
American Journal of Medical Genetics 24231-246 (1986) 

A Bayesian Method for the Estimation of 
Penetrance: Application to Mandibulofacial 
and Frontonasal Dysostoses 

Andre Rogatko, Carlos A.B. Pereira, and Oswaldo Frota-Pessoa 

lnstitudo de Matematica e Estatistica da Universidade de Siio Paulo (A. R., 
C.A.B.P.), lnstituto de Biocidncias da Universidade de Sao Paulo (0.E-P.), and 
CNPq-Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (A. R., 
C.A. B. P., 0.E-P.), Siio Paulo, Brad 

We describe a Bayesian method of estimating penetrance from genealogical data. 
It consists of calculating the likelihood of the data alone to make inferences about 
penetrance without sample space considerations. The method is applied to man- 
dibulofacial dysostosis giving a penetrance of 0.908 with 0.95 credible interval of 
rO.809; 0.9721 and to frontonasal dysostosis giving a penetrance of 0.670 with 
0.95 credible interval of [0.457; 0.8511. 
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INTRODUCTION 

The concept of penetrance was originally introduced by Vogt [1926] and re- 
viewed and extended by Rogatko "9831 using transitional matrices to model the 
different types of penetrance. The penetrance concept, which has had wide application 
in medical genetics [Tanaka, 1967; Stevenson and Davison, 1970; Frota-Pessoa et al, 
1976; Gollop, 1981; Opitz, 19811, will be of even greater value if incomplete 
penetrance is a widespread phenomenon. In fact, the complex nature of both gene 
and gene/environment interactions in humans suggests that incomplete penetrance is 
more frequent than is generally thought. Accordingly, more rigorous methods for 
determining penetrance must be developed so that, given any normal or pathological 
traits, the model best describing its inheritance can be determined. The evaluation of 
penetrance is also important in genetic counseling; it increases the precision of the 
recurrence risk estimates, although it does not clarify the detailed inheritance pattern. 
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TABLE I. Transitional Matrix moeatko. 19831 

Penetrance can be estimated either by simply determining the cases of nonpen- 
etrance [Stern, 19731 or by population analysis, which requires more elaborate 
methods [Trankell, 1955; Elandt-Johnson, 1970; Suarez et al, 1976, 19771. Both 
methods are based on the distribution of affected individuals in pedigrees. Several 
approaches have been developed for defects occurring either unilaterally or bilaterally 
in the body, such as retinoblastoma [Verschuer, 1937; Allen, 1952; Kealin, 1955; 
Knudson, 1971; Matsunaga, 1976, 1978, 19801 and the case of twins [Schinz, 1945; 
Lasker, 19471. 

However, with the exception of the method of Stern [1973], none of these 
applies to genetic diseases, for which only a few cases have been described. Stern’s 
method uses only information derived from proven nonpenetrant heterozygotes and 
the vertical connections in the pedigree. As such, it cannot determine the exact degree 
of precision of the estimate. 

In this paper, we try to develop a method that estimates the penetrance of a 
given gene and establish, at the same time, the degree of uncertainty of the estimate 
taking into account all the information contained in the genealogies. The theoretical 
basis of this method warrants its application to any sample size. It is clear that, the 
smaller the sample considered, the less will be the amount of information contained 
in the data and, likewise, the smaller will be the reduction of the initial uncertainty. 

METHOD 
Model 

We start from the transitional matrix shown in Table I (model VIII in Rogatko 
[ 19831). In this matrix, k is the penetrance coefficient, the individuals exhibiting 
phenotype fl die, those having phenotype f2 have a given Mendelian trait, and those 
with phenotype f3 are normal for the trait considered. The fraction k of the heterozy- 
gotes have the trait and the fraction 1 - k and A2A2 homozygotes are both normal. 
Therefore, class f3 is composed of phenotypically indistinguishable normal individuals 
of the types A1A2 and A2A2. 

Genes following this pattern are often classified as dominant with incomplete 
penetrance. However, we prefer to call them incomplete dominants (or codominants), 
because, from a phenotypical point of view, three distinct classes occur. 

