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Reliability Nonparametric Bayesian Estimation
in Parallel Systems
Adriano Polpo and Carlos A. B. Pereira

Abstract—Relevant results for (sub-)distribution functions re-
lated to parallel systems are discussed. The reverse hazard rate
is defined using the product integral. Consequently, the restric-
tion of absolute continuity for the involved distributions can be re-
laxed. The only restriction is that the sets of discontinuity points
of the parallel distributions have to be disjointed. Nonparametric
Bayesian estimators of all survival (sub-)distribution functions are
derived. Dual to the series systems that use minimum life times as
observations, the parallel systems record the maximum life times.
Dirichlet multivariate processes forming a class of prior distribu-
tions are considered for the nonparametric Bayesian estimation of
the component distribution functions, and the system reliability.
For illustration, two striking numerical examples are presented.

Index Terms—Dirichlet multivariate processes, distribution
function, parallel systems, reversed hazard rate, sub-distribution
function.

ACRONYM1

HR hazard rate

RHR reversed hazard rate

CHR cumulative hazard rate

CRHR cumulative reversed hazard rate

NOTATION

distribution Beta with parameters , and

Dirichlet process with parameter

Dirichlet multivariate ( -variate)
process with parameters
Dirichlet multivariate distribution with
parameters
the last component to fail (that is,
if , then the system has failed
because of the -th component, )
set of components whose life time is
studied (a subset of the non-empty index
set )
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1The singular and plural of an acronym are always spelled the same.

conditional expectation of given

life distribution function of the set

, the
sub-distribution function of the
risk set
distribution function of the system

joint distribution function of all
components

, the distribution function
of the -th component

, the
sub-distribution function of the
-th component

,
, the empirical

sub-distribution function of the
-th component

, the empirical
distribution function of the system
unit function: ,

product-integral

integration over disjoint open intervals
that do not include the jump points of

total number of system components

hazard rate

cumulative hazard rate

reversed hazard rate

reversed hazard rate related to a
distribution function of the -th
component
cumulative reversed hazard rate

minimum between and

maximum between and

number of systems in the sample

probability of event

reliability of the group of components

, the system failure
or survival time

, random
sample to be observed
-th distinct order statistics

-th component failure time
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I. INTRODUCTION

I N STATISTICAL ANALYSIS domains, such as en-
gineering, and medicine, censored data are frequently

analyzed as part of the statistical inference. Methods that
address this kind of data are important in statistical literature;
see for instance Cox [1], Breslow & Crowley [2], and Kaplan
& Meier [3]. Data representing the life time of engineering
systems and their components, or of patients submitted to a
particular medical treatment, are common in the statistical lit-
erature. Aalen [4], Tsiatis [5], Peterson [6], and Salinas-Torres
et al. [7] are devoted to nonparametric models for the problem
of competing risks, also called series systems.

For parallel systems, there are just a few literature references.
Barlow & Proschan [8] precisely define the structure of these
systems, and their components. However they only consider
cases where the components’ distributions and their relations
are known. They also describe the concept of coherent struc-
ture, and the representation for coherent systems. As a special
case, Proschan & Boland [9] study the reliability of a system
where the system works if at least out of compo-
nents work. The particular case where , a parallel system,
is the main objective of the present article. Recall that the series
system is the case when .

For simplicity, consider two components whose life times,
and distributions are denoted by & , and & respec-
tively. One may be interested in the life time, and distribution of
the resulting two-component (one of each) system, , and , re-
spectively. Considering the two cases above,
for the series system, and for the parallel
system.

The random quantity is crucial to obtain the important dis-
tributions used in statistical analysis of the parallel system. Con-
sidering independence between life times of the components in
both parallel and series cases, the distribution of the system can
be written as a function of the components’ sub-distributions.

The hazard rate (HR) plays an important role in the case of
series system analysis. For the parallel case, the corresponding
function is the reversed hazard rate (RHR). The concept of RHR
appears for the first time in Keilson & Sunita [10]. Important
properties of this function can be found in Chandra & Roy [11].
However they were restricted to the case of absolute continuous
distributions. Using the product integral, we have generalized
the concept of most random variables. See also Block & Savits
& Singh [12], and Li & Zuo [13] for more about RHR.

The interrelations among survival, sub-survival, and HR
functions are studied in the series system and competing risk
literature. The general definition of RHR is introduced in
Section II. Section III presents the corresponding interrelations
among the parallel system functions: distribution, sub-distribu-
tion, and RHR.

