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Abstract: The full Bayesian significance test (FBST) for precise hypotheses is a Bayesian alternative to
the traditional significance tests based on p-values. The FBST is characterized by the e-value as an
evidence index in favor of the null hypothesis (H). An important practical issue for the implementation
of the FBST is to establish how small the evidence against H must be in order to decide for its rejection.
In this work, we present a method to find a cutoff value for the e-value in the FBST by minimizing the
linear combination of the averaged type-I and type-II error probabilities for a given sample size and
also for a given dimensionality of the parameter space. Furthermore, we compare our methodology
with the results obtained from the test with adaptive significance level, which presents the capital-P
P-value as a decision-making evidence measure. For this purpose, the scenario of linear regression
models with unknown variance under the Bayesian approach is considered.

Keywords: adaptive significance levels; Bayesian test; linear regression; predictive distribution;
significance test

1. Introduction

The full Bayesian significance test (FBST) for precise hypotheses is presented in [1] as
a Bayesian alternative to the traditional significance tests based on p-values. With the FBST,
the authors introduce the e-value as an evidence index in favor of the null hypothesis (H).
An important practical issue for the implementation of the FBST is to establish how small
the evidence must be to decide to reject H ([2,3]). In that sense, the authors of [4] present
loss functions such that the minimization of their posterior expected values characterizes
the FBST as a Bayes test under a decision-theoretic approach. This procedure provides a
cutoff point for the evidence that depends on the severity of the error for deciding whether
to reject or accept H.

In the frequentist significance-test context, it is known that under certain conditions
the p-value decreases as the sample size increases, in such a way that by setting a single
significance level, the comparison of the p-value with the fixed significance level usually
leads to rejection of the null hypothesis ([5–9]). In the FBST procedure, the e-value exhibits
similar behavior to the p-value when the sample size increases, which suggests that the
cutoff point to define the rejection of H should depend on the sample size and (possibly) on
other characteristics of the statistical model under consideration. However, in the proposal
of [4], a loss function that explicitly takes into account the sample size is not studied.

In order to solve the problem of testing hypotheses in the usual way, in which changing
the sample size influences the probability of rejecting or accepting the null hypothesis,
the authors of [10], motivated by [11], suggest that the level of significance in hypothesis
testing should be a function of sample size. Instead of setting a single level of significance,
the authors of [10] propose fixing the ratio of severity between type-I and type-II error
probabilities based on the incurred losses in each case, and thus, given a sample size,
defining the level of significance that minimizes the linear combination of the decision error
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probabilities. The authors of [10] show that proceeding this way, by increasing the sample
size, the probabilities of both kind of errors and their linear combination decrease, while in
most cases, setting a single level of significance independent of sample size, only type-II
error probability decreases. The tests proposed in [10] take the same conceptual grounds of
the usual tests for simple hypotheses based on the minimization of a linear combination of
probabilities of error of decisions as presented in [12]. Then, the authors of [10] extend, in
a sense, the idea in [12] to composite and sharp hypotheses, according to the initial work
in [11].

Following the same line of work, the authors of [13,14] present a new hypothesis-
testing procedure formulated from the ideas developed in previous works ([11,15–17]) and
using a mixture of frequentist and Bayesian tools. This procedure introduces the capital-P
P-value as a decision-making evidence measure and also includes an adaptive significance
level, i.e., a significance level that is a function of sample size. Such an adaptive significance
level is obtained from the minimization of the linear combination of generalized type-I
and type-II error probabilities. According to the authors of [14], the resulting hypothesis
tests do not violate the likelihood principle and do not require any constraints on the
dimensionalities of the sample space and parameter space. It should be noticed that the
new test procedure is precisely the optimal decision rule for the problem of testing the
simple hypotheses fH against fA. For this reason, such a procedure overcomes the drawback
of increasing the sample size resulting in the rejection of a null precise hypothesis ([12]).
Another important way of successfully dealing with this question is to take into account
meaningful deviations from the parameter value that specifies the null precise hypothesis
in the formulation of the hypothesis testing problem ([18,19]).

On the other hand, linear models are probably the most used statistical models to
establish the influence of a set of covariates on a response variable. In that sense, the
proper identification of the relevant variables in the model is an important issue in any
scientific investigation and is a more challenging task in the context of Big-Data problems.
In addition to high dimensionality, in recent statistical learning problems, it is common to
find large datasets with thousands of observations. This fact may cause the hypothesis of
nullity of the regression coefficients to be rejected most of the time, due to the large sample
size when the significance level is fixed.