Considering the adaptive values wl, w2, and w3, corresponding to the pheno- 
typic classes f l ,  f2, and f3, we assume that w1 = 0 and w2 = w3 (AIAl is lethal, and 
the penetrant heterozygotes have the same adaptive value as the A2A2 homozygotes). 
The present method applies only to genes of small frequency. In such cases, the 
affected and their consanguineous relatives can be assumed to always cross with A2A2 
individuals unless consanguinity is envolved in the cross. 
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In practice, the gene is recognized as being rare when, in a preliminary 
evaluation, the frequency of the affected phenotype is considered low in the popula- 
tion and high within the families of the propositi. Therefore, conditions that are rare 
because of a low penetrance are not considered here. 

Likelihood 

Several authors of different convictions have shown that statistical inference can 
be obtained from the analysis of likelihood functions. In the classical methods [Fisher, 
1956; Birnbaum, 1962; Barnard, 1967; Edwards, 19721, total knowledge of the 
sample space (set of all possible results) is necessary. This stems from the fact that 
such methods are based on the probability distribution of data for each parameter 
value. In the case of the estimation of penetrance, it is difficult to define the sample 
space, because we cannot determine all possible family compositions resulting from 
the number and type of individuals in each generation of sibs, the number of 
generations, the types of crosses between individuals, and the presence or lack of 
consanguinity. Even if the sample space was determined, classical statistical theory 
would allow only imprecise inferences when the number of known genealogies of a 
given defect is small, because it relies on asymptotic results, which are reliable only 
in large samples. 

These concerns led to the Bayesian approach for data analysis [Basu, 1975; 
Lindley and Phillips, 19761. Contrary to the classical mode of inference, the Bayesian 
method takes into account only the results actually observed; it does not consider all 
the infinite possible observations that could have but did not occur. Besides, its 
application is not restricted by sample size. The Bayesian inference is composed of 
three entities: an a priori distribution, which indicates the initial amount of informa- 
tion held by the researcher; a likelihood function, which codes all relevant information 
contained in the data about the parameter in question; and an aposteriori distribution, 
which indicates the state of information about the parameter after the data have been 
analyzed. 

When the researcher is faced with the first pedigree of a given disease, the a 
priori distribution of penetrance is uniform; no previous information exists. The a 
posteriori distribution evaluated for the first pedigree is the a priori distribution for 
the next one. In this iterative manner, information is accumulated and the final a 
posteriori distribution for the set of data available is reached. In practice this corre- 
sponds to constructing a single likelihood function using all pedigrees, associating 
with it a uniform a priori distribution, and computing the a posteriori distribution. 

The method described in this paper is based on the analysis of the likelihood 
function constructed from all available pedigrees. This procedure corresponds to a 
Bayesian analysis with a uniform initial a priori distribution. Although using the 
maximum likelihood point estimate for penetrance, its precision is evaluated from the 
conditional (a posteriori) distribution of penetrance given the data. To the contrary, 
the classical methods evaluate the precision from the distribution of data given the 
parameter. This is the main practical difference between the two approaches, which, 
however, can lead to substantially different results. 

Analysing the Genealogies 
We call a genealogy-generator (GG): 1) an affected individual with no known 

affected ancestrals or 2) a normal couple with no affected ancestrals who are the 
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I 

I1 

111 

Fig. 1. Example of a tree of normal individuals (11-1-IV-5). 

origin of two or more independent offspring lineages each of them containing affected 
individuals. In case 2, one of the members of the couple, with the exclusion of the 
other, is certainly a heterozygote. 

It is convenient to represent in the pedigrees both members of a couple when, 
and only when, the couple is a GG or is an ancestor of a GG. All pertinent information 
in the genealogies will be condensed in a likelihood function L(k), which is a product 
of different factors. 

The Evaluation of L(k) 
When there is no information about the ancestrals of a GG, the latter contributes 

to the likelihood with a factor: 1) k, if it is affected, or 2) 1 - k, if it is not affected. 
In the case when information about the ancestrals is availabie, those factors must be 
adjusted according to such information. 

