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ABSTRACT The reliability of a coherent system of components depends on the reliability of each component
and the initial statistical work should be an estimation of the reliability of each component. This paper
represents a challenging task because if the system fails, the failure time of a given component cannot
be observed, that is, the phenomenon of censored data occurs. A solution for the reliability estimation
of components exists when the system failure time and the status of each component are available at the
time of system failure. However, it may be difficult to identify the status of the components at the moment
of system failure. Such cases represent systems with masked causes of failure. Since parallel and series
systems are the simplest systems, numerous solutions have been reported in the literature. To the best of
our knowledge, this paper is the first to present the general case of coherent systems without the restriction
of an identically distributed lifetime. The three-parameter Weibull Bayesian model is proposed. The Gibbs
with the Metropolis–Hasting algorithm supports the statistical work of obtaining the posterior distribution
quantities. With several simulations, the excellent performance of the model is evaluated. A real dataset of
computer hard drives is analyzed to show the practical relevance of the proposed model.

INDEX TERMS Bayesian three-parameter Weibull model, coherent system, component reliability, masked
data, metropolis within Gibbs algorithm.

ACRONYMS
ALT accelerated life tests
BSNP Bhattacharya-Samaniego nonparametric
CI credibility interval
HPD highest posterior density
MAE mean absolute error
MCMC Markov-Chain Monte Carlo
MLE maximum likelihood estimator
PSS parallel-series system
SPS series-parallel system
SD standard deviation
W3PM Weibull 3-parameter model

NOTATION
βj shape parameter of 3-parameter

Weibull.
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δj be an indicator vector of the censor,
= (δ1j, δ2j, δ3j) in which

∑3
l=1 δlj = 1.

d ji latent variable vector,
= (d1ji, d2ji, d3ji) in which

∑3
l=1 dlji = 1.

ηj scale parameter of 3-parameter
Weibull.

f (· | θ j) density function of j-th component
failure time distribution.

F(· | θ j) distribution function of j-th component
failure time distribution.

h(·) function that relates the system failure
time to the components’ functioning.

λ1j(t) probability that the j-th component
is masked conditional to t and δ1j = 1.

λ2j(t) probability that the j-th component
is masked conditional to t and δ2j = 1.

λ3j(t) probability that the j-th component
is masked conditional to t and δ3j = 1.
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m number of components in the system.
MAE 1

l

∑l
`=1 | R̂(g`)− R(g`) |.

µj location parameter of 3-parameter
Weibull.

n number of systems in a sample.
np number of posterior samples simulated.
p proportion of the masked data system.
R(· | θ j) reliability function of j-th component

failure time distribution.
T system failure time.
ti observed failure time of i-th

system.
θ j parameter vector of Weibull 3-parameter

= (βj, ηj, µj) distribution for j-th component.
Xji j-th component failure time for i-th

system.
υji indicator variable if the j-th component

has a masked failure time for i-th
system.

ϒi index set indicating the components
candidates to cause the failure of the
i-th system.

I. INTRODUCTION
An important step in statistical reliability studies investigat-
ing coherent systems is the estimation of the reliability of
each system component. In general, the lifetime test can be
conducted at the system level but not at the component level.
Therefore, drawing statistical inferences regarding compo-
nent reliability is a challenging task as follows: when a sys-
tem fails, the failure time of a given component cannot be
observed, i.e., censored data. Considering a random sample
of a system with m components in which all n sample units
(systems) are observed up to failure, each sampling unit
produces a component failure time and a censored failure
time for the remaining m− 1 components, although different
types of censoring may occur. A specific component that has
not failed at time t is either right-censored, in which case the
component could continue to work after t , or is left-censored
if it has failed before t . Depending on the system structure (the
way the components are interconnected) and the component
reliability, a high amount of component censored data is very
common and is occasionally greater than 80%.

In some situations, the available information is the n
system failure times and the status of each component at
the system failure times (uncensored, right-censored or left-
censored). Approaches for component reliability estimation
in this situation have been proposed in the literature [1]–[9].

However, in certain situations, identifying the component
whose failure leads to system failure (the component whose
failure produced the system failure) or the status of the
components at the moment of system failure is difficult.
Such cases are known as masked cause of failure and are
usually due to limited resources for failure diagnosis. For
example, consider the reliability estimation of a series system
with the following three components in the computer hard

drive: electronic hard, head fly ability and disc magnetic [10].
The first component to fail causes the failure of the system
(computer hard drive), and a small subset of components is
identified as the possible cause of failure. In an attempt to
repair the system as quickly as possible, the entire subset
of components is replaced, and the component that leads to
system failure cannot be identified.

