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Summary 

The Bayes' estimator of the population sue, based on data obtained by the general 
capture/recapture sequential sampling process, is introduced. Properties related to the information 
contained in the data are studied. Also, some large-sample properties are obtained by using 
standard martingale results. The strongest results are the almost sure convergence of the Bayes' 
estimator to the true population sue and of the Bayes' risk to zero. The Bayes' properties presented 
are restricted to proper priors having finite second moments. It is shown that the maximum 
likelihood estimator also converges almost surely to the population size. 

Key words: Bayes' estimator; Bayes' risk; Capture/recapture sequential sampling process; Martin- 
gale and supermartingale; Maximum likelihood estimator; Sufficient statistic. 

1 Introduction 

The objective of the present study is to show that the Bayes' estimator of the population 
size N, in addition to being consistent, has interesting properties, which are not shared by 
alternative classical procedures. As in Leite, Oishi & Pereira (1987, 1988), here we deal 
with a finite and closed population of size N, from which, using the capturelrecapture 
sampling procedure, k(>l)  samples of sizes mi2 1 ( i  = 1, 2, . . . ,k) are sequentially 
selected. The sampling design for the capturelrecapture sequential process and its 
sampling probability distribution are presented in the following section. For complete 
details see Leite & Pereira (1987). Section 3 introduces the Bayes' estimator and the 
Bayes' risk. Bayes' estimation of N, based on the capturelrecapture sequential sampling 
process, was also studied by Freeman (1972) and Zacks (1984). However, both studies 
considered only the simple one-by-one case, that is m ,  = . . . = m, = 1. Monotone 
properties of the Bayes' estimator are presented in § 4. Large-sample properties of the 
Bayes' risk and estimator are presented in $0 5 and 6. We also show that related results 
can also be obtained for the maximum likelihood estimator discussed by Leite, Oishi & 
Pereira (1987, 1988). 

With the sampling procedure used in this paper, a minimal sufficient statistic for N is 
T,, the number of distinct units selected in the whole sample. It is not difficult to see that 
this statistic converges almost surely to the true value of N. This strong and simple result 
is the basis of the large-sample properties discussed in $3  5 and 6. Results of § 6 use the 
language of martingales and supermartingales. 

It is important to notice that when the sample increases (more information is collected) 
the variance (predictive) of the Bayes' estimator increases as shown in § 6. For someone 
who is accustomed to looking for minimum variance estimators this may be very 
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unintuitive. However, it must be understood that this variance is taken under the 
marginal (predictive) distribution of the data since, to compute the Bayes' estimator, the 
parameter N is eliminated by integration under the conditional distribution of N given the 
data, the posterior distribution. It is intuitively clear, on the other hand, that the Bayes' 
estimator would be perfect if the posterior mean, E{N I Tk), is equal to N. In this case, 
the maximum variance is attained since 

Var {N) = Var {E{N 1 Tk)) + E{Var {N I Tk)). 

Note that any reasonable person should try to decrease the posterior variance, and 
consequently its expectation E{Var {N I T,)), to zero. This corresponds to increasing the 
variance of the Bayes' estimator to Var {N), its maximum possible value. 

2 The Statistical Model 

Consider a population of finite size, N (EN = (0, 1, . . .)), which does not change in size 
or in form during the study time. From this population, k(>l) samples are sequentially 
selected at random. Each sample is returned back to the population before the next one is 
selected. To obtain the relevant data for estimating N, the following steps are performed. 

(i) The first random sample of size ml(21) is drawn, without replacement. After the 
sample units are marked they are returned to the population and the number 
Ul = ml is recorded. 

(ii) The jth ( j  > 1) random sample of size m, is drawn, without replacement. The 
sample units that have been previously marked are immediately returned to the 
population. The remaining Ll, unmarked sample units are marked and returned 
to the population. The numbers m, and U, are recorded. 