A GG descendent contributes to the likelihood with a factor: 3) k/2, if it is 
affected, 4) (1 - k)/2, if it is a nonpenetrant heterozygote (identifiable for having 
some affected descendent), or 5)  (2 - k)/2, if it is a normal individual without 
offspring. If a normal GG descendent has only normal offspring its contribution must 
be adjusted accordingly. 

The Adjustment of Likelihood Factors 
The factor adjustments in the cases of information being available on GG 

ancestors or of a normal GG descendent having only normal offspring can be 
performed with reference to the following considerations. 'onsider a tree of normal 
individuals descending from a heterozygote known to be so because of having affected 
offspring (as in Fig. 1) or because of beinp affected. The likelihood factor correspond- 
ing to such a tree is calculated according to an order that works downwards and is 
called node, leJi- branch, right branch in graph theory [Elson, 1975; Lewis and Smith, 
19761. The procedure is illustrated in Table 11. It shows the possible homozygous or 
heterozygous condition of each individual depending on the condition ascribed to the 
ancestrals. 

To transform the diagram shown in Table I1 into the algebraic expression of 
likelihood, operators -+ and and are replaced by multiplication and operator or by 
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am of All Possible Alternatives for the Tree in Figure 1" 

hl  --+ 

or 
Hi --t 

111-1-3 = 

III-1 = 

and 
111-2 = 

and 
111-3 = 

hl 
or 
Hi - 

Iv-1-5 = ho 

Iv-1-2 = h0 

Iv-1 = 

and 
IV-2 = 
- 

Iv-3-5 = ho 
- 
IV-3 = 

~ , 1  

~~ 

and 
Iv-4 = 

and 
Iv-5 = 

- 
*The arrows indicate new generations, and the brackets gather sets of sibs or alternative possibilities of 
a same individual. b, homozygote derived from A2A2 X A2A2; hl, homozygote derived from 
A1A2 x A2A2; H', , nonpenetrant heterozygote derived from Alp x A2A2. 

addition. Operators -+ and and have the same precec ence and both precede operator 
or. This precedence can be changed by brackets. 

According to these ruIes, the IikeIihood in the tree of normal individuals in 
Figure 1 is given by 

2 2 

If a tree is formed by n normal individuals (n > 1), when each individual gives rise 
to only one descendent, the likelihod is 



236 Rogatko, Pereira, and Frota-Pessoa 

I 

I 

I1 

I11 

Fig. 2.  Genealogy generated with k = 0.75. 

The likelihood for any genealogy is given by 

L(k) = L~~(k/2)" '[(1 - k)/2In2[(2 - k)/2In3 LT, 

where LGG = GG factor (adjusted or not), nl = number of affected individuals, n2 
= number of heterozygotes, n3 = number of normal individuals (with a heterozygote 
parent) with no offspring, and k = adjustment factor of trees of normal individuals, 
since the constants multiplying the likelihood function are merely a scale factor: 

L(k) = LGGk"l(1 - k)"? (2 - k)"3LT. 

An Example of Simulation 
The genealogy shown in Figure 2 was produced from random number se- 

quences, where the probability of an A1A2 X A2A2 cross originating an AlA2 
individual is 0.5, and the penetrance of the A1A2 heterozygote is 0.75. In this small- 
scale genealogy, four of the eight AlA2 individuals generated from 1-1 manifested the 
gene. The likelihood of this genealogy is 

L(k) = kk4(l - k)(2 - k)5 LT, 

where 

L(k) = k5(1 - k)(2 - k)5 [2 + (1 - k) (2 - k)] 
X [4 + (1 - k) (2 - k)2] [8 + (1 - k) (2 - k)3]; 

this is graphically represented in Figure 3, giving a unimodal curve. By solving the 
equation dL(k)/dk = 0 through the Newton-Raphson iterative method (with the 
tolerance of convergence E = lo-"), we obtain 0.618 for the mode of this function 
(Fig. 4). This value represents the penetrance that most probably would generate the 
genealogy in Figure 2. 
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0 02 85 t 0.931 I 
0.618 

Fig. 3. Mode and 95% credible interval of the likelihood function of the simulated genealogy in 
Figure 2. 