The main goal of our work is to determine, in the setting of linear regression models,
how small the Bayesian evidence in the FBST should be in order to reject the null hypothesis
and prevent a decision-maker from the abovementioned drawbacks. Therefore, taking
into account the concepts in [11,12] associated with optimal hypothesis tests, as well as the
conclusions in [10] about the relationship between the significance levels and the sample
size, and finally, considering the ideas developed recently by the authors of [13,14] related
to adaptive significance levels, we present a method to find a cutoff point for the e-value
by minimizing a linear combination of the averaged type-I and type-II error probabilities
for a given sample size and also for a given dimensionality of the parameter space. For
that purpose, the scenario of linear regression models with unknown variance under the
Bayesian approach is considered. So, by providing an adaptive level for decision making
and controlling the probabilities of both kinds of errors, we intend to avoid the problems
associated with the rejection of the hypotheses on the regression coefficients when the
sample size is very large. In addition to the e-value, we calculate the P-value as well as its
corresponding adaptive significance levels in order to compare the decisions that can be
made by performing the tests with each of these measures.

2. The Linear Regression Model with Unknown Variance

The identification of the relevant variables in linear models can be done through
hypothesis-testing procedures involving the respective regression coefficients. In the
conjugate Bayesian analysis of the normal linear regression model with unknown variance,
it is possible to obtain expressions for the posterior distributions of the parameters and their
respective marginals. Therefore, in this setting, the FBST can be used for testing if one or
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more of the regression coefficients is null, which is the basis of one possible model-selection
procedure. We first review the normal linear regression model

y = Xθ+ ε, ε ∼ Nn(0, σ2In), (1)

where y = (y1, . . . , yn)> is an n × 1 vector of yi observations, X = (x1, . . . , xn)> is an
n× p matrix of covariates, also called the design matrix, with xi = (1, xi1, . . . , xip−1)

>, θ =

(θ1, . . . , θp)> is a p× 1 vector of parameters (regression coefficients), and ε = (ε1, . . . , εn)>

an n × 1 vector of random errors. The model shows simply that the conditional distri-
bution of y given parameters (θ, σ2) is the multivariate normal distribution Nn(Xθ, σ2In).
Therefore, the likelihood becomes

f (y|θ, σ2) = (2πσ2)−n/2 exp
{
− 1

2σ2 (y− Xθ)>(y− Xθ)

}
. (2)

The natural conjugate prior distribution of (θ, σ2) is a p-variate normal-inverse
gamma distribution with hyperparameters m0, V0, a0, and b0, denoted by (θ, σ2) ∼
Np IG(m0, V0, a0, b0). Combining it with the likelihood (2) gives the posterior distribu-
tion ([20–22]):

f (θ, σ2|y) ∝ (σ2)
−
(

a0+
n
2 +

p
2 +1

)
exp

{
− 1

2σ2

[
(θ−m∗)> V∗−1 (θ−m∗) + 2b1

]}
, (3)

where
V∗ =

(
V0
−1 + X>X

)−1
, m∗ = V∗

(
V0
−1m0 + X>y

)
,

a1 = a0 +
n
2

, b1 = b0 +
m0
>V0

−1m0 + y>y−m∗>V∗−1m∗

2
.

If X>X is non-singular, we can write

m∗ = V∗
(

V0
−1m0 + X>Xθ̂

)
,

where θ̂ = (X>X)−1X>y is the classical maximum likelihood or least squares estimator of
θ. Therefore, the posterior distribution of (θ, σ2) is

(θ, σ2)|y ∼ Np IG(m∗, V∗, a1, b1).

See Appendix A for further explanation of the priors, posteriors, and conditional
distributions for the linear regression models with unknown variance.

3. Adaptive Significance Levels in Linear Regression Coefficient Hypothesis Testing

In this section, we present the methodology to find a cutoff value for the evidence in
the FBST as an adaptive significance level and we also develop the procedure to calculate
the P-value with its corresponding adaptive significance level, all this in the context of
linear regression coefficient hypothesis testing in models with unknown variance under
the Bayesian point of view. For that purpose, first of all, it is necessary to show how the
Bayesian prior predictive densities under the null and alternative hypotheses are defined.