The literature on the reliability of either parallel or series
systems with masked cause failure is abundant, and differ-
ent solutions have been presented. [11] studied reliability
estimation for a series system with two components using
a maximum likelihood estimator (MLE) in closed form and
non-parametric estimates based on a Kaplan-Meier estima-
tor. Reference [12] extended Miyakawa’s results to a series
system with three components. References [13]–[18] pre-
sented parametric models of a series system using MLE and
Bayesian approaches. Reference [19] proposed an estimator
of the reliability functions of the components in a parallel
system. All these works assumed the symmetry assumption,
i.e., the probability of a system to have masked cause of
failure (masking probability) is the same regardless of which
component causes the system failure. References [20], [21]
presented an approach relaxing the symmetry assumption.
Reference [22] considered themasking probability in the like-
lihood function construction, and in addition to depending on
the cause of system failure [23] considered that the masking
probability is a decreasing function of the system failure time.

Accelerated life tests (ALT) are usually used to quickly
obtain information regarding the component reliability.
In these tests, the components are subjected to high-stress
levels to decrease the elapse time of failure occurrence. This
resulting information is used to examine system failures
under normal stress levels. To achieve this reversal, standard
patterns of relationship between failures at different levels
of stress are used. Using ALT, [24]–[26] proposed Bayesian
estimators for masked series systems. For hybrid systems
(systems with components in series and parallel), [27] con-
sidered MLE to draw inferences about component reliability.

FIGURE 1. (a) Series-parallel systems (SPS) and (b) parallel-series
systems (PSS) with three components.

For components involved in series-parallel systems (SPS)
and in parallel-series systems (PSS) with three components
(figures 1a and 1b), [28] proposed Bayesian nonparamet-
ric estimators for the reliability functions with masked data
using ALT. These authors assumed that the components
involved in SPS and PSS representations have mutually
independent lifetimes and that the distribution of the com-
ponents’ lifetimes must have disjoint sets of jump points.
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FIGURE 2. Complex system with 5 components.

FIGURE 3. SPS representation of system in Figure 2.

FIGURE 4. Bridge structure.

Their method can be applied to some components in a coher-
ent system, once it is known that every coherent system
can be written as SPS and PSS representations [29]. The
authors discussed the estimation of component reliability
in a coherent system in Figure 2 and estimated the relia-
bility of components j = 1, 2 and 5 by representing the
system as an SPS representation (Figure 1a). Let Xj be the
lifetime of the j-th component (j = 1, . . . , 5) in Figure 2
and Z` is the lifetime of the `-th component in an SPS
representation, ` = 1, 2, 3. Considering component j = 5,
the authors built a simplified system by considering Z1 =
max{X1,X2}, Z2 = min{X3,X4} and Z3 = X5. If the interest
is the estimation of the reliability function of components
j = 3 or j = 4, the complex system can be represented
as Figure 3. If Z1 = min{max{X1,X2},max{X4,X5}} or
Z1 = min{max{X1,X2},max{X3,X5}}, Z2 = X3 or Z2 = X4
and Z3 = X5; thus, the coherent system can be simplified
as an SPS representation as in Figure 1a. However, their
assumption that the components are mutually independent in
the representation is violated because of the presence of com-
ponent j = 5. Therefore, the method proposed by [28] cannot
be considered for the reliability estimation of components
j = 3 and j = 4.

Other complex coherent systems present the same problem
as follows: some components may appear in two or more
places in SPS or PSS representations. Figure 4 is a bridge
system described in the literature [29] that Figure 5 illus-
trates SPS and PSS representations. Notably, each of the five
components appears twice for both representations. Another
interesting structure is the k-out-of-m system (which only
works if at least k of the m components work). For instance,
Figure 6 presents a simple 2-out-of-3 case of SPS and

FIGURE 5. (a) SPS and (b) PSS representations of bridge system.

FIGURE 6. (a) SPS and (b) PSS representations of 2-out-of-3.

PSS representations. Notably, each of the three components
also appears twice in both representations. These situations
violate the assumption proposed by [28], and their estimator
is not suitable for the reliability function of components
involved in these complex coherent systems.

The nonparametric estimator of the reliability of compo-
nents involved in coherent systems proposed by [30] can be
considered in a scenario with masked data since the only
necessary information is the system failure time and system
structure; thus, knowledge regarding the cause of failure
is not necessary, which is suitable for masked data situa-
tions. This scenario occurred because the authors assumed a
restrictive assumption in which the component lifetimes are
s-independent and identically distributed; therefore, there is
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only one estimator for all different components, which can be
a restrictive and not applicable/realistic assumption.

Other works can be cited by estimating the reliability
function of components involved in coherent systems and
also restricted to the identical components assumption. Refer-
ence [31] proposed nonparametric inference for components
in a scenario that system structure is known and may vary
between the samples; [32] considered Bayesian inference
via MCMC for components distributions and [33] discussed
statistical inference of the lifetime distribution of components
based on observing the system lifetimes when the system
structure is known.