Credible Set 
We shall now introduce the concept of “credible set” or interval in order to 

evaluate the degree of uncertainty of this parameter. The shaded area in Figure 3 
represents a fraction a = 0.95 of the total area beneath the curve: 

1 

[:L(k)dk = a S,,L(k)dk. 

In the particular case of Figure 3, al  = 0.285 and a2 = 0.931. Furthermore, any 
ordinate within the shaded area is greater than any ordinate outside; that is, I al - a2 I 
is minimum, and L(al) = L(a2). The shaded area is called the highest-density region, 
credible region, or Bayesian confidence interval [Schmitt, 19691. 

To include multimodal instances, the definition must be generalized. Given a 
family of sets 

1 

@?={C: [&(k)dk = aj,,L(k)dk}, 

a credible set of a level is defined as the set of CoE @?, so that 

Scdk > Sc,,dk V C  E f2. 

In spite of the analogy between the Bayesian credible interval and the confidence 
interval of classical statistics, they are quite distinct from a conceptual point of view. 
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Fig. 4. Graphs of the likelihood functions Li (ordinate) X penetrance (abscissa) for MFD. 

A credible interval a means that the actual value of the parameter has a probability a 
of belonging to the set Co. On the other hand, a confidence interval a means that, if 
the construction method was applied to all possible samples, then lOOa% of the 
confidence intervals thus calculated should contain the actual value of the parameter. 
It should be noted that, for the observed sample, the confidence interval may or may 
not contain the actual value of the parameter. 

Figure 3 represents the 95% credible region (shaded area) of the likelihood 
function for the simulated genealogy with k = 0.75 shown in Figure 2. The 95% 
credible interval is [0.285; 0.9311 ( E  = lo-"). This means that, on the basis of the 
information available for this genealogy, the actual penetrance value can be estab- 
lished to be between 0.285 and 0.931 with 95% probability. Before analyzing the 
data, our uncertainty was characterized by a uniform distribution in the [O,l] interval. 
Thus any credible interval corresponding to a 0.95 probability area is, a priori, an 
interval measuring 0.95 in the abscissae. With the information available in the sample, 
the initial uncertainty was reduced to 10.285; 0.9311, and this interval is 0.646 long 
in the abscissae. The numeric method developed for the calculation of the credible 
interval is based on the half-interval search; the k values on the same ordinate are 
evaluated through the Newton-Raphson method, and the numeric integration of the 
likelihood function is obtained through Roemberg's quadrature [Kuo, 19721. 

APPLICATION TO MANDIBULOFACIAL DYSOSTOSIS 

In this section, the method described above will be applied to the study of 
penetrance in mandibulofacial dysostosis (MFD). MFD is a malformation syndrome 
characterized by incomplete or abnormal embryonic formation of the several facial 
structures in past derived from first and second branchial arches. The cause is 
considered to be an autosomal dominant gene with incomplete penetrance. Clinical 
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TABLE 111. Liketihoods (Li) of Genealogies With MFD in the Literature 

Debusmann [ 19401 
Leopold et a1 [ 19451 
Brohm and Kluska [1947] 
Waardenburg and Navis [ 19491 
Szlazak [ 19531 
Rovin et a1 [ 1964) 
Fazen et a1 [ 19671 
Farrar [ 19671 

Le Marec et al [ 19741 

Gollop [ 198 11 

Li = k"(1 - k)(2 - k)" 
L2 = k6(2 - k)4 
L3 = k3(2 - k)3 
L4 = k4(l - k)(2 - k)I4 
Ls = kx(2 - k)4 
L6 = ki9(2 - k)"[4 + (1 - k)(2 - k)'] 
L7 = k"(2 - k)' 
L8 = k'(2 - k)6[8 + (1 - k)(2 - k)3]2[16 + (1 - k)(2 - k)4] 

LiO = k"(2 - k)'[2 + (1 - k)(2 - k)] 

LIZ = k2(1 - k)(2 - k)2[4 + (1 - k)(2 - k)2][8 + (1 - k)(2 - k)3] 

Kirkham 119701 

Partsch and Husk [1975] 

Lg = k3(2 - k) 

Lll = k'(2 - k)3 

Fig. 5 .  Graphs of the accumulated likelihood functions Ai (ordinate) X penetrance (abscissa) for MFD. 

and genetic information on this condition can be found in Gollop [ 19811 , which is the 
source of the genealogies used here. 