3.1. Prior Predictive Densities in Regression-Coefficient Hypothesis Testing

Let θ = (θ>1 θ>2 )
>, with θ1 = (θ1, . . . , θs)> and θ2 = (θs+1, . . . , θp)>, having θ1 s

elements and θ2 r elements. Let ξ = (θ>, σ2)> = (θ>1 , θ>2 , σ2)>, then, Y|ξ ∼ Nn(Xθ, σ2In)
where ξ ∈ Ξ. We are interested in testing the hypotheses
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H : θ2 = 0

A : θ2 6= 0.

Let ΞH and ΞA be the partition of the parameter space defined by the competing
hypotheses H and A. Consider the prior density g(ξ) defined over the entire parameter
space Ξ and let fH and fA be the Bayesian prior predictive densities under the respective
hypotheses. Both are probability density functions over the sample space Ω, as follows:

fH(y) = tn

2
(

a0 +
r
2

)
; XCm01.2(0),

b0 +
m0
>
2 (V022)

−1m02

2(
a0 +

r
2

) (
In + (XC)V011.2(XC)>

), (4)

where C(s+r)×s = [Is, 0s×r]>.

Additionally,

fA(y) = tn

(
2a0; Xm0,

b0

a0

(
In + XV0X>

))
. (5)

where PH and PA are the prior probability measure of ξ restricted to the sets H and A
respectively (more details can be seen in Appendix B).

3.2. Evidence Index: e-Value

The full Bayesian significance test (FBST) was proposed in [1] for precise or “sharp”
hypotheses (subsets of the parameter space with smaller dimension than the dimension
of the whole parameter space, and, therefore, with null Lebesgue measure) based on
the evidence in favor of the null hypothesis, calculated as the posterior probability of
the complement of the highest posterior density (HPD) region (here we consider the
usual HPD region with respect to the Lebesgue measure, even though it could be built
by choosing any other dominating measure instead) tangent to the set that defines the
null hypothesis. Considering the concepts in [10,11], and the recent works [13,14] related
to adaptive significance levels, we propose to establish a cutoff value k∗ for the e-value
(ev(H; y0)) in the FBST as a function of the sample size n and the dimensionality of the
parameter space d, i.e., k∗ = k∗(n, d) with k∗ ∈ [0, 1], such that k∗ minimizes the linear
combination of the averaged type-I and type-II error probabilities, aα + bβ. To describe the
procedure in the context of the coefficient hypothesis testing of the linear regression model
we are addressing, consider the tangential set to the null hypothesis which is defined as

Ty0
=

{
ξ ∈ Ξ : f (ξ|y0) > sup

H
f (ξ|y0)

}
=

{
(θ1, θ2, σ2) ∈ Ξ : f (θ1, θ2, σ2|y0) > sup

H
f (θ1, θ2, σ2|y0)

}
. (6)

This is the posterior distribution of (θ1, σ2) given θ2 a s-variate normal-inverse gamma,
that is

(θ1, σ2|θ2, y0) ∼ Ns IG

(
m∗

1.2(θ2), V∗
11.2, a0 +

r
2

, b0 +
(θ2 −m∗

2)
>V∗−1

22 (θ2 −m∗
2)

2

)
,
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where the point under H for which the posterior attains its maximum value can be calcu-
lated as follows

arg sup
H

f (θ1, θ2, σ2|y0) = arg sup
θ1,θ2=0,σ2

f (θ1, θ2 = 0, σ2|y0)

= arg sup
θ1,σ2

f (θ1, θ2 = 0, σ2|y0)∫
θ1∈Rs , σ2∈R+

f (θ1, θ2 = 0, σ2|y0) dθ1 dσ2

= arg sup
θ1,σ2

f (θ1, σ2|θ2 = 0, y0)

= Mode
[

f (θ1, σ2|θ2 = 0, y0)
]

=

m∗
1.2(θ2 = 0), 0,

b1 +
(m∗

2)
> (V∗

22)
−1(m∗

2)

2(
a1 +

r
2

)
+ 1 +

s
2


=
[
θ̂1, 0, σ̂2

]
.