To illustrate the main objective of this paper, let us consider
the simple case of two components. Suppose we observe a
sample of size of the system reliability; that is, . The
statistician’s main interest is the estimation of all distribution
functions , , and . Clearly, the estimation of
is a well-known problem in statistics. However, the estimations
of , and requires special tools for censored data. In fact,

the censor here is from the right, opposite to the series system
whose censor is from the left. This paper treats the general case

of a parallel system.
In Section IV, we use Dirichlet multivariate processes, in-

troduced by Salinas-Torres et al. [14], to derive Bayesian es-
timators of all (sub-)distribution functions of the -component
system. To obtain the nonparametric Bayesian estimators, we
use the product-integration approach (Gill & Johansen [15]).
A survey on Bayesian estimation of survival functions using
Dirichlet processes can be found in Ferguson et al. [16], and for
nonparametric Bayesian analysis in Muller & Quintana [17].

Two numerical illustrative examples are discussed in
Section V. The objective is to show how the method properly
solves realistic, difficult problems. Section VI describes some
future possible research on the subject.

II. REVERSED HAZARD RATE

The RHR, which is the dual of the HR, is described below.
The RHR relates to the distribution function as the HR relates
to the survival function. The importance of the RHR to parallel
systems is equivalent to that of the HR to the series systems.
Denoting probability (density), and distribution functions by ,
and respectively, we write

and

i. Under absolute continuity,

(1)

ii. Under discreteness,

(2)

iii. Under mixing distributions,

(3)

Here, is the cumulative hazard rate (CHR) and is
the cumulative reversed hazard rate (CRHR). They are defined
as

(4)

and

(5)

where is the sum over the set of all jump points of
or .

Although the above results can be checked using standard
results, the general case is obtained using the product integral
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described by Gill & Johansen [15], and Andersen et al. [18]. If
is the product integral, then item (iii) can be re-written as

(6)

III. PARALLEL SYSTEM

We divide this section in two parts: the first is about relations
among the distributions, and sub-distributions in the absolute
continuous case; and the second is about general properties of
these functions relaxing the restriction of absolute continuity.
That is, we allow a finite number of jumps.

A. Relations Among the Distributions and Sub-Distributions
in the Absolute Continuous Case

Consider a set of positive continuous, -independent
random variables, and its maximum: .
Let be the distribution function associated with the
random variable , for all . The -th sub-distri-
bution function evaluated at a time is the probability that the
whole parallel system survives at most to time , and that the
last component to fail is the -th component. That is, for the -th
component, the distribution function, and the sub-distribution
function evaluated at time are respectively , and

(7)

Recall that the joint distribution function of
evaluated at is

(8)

Here, it is assumed that this function has a continuous partial
derivative over all arguments.

The discussion below is used to establish the connection be-
tween (7), and (8).

Theorem 1: The derivative of , , is equal
to the partial derivative of at the -th compo-
nent, , evaluated at

.
Theorem 1 indicates a strong relationship between the set of

distribution functions, and the set of sub-distribution functions:

Because the life of the components are mutually -indepen-
dent,

(9)

and

(10)

where is the RHR of the -th component:

(11)

From (11), one can write

(12)

Letting , (10) becomes

(13)

Taking now the sum for in both sides of (13), we
obtain

(14)

Consequently,

(15)

which combined with (13) leads to

(16)

Finally, (12) implies

(17)

Consider that a sample of identically distributed systems is
observed. That is, the random sample
is observed. With such a sample, all sub-distribution functions
can be estimated. However, this is not the case for joint distri-
bution functions. Hence, the crucial question is “How can in-
formation about the joint survival distribution of components be
extracted from the sub-distribution functions?”. The set of equa-
tions just derived partially answers this question. In the next sec-
tion, using (17), we obtain a strong relation between the distri-
bution function, and the sub-distribution functions for any case,
not only in the absolute continuous case.
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B. General Properties

This section is dedicated to parallel system results, and prop-
erties. For simplicity, we first consider the problem of ,
a system with two components, and later we extend the results
for any .