Table I11 shows the likelihoods of the 12 genealogies with MFD included in the 
review of Gollop [ 19811. These genealogies are chronologically arranged, according 
to publication dates. The graphs in Figure 4 represent the likelihood functions Li 
(ordinate) X penetrance (abscissa). Those in Figure 5 represent the accumulated 
likelihood functions 

i 

j = l  
A, = II LJ (ordinate) x penetrance (abscissa). 

The graphs in Figure 5 show that, the more information (genealogies) is added 
to the likelihood function, the more the curve peak narrows, thus delimiting an 
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0.908 

Fig. 6. Mode and 95% credible interval of MFD likelihood function AI2. 

increasingly narrower credible interval and improving the precision of the penetrance 
estimate. 

The likelihood function containing all information on penetrance of MFD is 

L(k) = A12 
= kS8 (1 - k)3 (2 - k)68 [2 + (1 - k) (2 - k)] 
x [4 + (1 - k) (2 - k)2]2 [8 + (1 - k) (2 - k)3]3 
X [16 + (1 - k) (2 - k)I4. 

Its mode is 0.908, and its 95% credible interval is E0.809; 0.9721 ( E  = lo-'?, which 
measures 0.163, as shown in Figure 6 .  

PENETRANCE AND INBREEDING 

The possibility of two heterozygotes mating exists whenever consanguineous 
unions occur in genealogies of genetic diseases following the model described in the 
Method section under model. In that the homozygotes AIAl were assumed to be 
inviable, the probability that a child of heterozygous parents will be a normal 
homozygote, an affected heterozygote, or a nonpenetrant heterozygote is 1/3, 2k/3 or 
2(1 - k)/3, respectively. 

Table IV shows likelihoods for hypothetical genealogies with consanguineous 
marriages. The likelihood, in these instances, was evaluated by listing all the possible 
combinations, calculating the likelihoods of each configuration, and summing. 

In genealogies with several consanguineous marriages, the enumerations be- 
come tedious, and, besides, there are many possibilities of error. For this reason, we 
have developed an algorithm for the calculation of likelihood that scans and lists 



TA
BL

E 
IV
. L

ik
el

ih
oo

ds
 Fo

r 
G

en
ea

lo
gi

es
 W

ith
 C

on
sa

ng
ui

ne
ou

s M
ar

ri
ag

es
* 

Li
ke

lih
oo

ds
 

(f
ur

th
es

t d
es

ce
nd

an
t [

H
I-1

, I
V

-1
, o

r V
-l

] i
s)

 
Ty

pe
 o

f 
co

ns
an

gu
in

eo
us

 
N

or
m

al
 (

ho
m

oz
yg

ot
e 

m
ar

ria
ge

 
G

en
ea

lo
gy

 
A

ffe
ct

ed
 

N
on

pe
ne

tra
nt

 he
te

ro
zy

go
te

 
or

 h
et

er
oz

yg
ot

e)
 

A
. S

ib
lin

gs
 

I1 
k(

2k
2 -

7k
 +

5)
/ 1

2 
(-

2k
3+

Y
kz

- 
12

k+
5)

/1
2 

(-
2k

3+
10

k2
-1

7k
+1

2)
/1

2 
11

1 
B.

 U
nc

le
 x

 n
ie

ce
 

I1
 

(o
ra

un
t 

x 
ne

ph
ew

) 
11

1 
IV

 

11
1 

2Y
k+

 1
1)

/4
8 

40
k+

 1
1)

/4
8 

Y7
k +

5 
1)

