X is treated as a linear predictor of the
c-GAMLSS model. Furthermore, in order to show the great flexibility of this approach, we
now consider a more complex distribution (apart from the celebrated Gaussian) to explain
the target variable. In the classical GAMLSS context, when Y > 0, one of the most-used
distributions is the Box-Cox Cole and Green (BCCG), a three parameter distribution where
µ > 0 is the median, σ > 0 is the approximate coefficient of variation and −∞ < ν < ∞ is
the skewness parameter. For further details regarding the BCCG, see [20].

We compare the results obtained by the c-GAMLSS framework based on both the
Gaussian and BCCG distributions with a cluster-weighted model (cwm) [6], the estimates
of which were obtained using the cwm function in the flexCWM package. All model struc-
tures and their respective AIC and BIC statistics are presented in Table 7, where we see
that c-GAMLSS based on the BCCG distribution provides a better fit than the other two
alternatives since its AIC and BIC values are the smallest (1840.6 and 1870.2, respectively).
A visual comparison of all models is provided in Figure 7 (the graphical representation
of c-GAMLSS based on both Gaussian and BCCG distributions overlap). Finally, we also
present in Figure 8 the term plot for each effect fitted, i.e., the effects of each explanatory
variable on the model parameters.
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Table 7. Regression structures for c-GAMLSS (based on the BCCG and Gaussian distributions) and
cwm models applied to the eruption data and their corresponding AIC and BIC values.

Model Regression Structure AIC BIC

c-GAMLSS µ = exp(β01 + β11X + ψ21C + ψ31XC)
1840.6 1870.2(BCCG) σ =exp(β02 + β12X)

ν = ψ13 + ψ23C

c-GAMLSS µ = β01 + β11X + ψ21C + ψ31XC 1970.4 1992.6(Gaussian) σ =exp(ψ12 + ψ22C)

cwm µ1 = β01 + β11duration p = logistic(β03) 2203.6 2229.5
µ2 = β02 + β12duration σ =exp(β04)
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Figure 7. The eruption data and the fitted regression models based on the c-GAMLSS and cwm
frameworks.
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Figure 8. The fitted terms for the c-GAMLSS model based on the BCCG distribution on eruption data.

6. Conclusions

This article introduces c-GAMLSS—clustering generalized additive models for loca-
tion, scale, and shape. It is an alternative model to deal with highly distorted data and even
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though only bimodal responses were considered in this paper, this approach can also be ap-
plied in multimodal response problems. It is based on adding clustering techniques to the
celebrated GAMLSS framework. It provides a new generic function implemented in R, a
widely used statistical software. This new approach helps to make the fitting process more
reliable, outperforming Gaussian mixture models, as illustrated in both simulation and real
studies. Moreover, c-GAMLSS based on quite simple distributions returned better (smaller)
AIC and BIC values than highly complex recently proposed distributions, cluster-weighted
models and a mixture-of-experts model. Nevertheless, more sophisticated distributions
may be used with c-GAMLSS for further applications.
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