Thus, we get the tangential set

Ty0
=
{
(θ1, θ2, σ2) ∈ Ξ : f (θ1, θ2, σ2|y0) > f (θ̂1, 0, σ̂2|y0)

}
. (7)

The evidence in favor H is calculated as the posterior probability of the complement
of Ty0

. That is,
ev(H; y0) = 1− P(ξ ∈ Ty0

|y0). (8)

The evidence index, e-value, in favor of a precise hypothesis, considers all points of
the parameter space which are less “probable" than some point in ΞH. A large value of
ev(H; y0) means that the subset ΞH lies in a high-probability region of Ξ, and, therefore,
the data support the null hypothesis; on the other hand, a small value of ev(H; y0) means
that ΞH is in a low-probability region of Ξ and the data would make us discredit the null
hypothesis ([23]).

The evidence in (8) can be approximately determined via Monte Carlo simula-
tion. Then, generating M samples from the posterior distribution of ξ, such that ξ|y ∼
Np IG(m∗, V∗, a1, b1), we estimate the evidence by Monte Carlo simulation through
the expression

1− 1
M

M

∑
j=1

1

(
ξ(j) ∈ Ty0

)
.

Now, consider the test such that

ϕe(y) =


0 i f ev(H; y) > k

1 i f ev(H; y) ≤ k.

The averaged error probabilities, expressed in terms of the predictive densities, can be
estimated by Monte Carlo simulation through the expressions

αϕe =
∫

y∈Ψe

fH(y) dy and βϕe =
∫

y/∈Ψe

fA(y) dy, (9)

where Ψe is the set
Ψe = {y ∈ Ω : ev(H; y) ≤ k}.
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So, the adaptive cutoff value k∗ for ev(H; y) will be the k that minimizes aαϕe + bβϕe .
The a and b values represent the relative seriousness of errors of the two types or, equiva-
lently, relative prior preferences for the competing hypotheses. For example, if b/a = 1, it
is said that βϕe and αϕe are equally severe, whereas if b/a < 1, then αϕe undergoes a more
intense minimization than βϕe , which means that type-I error is considered more serious
than type-II error and also indicates a prior preference for H.

3.3. Significance Index: P-Value

The authors of [13,14] present a new hypothesis-testing procedure using a mixture of
frequentist and Bayesian tools. On the one hand, the procedure resembles a frequentist
test as it is based on the comparison of the P-value as a decision-making evidence measure
with an adaptive significance level. On the other hand, such an adaptive significance
level is obtained from the minimization of a linear combination of generalized type-I
and type-II error probabilities under a Bayesian perspective. As a result, it generally
depends on both the null and alternative hypotheses and on the sample size n, as opposed
to standard fixed significance levels. The new proposal may also be seen as a test for
simple hypotheses characterized by the predictive distributions fH and fA in Section 3.1
that minimizes a specific linear combination of probabilities of errors of decision. It is
then formally characterized by a cutoff for the Bayes Factor (which takes the place of the
likelihood ratio here) and therefore may prevent a decision-maker from rejecting the null
hypothesis when the data seem to be clear evidence in its favor ([12]). It should be stressed
that under the new proposal, a cutoff value for the Bayes factor (for the “likelihood ratio”
here) is chosen in advance and consequently no constraint is imposed exclusively on the
probability of the error of the first kind. In this sense, the test in [13,14] completely departs
from regular frequentist tests. From another angle, the Bayes factor may be seen as the ratio
between the posterior odds in favor of the null hypothesis and its prior odds ([24]). Note
that the quantity defined here is a capital-P “P-value” to distinguish it from the small-p
“p-value”. In the scenario of the linear regression model with unknown variance, the ratio
between the two prior predictive densities (4) and (5), will be the Bayes factor,

BF(x) =
fH(x)
fA(x)

. (10)

Now, consider the test

ϕ∗(y) =


0 i f BF(y) >

b
a

1 i f BF(y) ≤ b
a

.

For any other test ϕ, ϕ∗ minimizes a linear combination of the type-I and type-II error
probabilities, aαϕ + bβϕ. Here again, the a and b values represent the relative seriousness
of errors of the two types. To obtain the P-value at the point y0 ∈ Ω, define the set Ψ0 of
sample points y for which the Bayes factors are smaller than or equal to the Bayes factor of
the observed sample point y0, that is

Ψ0 = {y ∈ Ω : BF(y) ≤ BF(y0)}.