After the k samples have been observed, the data random vector, 

D k = ( u l , .  . . , uk), 
assumes the observed point 

Bk = ( ~ 1 ,. . . uk), 

where u1 =inl and u, E (0, 1, . . . ,m,) for j =2, . . . ,k. 
Note that the statistic 

is the number of distinct units selected in the whole sampling process. Leite & Pereira 
(1987) show that this statistic is sufficient for N. Moreover, the Likelihood kernel, which 
is a minimal sufficient statistic (Zacks, 1981), is given by 

where t is the observed value of Tk, 9,(n) is the indicator function of N, = {x E N, x 3 t) 
evaluated at point n, and Juk is the vector (m,, . . . ,mk). The families of probability 
distributions of Dk and Tk (Leite & Pereira, 1987) are given by 

* f j  ( i )
P{T,=~ 1 = ~ ( n ,4,t)9A(t)2~ = n )  

i = o i !(t - i)! mi ' 
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where 9*(t) is the indicator function of the set 

A = {xE N ;  max {m,,  . . . ,m k )S X  S min {n,  (m ,  + . . . + mk)) )  

evaluated at point t and for j = 1, . . . ,k, t, = u,  + . . . + uj. Note that A depends on the 
value n of N. 

In the following sections, after introducing a prior probability function for N, 
P{N = n )  = n(n) ,we discuss some properties of the posterior probability function, 

of the posterior mean or Bayes' estimator, 

and of the posterior variance or Bayes' risk, 

V { N  I Dk = g k )= v { N  I Tk= t ) = p(k, t ) .  

Note that n,  /3 and p also depend on A,. In the sequel, all the functions depending on k 
also should depend on A, and, following this rule, we write A(n, k,  t )  for A(n, Ak,t). In 
addition, we let S, = m ,  + . . . + m, and M, = max {m, , . . . ,m,), for all j = 1, . . . ,k. 

3 Bayes' Estimation 

Let n be a prior probability function for N and let 

For all t E N such that Mk s t s Sk and N:# 0, the posterior probability function of N is 
given by 

where 4:(n) is the indicator function of N: evaluated at point n and 

Using the fact that (see Appendix 1) 

A(n, k, t )s { I  - ? } - I  h (m,!), 
,=I 

one may easily prove that ~ ( k ,t )  is positive and bounded. Note that Mk S t s Sk is a 
natural restriction since: (a) t < m,, for some j ,  would happen only if we had selections 
with replacement; and (b) t > Sk would happen only if, before the selection process starts, 
there already existed marked population units. 

It is difficult to define a workable conjugate class of distributions for this problem since, 
for some sample points, the sum of the likelihood over all possible values of N, 
{nE N; n 2 t ) ,  diverges. For instance, considering the improper uniform measure on N, 
for the one-by-one case where m,  = . . . = mk= 1, n(n I k, t )  would not be defined for 
t = k - 1  andt=ksince ,  

1 n!-- -2 n(n, k ,  t )  = 
~ ( k ,  n=t t)!t) .=,nk(n -

converges only if t s k -2. 
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Considering only proper prior distributions is not restricting the practical applicability 
of the Bayes' method in the present problem. Usually the space (a lake for example) 
occupied by the population of interest is limited, permitting only the accommodation of 
a finite number of population units (fishes in the lake). Even when the maximum possible 
number of population units is taken to be very large, the Bayes' solution for the 
estimation problem is obtainable. Note that the choice of this supposed maximum number 
is a very important and delicate matter. For instance, if one observes a value of Tk, t, 
larger than the number chosen for this maximum, one must agree that the chosen prior 
opinion used was wrong. This is a example of a problem where open-minded prior must 
be used. Following a personal communication from David Blackwell in 1986, we consider 
as open-minded priors all probability functions that assign positive probabilities for all 
physically possible values of the parameter. This yields the restriction that the set 
N: = {x E N; x 5 t, n(x) >0) must be nonempty. This restriction creates a slight logical 
problem since it relates the prior distribution to the observation t. However in practice, 
by knowing the size of the location that accommodates the population, one may consider 
positive probabilities (although very small for some points) to all physically possible 
values of N. To avoid these problems, we will consider only proper prior distributions 
that assign positive probabilities to any non-negative integer. 

Let n(n)  be a prior probability function with a finite second moment. For all t E N such 
that Mk S t S Sk and N: # 0 ,  the Bayes' Estimate (BE) of N is given by 

Due to inequality (3.3) and to the fact that n has a second moment, p(k, t) is finite. For 
this one-by-one sampling, with t S k and N: # 0 ,  we have 

Before discussing the properties of the BE we present examples with Poisson prior 
distributions; that is n(n)  = (n!)-'0" exp {- 01, for n E N. 