To the best of our knowledge, no work reported in the
literature has considered the reliability estimation of compo-
nents involved in any coherent system with masked data in
which identically distributed failure times are not imposed.
Therefore, a Bayesian three-parameter Weibull model of
component reliability with masked data is proposed. The
presented model is general and can be considered for any
coherent system, the symmetry assumption is not necessary
and the accelerated life tests (ALT) may also be considered.
An important highlight of the proposed approach is that the
identically distributed components’ failure times assumption
is not required. The statistical work performed to obtain the
quantities of the posterior distribution is supported by the
Metropolis within Gibbs algorithm.

We consider a sample of n identical coherent systems with
m components. In the observed sample, the system failure
times are available for all n units. Let ϒ be the index set
indicating the possible components that produce the failure
of the system, i.e., the components with masked failure times;
ϒ is a subset of {1, . . . ,m}. For some sample units, system
autopsy is possible and the diagnose the cause of the failure
is realized, that is, ϒ is unitary, and the statuses of all the
components in these cases are observed.

In this work, the structure of the system need not be known,
but if it is, it brings additional information to the estimation
process. As an example, consider ϒ = {1, 2, 3} and so,
the components 1, 2 and 3 present masked failure time.
In a situation that system structure is known to be bridge
structure (Figure 4), for example, the failure of component 3
could not lead the system failure and this information can be
incorporated into the model.

The performance of the component reliability estimator
obtained from the proposed model is compared to the non-
parametric estimator considered by [30] in scenarios with dif-
ferent proportions of masked data, different system structures
and different distributions of component lifetimes. We also
consider a real dataset to present the applicability of the
proposed model. The dataset consists of 172 computer hard
drives that were monitored over a period of 4 years, and
their failure times were observed. However, for some hard
drives (38%), the cause of hard drive failure was not identi-
fied.

This paper is organized as follows. The proposed
model and estimation method are described in Section II.

In Section III, we present simulated examples, and simu-
lation studies are presented in Section IV. In Section V,
the applicability of the proposed model to computer hard
drives problem is presented. Finally, some final remarks and
additional comments are provided in Section VI.

II. WEIBULL MODEL AND ESTIMATION PROCEDURE
Consider a system with m components and let index j rep-
resent the j-th component. The random variable Xj denotes
the failure time of the j-th component, j = 1, . . . ,m, and
we assume thatX1,X2, . . . ,Xm aremutually independent. Let
T be a random variable that represents the system failure
time, and t is an observation of T . Associated with each
component j, let δj = (δ1j, δ2j, δ3j) be an indicator vector
of the censor. The observation of Xj can be as follows:
if Xj = t , the failure time of Xj is not censored (δ1j = 1);
if Xj > t , the failure time is right-censored (δ2j = 1); and if
Xj ≤ t , the failure time is left-censored (δ3j = 1), in which∑3

l=1 δlj = 1. Additionally, the j-th component may belong
to the masked set.

Let t1, . . . , tn be a sample of system failure times of size n,
and ϒi is the set of masked components in the i-th sample,
i = 1, . . . , n. Additionally, υji = 1 if the j-th component has
a masked failure time (j ∈ ϒi); otherwise, υji = 0 (j /∈ ϒi),
j = 1, . . . ,m. The observation of j-th component can be one
of the following:

uncensored; not masked: δ1ji = 1 and υji = 0;
right-censored; not masked: δ2ji = 1 and υji = 0;
left-censored; not masked: δ3ji = 1 and υji = 0; or

masked: υji = 1.
If a component has a masked failure time, the component
could have led to the system failure (uncensored) or it is right-
censored or left-censored observation. Consider

λ1j(t) = Pr(υj = 1 | t, δ1j = 1),

λ2j(t) = Pr(υj = 1 | t, δ2j = 1),

λ3j(t) = Pr(υj = 1 | t, δ3j = 1),

where λ1j(t) is the conditional probability that the j-th com-
ponent is masked given the failure time of the system t and
the censor type δ1j = 1. λ2j(t) and λ3j(t) are analogous
to λ1j(t). Here, we consider λ1j(t) = λ1j, λ2j(t) = λ2j, and
λ3j(t) = λ3j, i.e., the probability that a component is masked
does not depend on the failure time t .
For each component, we can observe the triple {ti, δji, υji :

i = 1, . . . , n}. Our interest is the estimation of the distribution
function, F , of the j-th component. We consider a parametric
family model of F with parameter θ j; then, the estimation
of parameter θ j induces the distribution function F . The
available information from the data is one of the following
types:

1) Pr(Xji ∈ (ti, ti], υji = 0 | θ j) = f (ti | θ j)(1−λ1j), if the
i-th observation is uncensored and not masked;

2) Pr(Xji ∈ (ti,∞), υji = 0 | θ j) = [1 − F(ti | θ j)](1 −
λ2j), if the i-th observation is right-censored and not
masked;
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3) Pr(Xji ∈ (0, ti], υji = 0 | θ j) = F(ti | θ j)(1−λ3j), if the
i-th observation is left-censored and not masked;

4) Pr(Xji ∈ (ti, ti], υji = 1 | θ j) = f (ti | θ j)λ1j, if the i-th
observation is uncensored and masked;

5) Pr(Xji ∈ (ti,∞), υji = 1 | θ j) = [1 − F(ti | θ j)]λ2j,
if the i-th observation is right-censored and masked;
and

6) Pr(Xji ∈ (0, ti], υji = 1 | θ j) = F(ti | θ j)λ3j, if the i-th
observation is left-censored and masked.