/4
8 

IV
 

k(
 -2

k3
 +

Y
k2

 -
 15

k +
 8)/

24
 

(2
k4

 - 
1 1

 k3
 +2

4k
2 -

23
k+

 8
)/

24
 

(k
4 -

6k
3 

+ 1
 5k

2 -
 1Y

k +
 12

)/ 1
2 

C
. F

irs
t c

ou
si

ns
 

I1
 

k(
2k

4-
 1

 lk
3 +

27
k2

- 
( -
 2k

5 +
 1 3

k4
 -
 38

k3
 + 5

6k
2 -
 

( -
4k

5 
+2

5k
4 -

6Y
k3

 +
 10

6k
2 -
 

D
. F

irs
t c

ou
si

ns
 

I1
 

k(
 -2

k5
 +

 13
k4

 -3
8k

3 
+ 

(2
k6

 -
 15

k5
 +

5 1
 k4

 -
 lo

ok
3 +

 1 1
4k

2 
(2

k6
 -
 16

k5
 + 5

Yk
4 -
 1

3 1
 k3

 + 
on

ce
 re

m
ov

ed
 

11
1 

62
k2

-5
2k

+ 
17

)/Y
6 

-6
Y

k+
 

17
)/Y

6 
18

7k
2-

 1
73

k+
Y

6)
/9

6 
IV

 
V

 
E.

 S
ec

on
d 

co
us

in
s 

11 11
1 

IV
 

V
 

k(
k6

 -Y
k5

 +
33

k4
 -6

8k
3 

+ 
( -
 k7

+ 
10

k6
 -4

2k
’ 

+ 1
01

 k4
 -
 14

Y
k3

 
( -
 2k

7 +
 1 8

k6
- 

75
k’

 +
 1Y

6k
4 -
 

81
 k2

 -5
1 

k+
 13

)/Y
6 

+ 1
32

k2
-6

4k
+ 

13
)/Y

6 
34

8k
3 +

42
6k

2 -
35

Y
k+

 
1Y

2)
/ 1

92
 

Q 
*T

he
 G

G
 is

 a
lw

ay
s h

et
er

oz
yg

ot
e a

nd
 h

id
he

r 
fu

rth
es

t d
es

ce
nd

an
t i

s 
af

fe
ct

ed
, n

on
pe

ne
tra

nt
 h

et
er

oz
yg

ot
e,

 o
r 

no
rm

al
 h

om
oz

yg
ot

e 
or

 h
et

er
oz

yg
ot

e.
 



242 Rogatko, Pereira, and Frota-Pessoa 

TABLE V. Method for the Calculation of Likelihood in Genealogies With Consanguineous 
Marriages* 

- - 
1-1 = AIAz -+ 1 TI-1 = 

Consanguinity list (for explanation, see text): 
-111-2: 111-1 = [h(1,2) or H’(3)] 
11 = 112; 12 = (1 - k)/4; 13 = (1 - k)’/4 

ind 
1-2 = h i  --t 111-2 = 

or 
H; --t 111-2 = 

ho 11 

ho and 111-1 = 

hl and 111-1 = 

or 
H i  and 111-1 = 

= (2 - k)/2: 
Therefore, the likelihood is 

-,(k) = 112.1- [I1 + I2)‘l + I3.P1] + (1 - k)/2.(1/2. [(I1 + 12). 1 + I3.P1] + (I  - k)/2 
- .[(I1 + 12)’Pi + I3*(3 - 2*k)/3]) = (-4k5 + 25k4 - 69k3 + 106k2 - 97k + 51)/48 

*Marriage between first cousins when individual 1V-1 is normal (see Table IV). hz, homozygote derived 
from AlA2 X AlA2; H’z nonpenetrant heterzygote derived from AlA2 X AIA2 (see Table 11). 

genealogies in the way shown in Table 11. For further explanation on the use of this 
algorithm, see Table V. 

The rules used in this procedure are: 1) The genealogy is listed according to the 
node left branch, right branch order, using the abbreviations in Table I. 2) Concomi- 
tantly, a list of consanguinity is elaborated. This list is consulted for each new 
individual listed. Three possibilities arise, at this stage: I) If the individual is not on 
the consanguinity list up to this point, and has not bred with a consanguineous relative 
the listing is continued. 2) If the individual is not in the consanguinity list but has 
bred with a consanguineous relative, then the identification of hidher partner, the 
identification, the genotype and the phenotype codes of the individual in question, 
and the interim likelihood index are included in the consanguinity list. By interim 
likelihood (Ii, i = 1, 2 . . .), we mean the likelihood obtained by scanning the 
genealogy in an ascending order, through the operators -+ and and, starting from the 
individual in question up to the GG. If in the ascendant scanning alternatives linked 
by the and operator occur, and these alternatives have no connection with the other 
paths that form the consanguineous loop, they will take part wholly (ie, by scannings 
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TABLE VI. Likelihoods (Li) of Genealogies With FND in the Literature 