Example 1. For the one-by-one case with Poisson prior, the BE is given by 

where E{.) is the expectation operator and N is the random variable having the prior 
Poisson distribution with parameter 0 >0. Table 1 presents the values of BE for 0 =20 
(prior mean or variance) and k = 10, 12 and 15. In order to evaluate the influence of the 
use of the prior information, we also present, in parentheses, the maximum likelihood 
estimates (MLE). The theory of the MLE under the general capture/recapture sampling 
process is presented by Leite, Oishi & Pereira (1987, 1988). In the present example, it is 
interesting to notice that the MLE and the BE yield close values for small, and more 
informative, values of t. The MLE diverges as t increases. This fact shows that the influence 
of the prior information is stronger when the data is less informative; that is when t is 
large. 

Example 2. For the two-by-two case (m, = . . . =mk =2) with Poisson prior, the BE is 
given by 
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Table 1 
Bayes' estimates of N for Poisson prior with parameter 0 = 20 (maximum 
likelihood estimates) 

Example 3. If in the preceding examples we take k = 3, m l  = 1, m2 = 2 and m ,  = 3 then 
the BE is given by 

m nen en } (t = 3, 4, 5 ,  6).
8(3' = { z , ( n  -2)(n- i)$'(n - t ) !  (n  - 2)(n- 1)'n3(n - t ) !  

4 Basic Properties of the Bayes' Estimator 

The study presented here and in the remaining sections is restricted to proper prior 
distributions with finite second moments. Recall that: (a) the BE, B(k, t ) ,  is a function of 
dlk = ( m l ,. . . ,m k ) ;  ( b )  Mk S t S Sk; and (c) N: f 0. Also recall that the probability 
function n is said to be degenerate if its support has only one point. The following results 
show that /3 is a non-increasing function of k and a non-decreasing function of t. 

THEOREM1. For all k 2 2  and t E N ,  let Mk S t S S k  and N : # 0 .  If mk+l <Sky then 

B(k, t )  3 B(k + 1, t ) .  (4.1) 

Equality holds if the prior probability function, n,is degenerate. 

Proof. Considering the restrictions, define the following decreasing function of n E N 
($,(n) is the indicator function of N,):  

It follows (Lehmann, 1966) that 

It is simple to check that 
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that is 

which completes the proof. 

THEOREM2. For all k s 2 and t E N,let Mk Q t S Sk- 1and N: # 0.If n(n I k, t) is not 
degenerate at point t, then 

P(k, t )  6 P(k, t + 1). 

Equality holds if the prior probability function, n ,  is degenerate at any point but t. 

Proof. Considering the restrictions, we note that (cov is for covariance) 

6 )  p(k, t) = V{N I Tk = t) = cov {N, N - t I T, = t ) ,  

(ii) 

(iii) 

These yield the following formula 

K(k, r, {P(k, t + 1) - /3(k, t)).p(k, =~ ( k ,t + 1) 

If n(n I k, t) is not degenerate at point t, then p is a well defined non-negative function 
and the proof is completed since both factors in the right side of (4.3) are non-negative. 

The following example will show that similar results do not hold for the function 
p(k, t), the Bayes' risk. 

Example 4. For the one-by-one case (m, = . . .= mk = 1) with Poisson prior with 
parameter 8= 100, we have 

This example shows that p, unlike /3, is neither monotone decreasing in k, for each 
fixed t, nor monotone increasing in t, for each fixed k. However, the results introduced in 
the sequel show that, for large samples, both p and /3 have desirable properties. 

5 Large-Sample Properties 

In this section we introduce two simple large-sample properties of the BE and discuss an 
interesting property of Tk, the sufficient statistic. As a consequence of this property, it is 
shown that the BE and the MLE converge almost surely to N in the classical sense. For the 
two properties below, the value t of Tk is held fixed when k increases. 

Since we deal with a finite population, {m,),,, is a bounded sequence of elements of N 
with M =max {m,; j s 1). As before, m, is the size of the jth sample and, for all t E N such 
that t 2M and N: # 0,define s =min { j  E N, j 2 2 and S, 2 t). For all k 2 s, we have that 
Mk s t 6 Sk and consequently both /3(k, t) and p(k, t) are well defined. From Theorem 1 
and the fact that B(k, t) 2 1for all k a s ,  the sequence {B(k, t))kas for a fixed t has a finite 
limit when k increases to infinite. The value of this limit is given by the following result 
that is proved in Appendix 2, since we have a long proof. 
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THEOREM3.  For a fixed t E N ,  if t 2M, N: # 0,and t= min N:, then 

lim P(k,  t )  = z. 
k-m 

If ~ ( t )>0, then z = t. 

The convergence of the Bayes' risk sequence, { p ( k ,  t)),,, ,  to zero is stated next. 