Let be a pair of -independent positive random
variables representing the life of two components of a parallel
system. Represent by , and respectively, their mar-
ginal distribution functions. The life time of the system is rep-
resented by ; and the indicator of the failed
component is if , and if . The
restriction here is that the two sets of jump points of , and of

have no common points.
The following properties can be proved.
Property 1: The sub-distribution functions can be expressed

using the marginal distribution functions of both components:

(18)

Property 2:
a. ;
b. ;
c. .
Property 3: The sub-distribution functions , and de-

termine the distribution function of the system.

Property 4: The set of jump points of and are equal,
. Because , and have disjoint sets of jump points,

so have , and .
Property 5: If is the support of , and by

, , then
. In words, at least one of the two sub-dis-

tribution functions and is positive for , and both
are zero for .

Note that (17) is the “inverse” of (18). Unfortunately, this ex-
pression does not work for the case with jump points. To obtain
a version of (17) in the presence of jumps, we introduce the fol-
lowing definition and theorem.

Definition 1: The function based on the sub-
distributions , and is

(19)

where is the sum over the set of all jump points of .
The next result, although restricted to , extends expres-

sion (17) in the sense that it can include disjoint jump points.
Theorem 2: The sub-distribution functions , and de-

termine (uniquely) the distribution function for . That
is,

(20)

Recall that if , then for all ; the
smallest possible failure time of component 1 is .

The above strong result, together with property 1, indi-
cates that a one-to-one correspondence between and

exists.
We have established the relation between sub-distribution,

and distribution functions for a parallel system with two com-
ponents. The generalization for a system with components in
parallel is straightforward as follows.

Exploring only the -th component, one should just take
, and its complement . There are analogous properties to

those presented before. For instance, we have three properties:
Property 6:
, , and
.
Property 7: .
Property 8: The discontinuity points of , and are

equal. Because , and have disjoint sets of jump points,
so have , and .

For , Theorem 3 generalizes

Theorem 2.
Theorem 3: The sub-distribution functions determine

(uniquely) the distribution functions for . That is,

(21)

where is defined by (19). If , then for
all .

Before concluding this section, we emphasize that (21) is a
very strong result of its dual, obtained for the series system in
Salinas-Torres et al. [7].

IV. BAYESIAN ANALYSIS

The objective of this section is to describe a Bayesian re-
liability approach to parallel systems. We derive a Bayesian
estimator of the distribution function , and define the mul-
tivariate Dirichlet process. Recall that we are dealing with the
life of components. Hence, for each component, we define
a Dirichlet process for its reliability. Having the Dirichlet
processes for all components as their prior processes, and con-
sidering the observed data, the posterior multivariate Dirichlet
process results. This method also generates the posterior pro-
cesses for all sub-distribution functions of the components.
From these processes, we obtain the Bayesian nonparametric
estimation for all sub-distribution functions. Using the results
of Section III, we present the Bayesian estimator for the system,
and all components’ reliabilities.

For Dirichlet (univariate) process properties, see Ferguson
[19]. Here, the finite positive measure used in the definition
of Dirichlet processes is a probability measure multiplied by a
known constant. The multivariate Dirichlet processes, defined
in Salinas-Torres et al. [14], may have the following simplified
version.

Definition 2: Let be a sample space, be finite
positive measures defined over , and be
a random vector having a Dirichlet distribution with param-
eters . Consider Dirichlet processes,
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, with , . All these pro-
cesses, and are mutually - independent random
quantities. Define .
The is a Dirichlet multivariate ( -variate) process with pa-
rameter measures ; that is, .

In the context of parallel systems, consider ,
, and , .

Then the prior for , the vector of com-
ponents’ sub-distribution functions, is .

The induced prior for is given by

(22)

where is the distribution Beta with parameters and
, , and is

the prior mean of . Also, is the
prior mean of .

Note that is a Beta process on with -indepen-
dent increments of the type (Hjort [20])

(23)

The following result gives the prior mean of the distribution
function in terms of the prior mean of its associated CRHR

.
Lemma 1: Suppose that and have no common dis-

continuities. Under the prior (22), for , the prior mean of
the distribution function is given by, for each ,

where is the prior mean of asso-
ciated to the distribution function .

Proof: See Salinas-Torres et al. [7].
The posterior distribution of is an updated

Dirichlet multivariate process where
; see

Salinas-Torres et al. [14].
Let

be the empirical sub-distribution function associated with the
risk subset .