However, we do not have information about cases 4 to
6 since the data are masked, and we do not know whether
that component was censored. Using an augmented data pro-
cedure (latent variable), consider d1ji = 1 if the masked
observation is not censored; otherwise, consider d1ji = 0.
Consider d2ji = 1 if themasked observation is right-censored;
otherwise, consider d2ji = 0. Consider d3ji = 1 if the masked
observation is left-censored; otherwise, consider d3ji = 0.
In addition, d ji = (d1ji, d2ji, d3ji) and

∑3
l=1 dlji = 1.

Let R(ti | θ j) = 1 − F(ti | θ j) be the reliability func-
tion. Under the s-independent assumption of the components
lifetimes, the likelihood function of the j-th component can
be written as a part of the non-masked data and a part of the
masked data (augmented data) as follows:

L(θ j, λ1j, λ2j, λ3j, d j | t, δj,υ j)

=

∏
i: υji=0

{[
f (ti | θ j) (1− λ1j)

]δ1ji
×
[
R(ti | θ j) (1− λ2j)

]δ2ji
×
[
F(ti | θ j) (1− λ3j)

]δ3ji}∏
i: υji=1

{[
f (ti | θ j) λ1j

]d1ji[R(ti | θ j) λ2j]d2ji
×
[
F(ti | θ j) λ3j

]d3ji}, (1)

where I (A) = 1 if A is true and 0 otherwise, t = {t1, . . . , tn},
υ j = {υj1, . . . , υjn}, d j = (d ji : i ∈ {υji = 1}) and δj = (δji :
i ∈ {υji = 0}).

It is worth noting that in our approach, it is not necessary
to know the structure of the system. In situations there are
more information from data, we can incorporate in the model.
For example, if one knows the system works in series and
the j-th component presents υji = 1 for i-th sample unit,
the component j cannot be left-censored failure time and
thus, λ3j = 0. The model changes according to the data and
this approach avoids identifiability problems, as discussed
by [34].

The likelihood function in (1) is generic and straightfor-
ward for any probability distribution. The considered distri-
bution is a three-parameter Weibull distribution. Due to its
characteristics, the Weibull distribution is a great candidate
for modeling the component lifetimes. One of these charac-
teristics is that by changing parameter values the distribution
takes a variety of shapes and it has important distributions as
special cases, besides allowing modeling increasing, decreas-
ing or constant hazard rates [35].

The Weibull reliability function is as follows:

R(t | θ j) = exp

[
−

(
t − µj
ηj

)βj]
,

for t > 0, where θ j = (βj, ηj, µj) and βj > 0 (shape), ηj > 0
(scale) and 0 < µj < t (location).
The Weibull distribution with two parameters (µj = 0) is

the most celebrated case in the literature. However, the loca-
tion parameter that represents the baseline lifetime has an
important meaning in reliability and survival analyses. In reli-
ability analyses, the tested component may not be new. For
example, in medicine, a patient may have the disease before
the onset medical appointment. Failure to consider the initial
time can result in the underestimation of the other parameters.
Clearly, in testing a new component, µj may be 0.

The estimation work is performed under a Bayesian
perspective of inference; thus, the priori distribution of
(θ j, λ1j, λ2j, λ3j, d j) needs to be defined. All parameters are
considered independent a prior, assuming a gamma distribu-
tion with mean 1 and variance 1000 for βj, ηj, µj and a uni-
form distribution over (0, 1) for λ1j, λ2j and λ3j. In addition,
d ji ∼ Multinomial(1; p1ji, p2ji, p3ji), in which plji = 1/3, for
l = 1, 2, 3.

We do not have prior information about the component’s
operation, and the noninformative prior is considered. How-
ever, it is possible to express the prior information about the
component functioning through expert opinion and/or past
experience.