THEOREM4 .  For a fixed t E N ,  if t 3 M ,  and N: # 0,then 

lim p(k, t )  =0. 
k-rn 

Proof. If n ( n  I s ,  t )  is degenerate then so is n ( n  I k ,  t )  for all k 2 s and the result holds. 
If n ( n  I s ,  t )  is not degenerate then, for all k a s ,  n ( n  I k ,  t )  is not degenerate at the point 
t and from (4 .3)  we have that 

Since Mk S t  S Sk, B(k, t + 1 )  is well defined and, using Theorem 3, the present result will 
follow. 

The following simple, strong result is the most important large-sample property under 
the classical statistics perspective. Together with the above results it shows that the BE is 
also a good estimator under the classical perspective. This result is formally presented in 
Corollary 1of § 6. 

THEOREM5. Considering only the process defined by { P { T k= t 1 N = n)) , , , ,  the 
minimal sufficient statistic, Tk, converges almost surely to n,  for any fixed value, n E N ,  of 
N. 

Proof. To prove this result we consider an analogy with the random selection of balls 
in an urn. First consider the one-by-one case; that is consider an urn with n balls from 
which we select sequentially and randomly, with replacement, k balls. If t is the number 
of distinct balls selected in the first k selections, then (tln)" is the probability that only 
these t distinct balls are going to be selected in the next m draws. It is clear that when m 
increases this probability decreases. With similar arguments we can prove that Tk 
converges to n almost surely as k increases to infinity. Now suppose that more than one 
ball is drawn without replacement in each of the k selection steps. It is clear that in this 
case the velocity of the convergence increases. Then, the proof for the one-by-one case 
solves in fact the general case. 

Putting together Theorems 3 ,  4 and 5 we can conclude that, in the case of an 
open-minded prior, the Bayes' estimator converges almost surely, under the process 
{P{Tk= t 1 N = n ) ) k , l ,  to the value n of the population size, N. This pointwise 
convergence can also be proved for the maximum likelihood estimator introduced by 
Leite, Oishi & Pereira (1987, 1988). Recall that the MLE is given by N which is (i) equal to 
Tk if Tk = Mk, (ii) equal to m if Tk = Sk, and (iii) equal to Tk + Rk - 1 if Mk < Tk <Sk, 
where 

To obtain the convergence of the MLE one only needs to prove that the MLE assumes only 
one value for large k and that Rk converges to one. The proofs of these facts are simple 
but long. 
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6 Large Samples, Martingales, and Supermartingales 

In the present section we study large-sample properties under the Bayes' model. The 
conditional probability space of Dk given N, the statistical model, and the probability 
space of N, the prior model, are carefully stated in order to produce the precise definition 
of the joint probability space of (N, Dk). 

As before, we consider a bounded sequence of integers, {m,),,,, with 

M = SUP {m,;j 2 I ) ,  M, = max {m,, . . . ,m,), Sj = ml + . . . + m, ( j  2 1). 

Define also the following sets: 

A, = (0, 1, . . . ,m,) for all j 2 1, and 

Let 9be the a-algebra generated by the sets 

The measurable space (Q, 9 )  is the space of experimental observations based in Dk. 
Recalling that, for all j 2 1, t, = u1+ . . . + u,, where u1 = ml and u, E A,, we consider 

the family {P,; n E NM) of probability measures on (Q, S ) ,  defined for all positive 
integers as 

where P{Dk = gkI N = n )  is defined by (2.1). Analogously, we can write 

The triplet (52, 9 ,  {P,; n E NM)) is the Statistical Space or Statistical Model. Consider the 
a-algebra 8of subsets of NM and a probability distribution n on (NM, 8). The probability 
space (NM, 8 ,  n )  is the Prior Model. To complete the construction of the Bayes' 
framework, we define the following entities: 

(a) the cartesian product Q* = NM x 52; 
(b) the smallest a-algebra, 9*,containing the set of cartesian products of elements 

of 8 times the elements of 9 ,  that is 

(c) a probability measure ll on (Q*, 9 * )  defined by 

for all E E 8 and F E 9. 

The triplet (Q*, 9 * ,  l l )  is the Bayesian model. For every k > 1 and all points 
(n, w) E Q*, the quantities of interest, N, Dk and Tk can be viewed as random entities 
defined on (Q*, 9 * ,  l l )  as follows: 

Using the Bayesian structure defined above, we can state the following results about 
the random sequence {Tk)k31. Below, we write Xk+ Y [p] (or Xk+ Y a.s. [p]) to 
indicate that, when k increases to m, X converges in probability (or almost surely) to Y 



Bayes Estimation of the Size of a Finite Population 209 

under the probability model p. In fact any statement followed by a.s. [p] means that the 
statement is true almost surely (equivalently, with probability 1) under the probability 
model p. 