Let . The Bayesian estimators of ,
and are given by

(24)

and

(25)

These Bayesian estimators are strongly consistent. For in-
stance, using Glivenko Cantelli Theorem (cf. Billingsley [21],
page 275), and the fact that decreases to 0, , it can be
shown that converges to uniformly with probability 1.

If , , the Bayesian estimator of
is given by

(26)
Let the distinct order statistics of be

. Set , and
, . Define

(27)

and

(28)

The main result of this paper is presented next.
Theorem 4: Suppose that are contin-

uous on , for each , and and have no
common discontinuities. Then, for ,

(29)

is the nonparametric estimator of based on posterior
mean.

V. NUMERICAL EXAMPLES

This section presents two examples related to the estimation
of distribution functions involved in a three-component parallel
system. The failure times for the observations are measured in
hours.

Example 1: We obtained 100 observations from 3 simulated
processes: the first component is distributed as exponen-
tial with mean 1; the second component is distributed as
lognormal with mean 1 and standard deviation 0.4; and the third
component is distributed as a composition of discrete, and
continuous distributions

.

Note that, by considering the parallel system, the presented
Bayesian estimators are based on 100 observations of .
The simulated values are listed in Appendix II.

The objective of this example is to illustrate the efficiency
of the ideas just developed. We have the following situation: 92
observations of component one, 22 of component two, and 86 of
component three are all censored. Recall that we have included
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discontinuity points, which are unusual. For this example, we
have a very challenging case with few registered observations
for components one and three.

The estimation steps are as follows.
1 Defining Priors: For simplification, we choose the expo-

nential distribution, with mean , as the prior mea-
sures (recall that , , and are finite measures). That
is, for , , and clearly

. We note that this prior is not very informative because
the measure of the whole parameter space is only one.
This means that the prior does not overweight the posterior
mean, the Bayesian estimator. In fact, for the three distri-
butions, we consider a priori three i.i.d. Dirichlet processes
with their measures defined by an exponential distribution
with mean .

2 Obtaining Posteriors: The posterior processes for the sub-
distribution functions are Dirichlet processes measure de-
fined by an exponential distribution with mean , plus
the empirical sub-distribution function multiplied by the
sample size. That is, for the -th component, the posterior
measure of the Dirichlet process is

.
3 Computing Reliabilities: Equation (25) provides the esti-

mator of the system distribution function. In this example,
we have

Now, taking , , the distribution function
estimator of the -th component is obtained from (29). We
estimate by using (26).
To perform the necessary calculations, some adjustments
have to be done. In the expression (29) of the estimator

, the integral , , needs
numerical approximation. We use the classical method
of Runge-Kutta for the solution of ,

.
The relevant expressions are

Note that is the resulting value for the solution in ,
and , where . These for-
mulas reduce to

(30)
This solution is equivalent to

(31)

which is the result of the application of Simpson rule to the
interval . For more details and other numerical
integration methods, see Davis & Rabinowitz [23].

Fig. 1 presents the estimates of the four distribution functions:
components 1, 2, and 3; and the system. In all plots, the true
distribution functions (dashed lines) are also illustrated.

The conditional reliabilities of the components relatively to
the system are ,

, and
.

Surprisingly, despite the problematic amount of censored ob-
servations, and discontinuity presence, the graphics show good
performance, and useful estimates.

The previous example shows good performances, even for
components 1 and 3, which are under inferior conditions com-
pared to component 2.

In the following example, to better understand the problem of
discontinuity, we modify Example 1 by increasing the reliability
of the third component.

Example 2: Consider Example 1 with the following modifi-
cations.

.

The situation now is as follows. We have 97 observations
of component one, 57 of component two, and 46 of com-
ponent three, all of which are censored. The conditional
reliabilities of the components relatively to the system
are ,

, and
. For the

estimated distribution functions, see Fig. 2.
Again, despite the presence of discontinuity and censoring,

we obtain good performance, and useful estimates.

A. Remarks

1) The examples were conveniently chosen to illustrate the
application of the Bayesian nonparametric methodology.
Clearly, when dealing with parallel systems, if a compo-
nent reliability is drastically greater than another, the latter
will have more uncensored lifetime observations than the
former. The estimation of the life distribution of the former
might be inappropriate because of a lack of observations.
For instance, in Example 2, we generated another 30 obser-
vations of the system. As expected, with this new sample of
size 30, component 1 only had 2 uncensored observations.
The other two components had 8, and 20 uncensored ob-
servations. In fact, except for component 3, the other two
had few uncensored observations. The inferences for the
component distributions in this case are not as good as in
the original Example 2, where the numbers of uncensored
observations of components 2 and 3 were large enough to
improve the inference of component 1 (that had only 3 un-
censored observations). On the other hand, if one focuses
only on the system distribution, then the inference seems
adequate in this small sample of size 30, as shown in Fig. 3.
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Fig. 1. Estimates for the Example 1.