The posterior density of (θ j, λ1j, λ2j, λ3j, d j) is as follows:

π (θ j, λ1j, λ2j, λ3j, d j | t, δj,υ j) ∝

π (θ j, λ1j, λ2j, λ3j, d j)L(θ j, λ1j, λ2j, λ3j, d j | t, δj,υ j),

(2)

where π (θ j, λ1j, λ2j, λ3j, d j) is the prior distribution of
(θ j, λ1j, λ2j, λ3j, d j).
The posterior density in Equation (2) does not have a closed

form. An alternative is to rely on Markov-Chain Monte-
Carlo (MCMC) simulations. We considered the Gibbs with
Metropolis-Hasting steps algorithm. This algorithm is suit-
able for this situation because it is possible to directly sample
some parameters from the conditional distribution; however,
this sampling is not possible for other parameters [36]. The
algorithm works in the following steps:

1) Attribute initial values θ (0)j , λ(0)1j , λ
(0)
2j and λ

(0)
3j for θ j =

(βj, ηj, µj), λ1j, λ2j and λ3j, respectively, and set b = 1;
2) For i ∈ {υ ji = 1}, draw d (b)ji from

d ji | t, δj,υ j, θ j, λ1j, λ2j, λ3j ∼

Multinomial(1; p1ji, p2ji, p3ji),

where

p1ji = λ1jf (ti|θ j)/C,

p2ji = λ2jR(ti|θ j)/C,

p3ji = λ3jF(ti|θ j)/C, and

C = λ1jf (ti|θ j)+ λ2jR(ti|θ j)+ λ3jF(ti|θ j);
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3) Using the Metropolis-Hastings algorithm [37], draw
θ
(b)
j from

π (θ j | t, δj,υ j, d j, λ1j, λ2j, λ3j) ∝

π (θ j)
∏

i: υji=0

{[
f (ti | θ j)(1− λ1j)

]δ1ji
×
[
R(ti | θ j)(1− λ2j)

]δ2ji
×
[
F(ti | θ j)(1− λ3j)

]δ3ji}
×

∏
i: υji=1

{[
f (ti | θ j)λ1j

]d1ji
×
[
R(ti | θ j)λ2j

]d2ji
×
[
F(ti | θ j)λ3j

]d3ji}.
4) Draw λ1j from

λ1j | t, δj,υ j, d j, θ j, λ2j, λ3j ∼

Beta

 ∑
{i:υji=1}

d1ji + 1, nf + 1

 ,
where nf is the number of systems in which component j
leads to system failure.

5) Draw λ2j from

λ2j | t, δj,υ j, d j, θ j, λ1j, λ3j ∼

Beta

 ∑
{i:υji=1}

d2ji + 1, nr + 1

 ,
where nr is the number of systems in which component j
is observed to be right-censored.

6) Draw λ3j from

λ3j | t, δj,υ j, d j, θ j, λ1j, λ2j ∼

Beta

 ∑
{i:υji=1}

d3ji + 1, nl + 1

 ,
where nl is the number of systems in which component
j is observed to be left-censored.

7) Let b = b + 1 and repeat steps 2) to 7) until b = B,
where B is the pre-set number of simulated samples of
(θ j, λ1j, λ2j, λ3j, d j).

Discarding the burn-in (first generated values discarded
to eliminate the effect of the assigned initial values for the
parameters) and jump samples (spacing among the generated
values to avoid a correlation between the simulated samples),
a sample of size np is obtained from the joint posterior
distribution of (θ j, λ1j, λ2j, λ3j, d j). For the j-th component,
the sample from the posterior can be expressed as (θ (1)j , θ

(2)
j ,

. . . , θ
(np)
j ), (λ(1)1j , λ

(2)
1j , . . . , λ

(np)
1j ), (λ(1)2j , λ

(2)
2j , . . . , λ

(np)
2j ), (λ(1)3j ,

λ
(2)
3j , . . . , λ

(np)
3j ) and (d (1)j , d

(2)
j , . . . , d

(np)
j ). Consequently,

the posterior quantities of reliability function R(t | θ j) can

be easily obtained [37]. For example, the posterior mean of
the reliability function can be approximated as follows:

E[R(t | θ j) | Data] =
1
np

np∑
k=1

R
(
t | θ (k)j

)
, for each t > 0.

The proposed method is general and it can be consid-
ered in situations that j-th component in ϒ can be sus-
ceptible to failure at t , before or after t . In situations one
has more information from data, for example: the interest
component in ϒ cannot fail after t , the restriction λ2j = 0
is considered. As a consequence, in step 2 of the MCMC
algorithm, d ji conditional to (t, δj,υ j, θ j, λ1j, λ3j) follows a
Multinomial(1; p1ji, p3ji), in which p1ji + p3ji = 1. Besides,
step 5 is eliminated.

Note that the algorithm is general and is suitably adjusted
according to the restrictions done by information from data.

A. SYMMETRIC MASKING PROBABILITIES
The symmetric masking probabilities assumption suggests
that the masking probabilities are the same regardless of the
component that causes the system failure, i.e., λ1j = λ2j =

λ3j is plausible in some masked data system situations.
Under this assumption, we have the following:

d ji | t, δj,υ j, θ j, λ1j, λ2j, λ3j ∼

Multinomial(1; p1ji, p2ji, p3ji),

where p1ji = f (ti|θ j)/C , p2ji = R(ti|θ j)/C , p3ji = F(ti|θ j)/C ,
and C = 1 + f (ti|θ j). Thus, the estimation process does not
depend on masking probabilities λlj, l = 1, 2, 3, and the pre-
viously presented algorithm can be considered in eliminating
steps 4 to 6.