LEMMA1. We have that: 
(i) for every &ed k 3 1, TkS N a.s. [ll]; that is 

(ii) Tk+ n [P,]; that is,for any n E N, 

(iii) Tk+N[ll]; that & 
k 

lim ~ ( { ( n ,W ) E Q * ;  
k-m i = l  

Item (i) is consequence of the definition of P, since we had the restriction 

for every k 2 1. 
The proof of item (ii) is left to Appendix 3, and to prove item (iii) we recall the 

Bounded Convergence Theorem to write 

The next result is a formal version of Theorem 5 which is a consequence of Lemma 1. 

COROLLARY1. We have that: 

(iv) Tk+ n a.s. [P,]; that is, for any n E N, 

(v) Tk+N a.s. [HI; that is 
k 

(n, ~ ) E R * ;lim C o i = n  
k-30 ,=l  

Proof. The proof is simple. The sequence {T,),,, is nondecreasing and by definition 
Tks n a s .  [P,] and, from Lemma 1,Tk6 N a.s. [ll]. Consequently, there exists a random 
variable L such that Tk+L a.s. [P,] and Tk4L a.s. [n]. Using again Lemma 1, Tk+n 
[P,] and Tk+ N [ll] imply that L = n a.s. [P,] and L =N a.s. [ll]. 

Consider the increasing sequence, {Sk)k,l, of sub-a-algebras of S*induced by the 
experimental observable sequence, {Dk)k31.That is Sk= {Dil(A):A c (A, x . . . x A,)). 
The Bayes' estimator, Pk, is defined as the conditional expectation of N given 9k ;  that is, 
for all k 2 1, 

P k  = E{N I $k}. (6.3) 

Recall that we are considering only prior distributions with finite second moments. The 
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Bayes' risk is then defined here as the conditional expectation of (N - pk)' given Fkand 
we write, for all k > 1, 

Note that, since Tk is a sufficient statistic, the Bayes' estimate, B(k, t ) ,  and the posterior 
variances, p(k, t ) ,  introduced before are in fact the observed values of Pk and p,, 
respectively. We list below some standard properties. Here and in remaining part of the 
paper all the results are related only to the Bayes' model ll. 

LEMMA2. W e  have that: 
(vi) {Pk)k31is a martingale relative to {Fk)k31; 
(vii) {p,),,, is a supermartingale relative to {9k)k31; 
(viii) {Pk)k31 converges almost surely [ll] to a random variable defined on  

(Q*, s*,H); 
(ix) E{pk) 2 E{pk+,); that is, is nondecreasing in expectation. 

Proof. The proof here is also straightforward since (vi) and (vii) are direct conse-
quences of standard properties of conditional expectations, (viii) is Theorem 4.3 of Doob 
(1953, p. 331), and (ix) is a direct consequence of (vii). 

Next we introduce the main results of this paper. We recall the fact that we are 
considering proper priors with finite second moment. 

THEOREM6. W e  have that: 
(x) the Bayes' estimator converges almost surely [ll] to the random variable 

(population size) N; that is Pk+ N a.s. [ll]; 
(xi) the Bayes' risk converges almost surely [Ill to zero; that is pk+ 0 a.s. [Ill. 

The proof of Theorem 6 is left to Appendix 4 because, although short, it is very 
technical. This theorem is important since it shows a strong result for the Bayes' estimator 
and also shows that a good stopping rule shall depend on the Bayes' risk. 

We end this paper with a result about the variance (predictive) of the Bayes' estimator. 
Note that the Bayes' estimator is a function of the data and its moments are based on the 
marginal distribution of the data, called predictive distribution. 

COROLLARY2. The variance of the Bayes' estimator increases to the prior variance as the 
number of samples increases; that is Var {Pk) Var {N) as k +  co. 

Proof. To prove this result we recall that {Var {/3k))k,l is nondecreasing and 
Var {Pk)S Var {N). Then 

lim Var {Pk)s Var {N). 

On the other hand, using Fatou's Lemma, we have that 

lim inf E{Pz) 5 E 
k 

Hence, we have that lim Var {Pk)5 Var {N) and the result follows. 