Boo-Chai [1965] 
Francesconi and Fortunato [1969] 

L1 = k3(l - k)(2 - k)4 
L2 = k3(l - k) 
L3 = k5(l - k)(2 - k)4[8 + (1 - k)(2 - k p ]  

Warkany et a1 [1973] 
Fox et a1 [ 19781 

L4 = k2(1 - k)(2 - k) 
L5 = k2(1 - k) 

downward by the -+, and, and or operators) in the Ii. 3) If an individual is on the 
consanguinity list, hidher likelihood is multiplied by the sum of the interim likeli- 
hoods for each genotype and phenotype of the partner, and the scanning of the 
genealogy is continued, with the listing of all possible alternatives. 

When calculations are done by hand, it is convenient to create auxiliary variables 
(pi, i = 1, 2 . . .) that accumulate the likelihood values for repeating parts of the 
genealogy. These variables are represented in the listing by larger triangular arrows. 
Table V shows an example of this algorithm used in the situation already shown in 
Table IV (marriage between first cousins when individual IV-1 is normal). 

APPLICATION TO FRONTONASAL DYSOSTOSIS (FND) 

FND is a congenital face malformation resulting from disturbances in the 
embryogenesis of the frontonasal process. Its inheritance is considered as autosomal 
dominant with incomplete penetrance. Our estimate of its penetrance was based on 
the six genealogies reviewed in Gollop [ 19811. 

Table VI shows the likelihood of the five genealogies without consanguinity. 
The graphs in Figure 7 represent the likelihoods functions L1 (ordinate) X penetrance 
(abscissa). Those in Figure 8 represent the accumulated likelihood functions 

1 

Ai = II Lj (ordinate) X penetrance (abscissa). 
j = l  

It can be seen that the graphs Li are quite even in pattern as far as the location 
of the mode is concerned and that the peaks of the Ai curves narrow as more 
information is added to the likelihood function. 

The likelihood function containing all information on the penetrance in FND in 
these five genealogies is 

L(k) =: A5 = k15 (1 - k)5 (2 - k)9 [8 + (1 - k) (2 - k)3]. 

The mode in this function (A5 in Fig. 9) is 0.670, and the 95% credible interval is 
[0.457; 0.8511, measuring 0.394. 

The remaining FND genealogy, described by Moreno-Fuenmayor [ 19801, has 
many consanguineous marriages. Its likelihood is computed following the rules 
introduced in the Penetrance and Inbreeding section. Its final expression and the 
calculation of it are quite long and will be omitted here but are available to those 
interested. We present the graph representing the likelihood function of Moreno- 



244 Rogatko, Pereira, and Frota-Pessoa 

Fig. 7. Graphs of the likelihood functions Li (ordinate) X penetrance (abscissa) for FND. 

Fig. 8. Graphs of the accumulated likelihood functions Ai (ordinate) X penetrance (abscissa) for FND. 

0.397 1 t i  
0.457 1 0.851 

0.263 0.670 

Fig. 9. Modes and 95% credible intervals of MFD likelihood functions L6 and As. 

Fuenmayor's pedigree (L6 in Fig. 9), with mode 0.263 and 95% credible interval 
[O.  159; 0.3971 ( E  = lo-"), measuring 0.238. 

As can be seen in Figure 9, the L6 and A5 credible sets are disjoint. This result 
might be accounted for by a lack of information about generations I and I1 in Moreno- 
Fuenmayor's genealogy, in which no affected individuals are recorded, whereas a 
number of them appear in generations III-V. This would tend to make the calculated 
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penetrance an underestimate. On the other hand, we could be dealing with genetic 
heterogeneity, the Moreno-Fuenmayor pedigree representing a variant with lower 
penetrance. 
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