B. INCORPORATION OF COVARIATES
In a sample of n systems, the units are not exposed to
exactly the same temperature and pressure conditions, for
example, and depending on their values, the reliability of
the components can increase or decrease. Thus, considering
these different conditions in the reliability estimation of each
component is important and can be achieved by incorporating
covariates into the model.

In general, evaluating the performance of the components
in a system under normal conditions can be time-consuming
and costly. Therefore, another importance emerges from the
incorporation of covariates as follows: accelerated life tests in
which covariates are called stress variables. In accelerated life
tests (ALT), the components are subjected to stress levels to
reduce their time to failure, and inferences are obtained about
their behavior under normal operating conditions.

The analysis of stress-response relationships and extrapo-
lation to usual operating conditions can be achieved through
regression models of data from accelerated tests called accel-
erated life models. In ALT models, there is multiplicative
effect with the reliability time, i.e., R(t) = R0(ϕt), where ϕ
is the acceleration factor, and R0(t) is the baseline reliability
function. Thus, if ϕ > 1, R(t) behaves as R0(t) ‘‘in the
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future’’; if ϕ < 1, R(t) behaves as R0(t) ‘‘in the past’’; and if
ϕ = 1, R(t) = R0(t).
Some parametric models have the properties of accelerated

life tests. The three-parameter Weibull distribution is an ALT
model in which R(t | θ j) = R0((t − µj)ϕj | βj), and
R0(· | βj) is the reliability function of a Weibull distribution
with scale 1 and shape βj. Thus, the covariates can be included
in the scale parameter through a log link function, i.e., ηj =
exp(w>j γ j), where γ j is a vector (k × 1) of the regression
coefficients, and wj is a vector of the covariables of the
j-th component.

III. SIMULATED SYSTEM DATASETS
We consider two simulated examples of the complex system
structure presented in figures 2 and 6. As previously men-
tioned, there is no solution in the literature for the reliability
estimation of all components involved in these complex sys-
tems with masked cause of failure.

In this section, the structure of the systems is observed and,
as consequence, ϒi consists of components that no longer
work in the system failure, i.e., there are no right-censored
components in ϒi that lead to λ2j = 0. In addition, j ∈ ϒi
only if j belongs to the minimal cut that caused the i-th system
fail. A cut set is a set of components that by failing causes the
system to fail. A cut set is considered minimal if it cannot be
reduced without losing its status as a cut set. For example,
in the system presented in Figure 2, there are three minimal
cut set, i.e., {1, 2}, {3, 5} and {4, 5}.
In a situation in which this system fails and components 1,

2 and 3 do not work at the moment of system failure, only
components 1 and 2 belong to set ϒ because component 3
does not belong to the minimal cut set that caused the system
failure, and in fact, component 3 is observed to have a left-
censored failure time.

To generate data in each simulated example with m being
the number of components and n being the sample size,
the following steps are considered:

For each system unit i, where i = 1, . . . , n:
1) Draw Xji from a given distribution for j = 1, . . . ,m;
2) Let Ti = h(X1i, . . . ,Xmi), where Ti is the system failure

time, and h(·) is the function that relates the system
failure time to the components’ functioning depending
on the system structure;

3) Draw ci ∼ Bernoulli (p), where p is the proportion of
the masked data system. If ci = 1, the system i has a
masked failure cause and obtain ϒi, which is the set of
index components that could lead to system failure; and

4) For each j component, where ti is the system failure
time:
• If j ∈ ϒi: let υji = 1;
• Otherwise, let υji = 0 and observe δji, in which:
– If Xji = ti, δji = 1;
– If Xji > ti, δji = 2 and
– If Xji < ti, δji = 3.

The dataset for the j-th component is {(t1, δj1, υj1), (t2, δj2,
υj2), . . . , (tn, δjn, υjn)}, where δji is empty set if υji=1.

The simulated systems have the following characteristics:
• System structure 1 (Figure 6): m = 3, X1 is generated
from a Weibull distribution with a mean of 15 and a
variance of 8, X2 is generated from a gamma distribution
with a mean of 18 and a variance of 12, X3 is generated
from a lognormal distribution with a mean of 20 and a
variance of 10, and the system failure time is

T = h(X1,X2,X3)

= max(min(X1,X2),min(X1,X3),min(X2,X3)).

In addition, n = 300, and the proportion of the masked
system is p = 0.4.

• System structure 2 (Figure 2): m = 5, X1 is generated
from a Weibull distribution with a mean of 12 and a
variance of 15, X2 is generated from a gamma distri-
bution with a mean of 11 and a variance of 11, X3 is
generated from a three-parameter Weibull distribution
with a mean of 12 and a variance of 9, X4 is generated
from a lognormal distribution with a mean of 12 and a
variance of 7 and X5 is generated from a three-parameter
Weibull distribution with a mean of 11 and a variance
of 14. In this structure, the system failure time is

T = h(X1, . . . ,X5)

= min(max(X1,X2),max(min(X3,X4),X5)).