A final remark is that Lemma 1and Corollary 1are results related to Tk, the sufficient 
statistic. From them we can conclude that Tk has strong properties under both classical 
and Bayesian views. These properties may be used to state desired properties of the 
maximum likelihood estimator introduced for the first time in Leite, Oishi & Pereira 
(1987). Under the Bayes' view the MLE is the posterior mode under the improper uniform 
prior. However the Bayesian material presented in this paper would be appropriate if we 
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consider a large but finite support to the uniform prior and making it a proper probability 
distribution. Hence, both [P,] and [ l l ]play important roles. 

This paper is focused only on the investigation of Bayes' estimation properties. It is not 
our objective to examine stopping rules. However, it is clear that, besides cost, a good 
stopping rule must depend on the difference between the number of units selected up to 
a certain stage j, S,, and the number of distinct units among those, ?;. A large difference 
(correspondingly, a small risk) could be substantial evidence that almost all members of 
the population have been selected. Should one continue sampling in such a situation? 
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Appendi 1: Proof of (3.3) 

To show the inequality we let Mk = M and Sk = S, and rewrite the likelihood kernel as 
follows: 

Appendi 2: Proof of Theorem 3 

For all k 3s, we can write 

~ ( k ,  + r]/[a 
( t  - t)! + I],1 )  = {a' 3 ----
n ( t ) t !  

where 

a ' =  C= n(n!)n(n) 

(n - t)! j=l 

Then it is enough to show that 

lim a = lim a '  = 0. 
k-m k+= 
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For all k 2 t + 1, 

Consequently, 
m 

'n!'n'n' < rt i: n(n)(r/n)k-' 
n = s + l  n = s + l  

This last term converges to zero as k increases to infinity. Similarly, we would prove that 
a' converges to zero as k increases to infinity and the proof is completed. 

Appendix 3: Proof of Lemma 1 

Only item (ii) remains to be proved. Note that, for each fixed n such that n(n)  >0, 
there exists a positive integer k1 (depending on n and on the sequence {m,),,l), such that 
n s Sk for every k 3 k,. Then, for all k 3 k1 

The second term of the right-hand side of this expression converges to zero as k+m 
since, for 0 S i <n, 

as k +w. Consequently, 

Appendix 4: Proof of Theorem 6 

Using Theorem 4.3 of Doob (1953, p. 331), we have that 

lim Pk= E{N I Pi) a.s. [HI, 
k-m 

where Fi is the smallest a-algebra containing 

Since Tk is .Tm-measurable (because it is .Tk-measurable and Fkc Sm) and Tk+ N a.s. [n] ,  
we have that limk sup Tk is .Tm-measurable and 

lim sup Tk =N a.s. [n].  
k 

Then 

concluding the proof of item ( x ) .  
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To prove item (xi) we use Theorem 9.4.4 of Chung (1974, p. 334) to conclude that 
{ P ~ ) ~ ~ ~converges a.s. [ll] to a random variable since 

E{pk)s Var {N) < m. 

From item (x) we know that 82,- N2 as .  [ll]. 
To conclude the proof we need to show that 

E{N2 I sk}+  N' a.S. [n] .  

Since E{N') < m, from Theorem 4.3 of Doob (1953, p. 331) we have that 

lim E{N' I Fk}= E{N' I 9-1 a.s. [HI. 
k-m 

On the other hand, since T i  is 9m-measurable and converges a.s. [ll] to N2; we conclude 
that limk sup T i  is also Fm-measurable and is equal to N2 a.s. [ll]. Hence, 

E{N2 I 9-1 = N2 a.s. [ll], 

concluding the proof. 
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RT-MAE-8404. 

On introduit, pour I'effectif d'une population, un estimateur de Bayes calculable sur des donndes obtenues par 
le processus d'dchantillonnage progressif capture-recapture. On dtudie des propridtds relatives ?I I'information 
contenue ces donndes. Quelques propridtds des grands dchantillons sont aussi obtenues par I'emploi de rdsultats 
standards pour les martingales. Les rdsultats les plus forts sont la convergence presque siire de I'estimateur de 
Bayes vers I'effectif rdel de la population et la convergence du risque de Bayes vers zero. Les propridtds de 
Bayes prdsentdes sont valables pour des probabilitds a priori qui sont des vraies probabilitds avec des moments 
d'ordre second finis. On ddmontre que I'estimateur du maximum de vraisemblance converge aussi presque 
siirement vers I'effectif reel de la population. 
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