2) We have chosen a prior that we believe has low influence
on the final estimation. In fact, if a specialist has enough
information to consider more appropriate priors, he only
has to follow the same steps described in this section to
obtain more adequate estimators.

Fig. 2. Estimates for the Example 2.

3) The judgments we made while analysing the plots are a
consequence of the many simulated results performed with
alternative distributions. We have chosen two hard exam-
ples that would impose difficulties for any possible statis-
tical methodology.
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Fig. 3. Example 2 with sample size 30.

4) We consider cases with discontinuity points. The reason
is that there are real situations for which the occurrence
of discontinuity may happen. For instance, consider a
system that has to be turned off/on periodically, and that
the turn-on time increases the chance of a failure in some

Fig. 4. System.

components. Furthermore, the method presented here is
a generalization, and properly works for absolute contin-
uous cases too.

VI. CONCLUDING REMARKS, AND AREAS FOR

FURTHER RESEARCH

The novelty of this paper is the Bayesian nonparametric sta-
tistical analysis for parallel systems. Moreover, the generaliza-
tion of the RHR using the product integral has allowed the de-
velopment of the method. We have presented estimators for all
reliability functions involved in parallel systems: distributions,
sub-distributions, and RHR. The main result is the relationships
among these important functions. We hope that these ideas can
have strong impact on future research in engineering reliability.

To have coherent estimators, one does not need to be re-
stricted to the case of absolutely continuous probability mea-
sures. In fact, we consider conditional continuous distributions
given intervals between discontinuity points. We also rely on the
fact that component lives are -independent, and have disjoint
sets of discontinuity points.

RHR, distribution, and sub-distribution functions in parallel
systems play the same role of HR, survival, and sub-survival
functions in series systems. Consequently, we have followed
similar steps of the series system nonparametric Bayesian es-
timators.

The results presented here, together with those presented by
Salinas-Torres et al. [7], allow one to think that any coherent
system can have a nonparametric Bayesian estimation for all
types of reliabilities. From Barlow & Proschan [8], we know
that any coherent system is a combination of series, and parallel
systems. For instance, it should be interesting to obtain similar
results for the three-component system presented in Fig. 4.

APPENDIX I
PROOF OF THEOREMS

Proof of Theorem 1: Without loss of generality, we con-
sider . Let , , and be arbitrary positive numbers such
that . From the definition of , the difference

(32)

has lower bound

(33)
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Similarly, the upper bound of (32) is

(34)

Dividing (32)–(34) by , and applying the limit with ,
we obtain, for all ,

and

Again, taking the limit with , we conclude the Proof:

(35)

Proof of Theorem 2: Taking over the set of all jump
points of , from (3), and (5), it is enough to show that

(36)

and

(37)

Equation (36) is a consequence of properties 1, and 3,

Equation (37) is a consequence of

In the last equality, we use the fact that
when is a jump point of . Because is positive and
increasing, implies for .

Proof of Theorem 3: To prove this theorem, replace ap-
propriately by in The-
orem 2.

TABLE I
SIMULATED SAMPLE OF EXAMPLE 1

TABLE II
SIMULATED SAMPLE OF EXAMPLE 2

Proof of Theorem 4: Replacing the Bayesian estimates of
, and in (21), we have

(38)

where is the product over all jump points of with
.

Note that , and the first
term in (38) becomes . For each fixed , ,

, are monotonic, continuous functions in ,
and is monotonic in . Therefore, ,

, can be decomposed uniquely as the difference of
monotonic continuous functions (cf. Rudin [22], Corollary 1 of
Theorem 6.27), and as the difference of monotonic
functions. Thus, the integral is
well defined. Moreover, the second factor in (38) is
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On the other hand, proceeding as in Lemma 1,

(39)

where .
With simple algebraic manipulations, we obtain (38) from
(39).

APPENDIX II
SIMULATED SAMPLES

The simulated samples of , , used in the
examples, are described in Tables I and II.
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