In this case, n = 100, and the proportion of the masked
data systems is p = 0.3.

To obtain the posterior quantities, we used an MCMC
procedure to generate a sample from the posterior distri-
bution of the parameters. We generated 30,000 values for
each parameter and disregarded the first 10,000 iterations to
eliminate the effect of the initial values and of the spacing
size 20 to avoid correlation problems; finally, we obtained
a sample size of np = 1,000. The chains convergence was
monitored to obtain good convergence results, as acceptance
rates between 20% and 35%.

A. SYSTEM 1
The posterior quantities of R(t | θ j) for some values of t are
shown in Table 1. In the following discussion in this paper,
the posterior mean of the reliability function is considered
the performing posterior measure obtained by the proposed
model.

The true curves and posterior mean of the reliability func-
tion are shown in Figure 7, which also presents the 95% HPD
point-wise band (CI 95%) obtained by the proposed model.
For component 1, the true curve is contained in the all HPD
point-wise band. By considering components 2 and 3 and t
values in which the posterior mean is more distant from the
true curve, the upper limit of the HPD band is very close to
the true curve.

B. SYSTEM 2
The true reliability functions, posterior means and 95% HPD
point-wise bands (CI 95%) are shown in Figure 8. In general,
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TABLE 1. Posterior measures of components reliability functions involved in system structure 1 for some values of t .

FIGURE 7. True reliability functions and estimated curves by proposed model for the components 1 to 3 involved in system structure 1. (a) Component 1.
(b) Component 2. (c) Component 3.

the true curves are contained in the HPD point-wise bands,
and the proposed model presents an almost perfect reliability
function estimation for component 3.

IV. MODEL EVALUATION WITH SIMULATION STUDIES
To evaluate the performance of the proposed model, our
approach is compared to the approach presented by [30]
in scenarios with different sample sizes, system structures
and proportions of masked data. The posterior mean of the
reliability function is considered the performing posterior
measure obtained by the proposed model and is denoted by
W3PM (Weibull 3-Parameter Model). Reference [30] has
been considered the best approach for masked data in com-
plex systems. This method estimates the reliability of compo-
nents involved in any coherent system from the simplest to the
most complex. The only necessary types of information for
the computation of the estimates are the system structure and
the observed system failure times; thus, knowing the cause
of failure is not necessary, which is suitable for masked data
situations. The authors assumed a restrictive assumption in
which the component lifetimes are s-independent and iden-
tically distributed; therefore, all components have the same
reliability. For simplification, we refer to this estimator as
BSNP (Bhattacharya-Samaniego Nonparametric Estimator).

The following two types of system structures are used:
2-out-of-3 (Figure 6) and the bridge system (Figure 4). Four
sample sizes (n = 50, 100, 300, and 1000) and the following
three proportions ofmasked data are considered: p = 0.2, 0.4
and 0.7. For each scenario (combination of sample size and
proportion of masked data), 1000 samples were generated,
and the distributions are described as follows:
• 2-out-of-3 system: The same generation as that in
example III-A is used.

• Bridge system: m = 5, X1 is generated from a Weibull
distribution with a mean of 4 and a variance of 15, X2 is
generated from amodifiedWeibull distribution [38] with
a mean 5.6 and a variance of 14.9, X3 is generated from
a lognormal distribution with a mean of 6 and a variance
of 7, X4 is generated from a gamma distribution with a
mean of 5 and a variance of 8 and X5 is generated from
a three-parameter Weibull distribution with a mean of 4
and a variance of 8. In this structure, the system lifetime
is expressed as follows:

T = h(X1, . . . ,X5)

= max(min(X1,X4),min(X2,X5),

min(X1,X3,X5),min(X2,X3,X4)).
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FIGURE 8. True reliability functions and estimated curves by the proposed model for the components 1 to 5 involved in system structure 2.
(a) Component 1. (b) Component 2. (c) Component 3. (d) Component 4. (e) Component 5.

FIGURE 9. Mean (symbol) and standard deviation (bars) of MAE obtained by W3PM and BSNP for components 1 to 3 of 2-out-of-3 structure considering
p = 0.2, 0.4, 0.7 and n = 50, 100, 300, 1000. (a) p = 0.2. (b) p = 0.4. (c) p = 0.7.

The mean absolute error (MAE) from the estimators to
the true distribution is considered the comparison measure.
R(t) and R̂(t) represent the true reliability function and
the estimate, respectively. Hence, the MAE is evaluated by
1
l

∑l
`=1 | R̂(g`) − R(g`) |, where {g1, . . . , g`, . . . , gl} is a

grid in the space of failure times. The means and standard
deviations of 1000 MAE values obtained by W3PM and
BSNP are presented in figures 9 and 10 for the 2-out-of-3
and bridge systems, respectively. In general, W3PM presents
lower MAE values mean. The exception is component 2 of
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FIGURE 10. Mean (symbol) and standard deviation (bars) of MAE obtained by W3PM and BSNP for components 1 to 5 of the bridge structure considering
p = 0.2, 0.4, 0.7 and n = 50, 100, 300, 1000. (a) p = 0.2. (b) p = 0.4. (c) p = 0.7.

TABLE 2. Distribution of n = 172 systems of hard drives dataset among causes of failure.

the 2-out-of-3 system, in which the BSNP presents better per-
formance. However, the difference between the two methods
decreases as the sample size increases mainly because
the performance of the proposed estimator improves as
n increases.

V. APPLICATION
In this section, a real dataset is considered to present the
applicability of the proposed model to reliability estimations
of components involved in coherent systems. The dataset is
available in [10] and consists of 172 observed failure times
of computer hard drives monitored over a period of 4 years.
There were three possible causes of failure as follows: elec-
tronic hard (component j = 1), head fly ability (component
j = 2) and head/disc magnetics (component j = 3). However,
for some hard drives (38%), the cause of hard drive failure
was not identified. For thesemasked data systems,ϒ = {1, 3}
or ϒ = {1, 2, 3}, i.e., there is no possible masked set ϒ =
{1, 2} or ϒ = {2, 3}. Notably, in our proposed approach,
the configuration of set ϒ is not important, and the critical
information for the estimation of the reliability of the j-th
component is whether j belongs to ϒ . More details about the
detection of failure causes are presented in [39] and [40].

As shown in Table 2, component 1 is observed to cause the
failure of 20.35% of the systems, 11.05% of the systems had
observed failures because of component 2 and component 3
led to 30.23%of the system failures. In addition, component 1
or component 3 caused the failure of 18.60% of the systems,
and the remaining 19.77% of system failures were due to any
of the three components.

Since the components in ϒ are right-censored or lead to
system failure, λ3j = 0 for j = 1, 2, 3, and no hard drive is
subject to left-censored failure times.

TABLE 3. Parameters posterior quantities for components 1 to 3 involved
in hard drives dataset under symmetric assumption and under relaxing
this assumption.

The proposed model is fit under the symmetric assumption
and under relaxing this assumption. To obtain posterior quan-
tities related to the posterior distribution of (θ j, λ1j, λ2j, d j),
with θ j = (βj, ηj, µj) and for j = 1, 2, 3, from (2) through
MCMC simulations, we discarded the first 10,000 iterations
as burn-in samples and used a jump size of 30 to avoid
correlation problems; finally, we obtained a sample size of
np = 1,000. The chain convergence was monitored to obtain
good convergence results.

The proposed model parameter estimates are presented
in Table 3. The two versions of the proposed model provided
close estimates for θ j = (βj, ηj, µj) for all j. Notably, the pos-
terior mean of µj is close to zero for all j, indicating that
the beginning of the computer lifetimes coincides with the
beginning of the experiment, which is logical given that this
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FIGURE 11. Estimated reliability curves by the proposed model of three components involved in computer hard drive dataset.
(a) Electronic hard (j = 1). (b) Head fly ability (j = 2). (c) Head/disc magnetics (j = 3).

is a controlled experiment and that the hard drives have not
been previously tested.

In Figure 11, we present the estimated curves of electronic
hard, head fly ability and head/disc magnetics by BSNP and
the proposed model. The proposed model under the sym-
metric assumption and under relaxing this assumption obtain
overlapping curves; thus, only one curve is presented.

VI. FINAL REMARKS
A Bayesian three-parameter Weibull model was proposed for
component reliability. The assumption that the component
lifetimes are identically distributed is not imposed. The pre-
sented model is considered general because it can be used
for any coherent system; the symmetry assumption is not
necessary, and its application in accelerated life tests can be
considered. We worked with the Weibull model; however,
extending this work to other distributions or even to the pure
likelihood approach is simple.

The proposed model was compared to the nonparametric
estimator proposed by [30] (BSNP), which can be considered
for components involved in any system for which the only
necessary information is the system failure time and the struc-
ture. However, these authors assumed a restrictive assumption
in which the component lifetimes are s-independent and iden-
tically distributed. Therefore, there is only one estimator for
all the different components in the system. The simulation
study showed that our proposed estimator had excellent per-
formance and was superior over BSNP. The advantage of our
model is more evident as the sample size increases.

The practical relevance and applicability of our model
were demonstrated using a real dataset of computer hard
drives with three components in series. Thus, our estimator
of the component reliability function demonstrated profound
performance in situations in which the lifetime distribution
is not the same for all components in a coherent system,
with different proportions of masked systems. In estimation
processes, satisfactory results of convergence were obtained,

and the posterior quantities of the reliability functions were
easily obtained.
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