Then, the P-value is the integral of the predictive density over H, fH, in Ψ0

P-value (y0) =
∫

Ψ0

fH(y) dy.
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Defining the set Ψ∗ of sample points y with Bayes factors smaller than or equal to
b/a, i.e.,

Ψ∗ =
{

y ∈ Ω : BF(y) ≤ b
a

}
,

the optimal averaged error probabilities from the generalized Neyman–Pearson Lemma,
which will depend on the sample size, are given by

αϕ∗ =
∫

y∈Ψ∗

fH(y) dy and βϕ∗ =
∫

y/∈Ψ∗

fA(y) dy.

In order to make a decision, the P-value is compared to the optimal adaptive sig-
nificance level αϕ∗ . Then, when y0 is observed, the hypothesis H will be rejected if the
P-value (y0) < αϕ∗ .

4. Simulation Study

We developed a simulation study considering two models. The first model was

y = Xθ+ ε, ε ∼ Nn(0, σ2In), (11)

where X = 1n and θ = θ1. The hypotheses to be tested were

H : θ1 = 0

A : θ1 6= 0.

The second model studied was

y = Xθ+ ε, ε ∼ Nn(0, σ2In), (12)

where X = (x1, . . . , xn)> is an n× p matrix of covariates with xi = (1, xi1, . . . , xip−1)
> and

θ = (θ>1 , θ>2 )
> is the p× 1 vector of coefficients. In this case, the hypotheses of interest were

H : θ2 = 0

A : θ2 6= 0.

The averaged error probabilities, αϕ∗ and βϕ∗ , were calculated using the Monte Carlo
method with values generated from the following distributions:

• Model (11) under H

θ
(j)
1 = 0

σ2(j)|θ(j)
1 = 0 ∼ IG

(
a0 +

1
2

, b0 +
(θ

(j)
1 −m0)

>V−1
0 (θ

(j)
1 −m0)

2

)
Y(j)|σ2(j), θ

(j)
1 ∼ Nn(1nθ

(j)
1 , σ2(j)In).

• Model (11) under A

σ2(j) ∼ IG(a0, b0)

θ
(j)
1 |σ

2(j) ∼ N(m0, σ2(j)V0)

Y(j)|σ2(j), θ
(j)
1 ∼ Nn(1nθ

(j)
1 , σ2(j)In).

• Model (12) under H
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θ
(j)
2 = 0

θ
(j)
1 |θ

(j)
2 = 0 ∼ ts

(
2a0 + 1; m01.2(θ

(j)
2 ),

2b0 + (θ
(j)
2 −m02)

>V0
−1
22 (θ

(j)
2 −m02)

2a0 + 1
V011.2

)

σ2(j)|θ(j)
1 , θ

(j)
2 = 0 ∼ IG

(
a0 + 1, b0 +

(θ(j) −m0)>V0
−1(θ(j) −m0)

2

)
Y(j)|σ2(j), θ

(j)
1 , θ

(j)
2 = 0 ∼ Nn(Xθ(j), σ2(j)In).

• Model (12) under A

σ2(j) ∼ IG(a0, b0)

θ(j)|σ2(j) ∼ Np(m0, σ2(j)V0)

Y(j)|σ2(j), θ(j) ∼ Nn(Xθ(j), σ2(j)In).

Then, y(j) = (y(j)
1 , . . . y(j)

n ) is a random sample of the conditional distribution of Y,
j = 1 . . . M.

In a first stage, we considered model (11) where θ = θ1 and model (12) with θ =
(θ1, θ2)

>. Note that the dimensionality of the parameter space, denoted by d, is different
in the two models: for model (11), the dimensionality is d = 2 and for model (12), the
dimensionality is d = 3. Samples of size M = 1000 were generated for each model
under the respective hypotheses and also for different sample sizes between n = 10 and
n = 5000. In model (12), the covariate xi1, i = 1 . . . n, was generated from a standard
normal distribution. Finally, to obtain the adaptive values αϕ∗ and βϕ∗ , the two types of
errors were considered as equally severe, that is, a = b = 1.

Figure 1 shows the averaged error probabilities for the FBST as functions of k for a
sample size n = 100. This was replicated for all sample sizes in order to numerically find
the corresponding k∗ value that minimizes αϕe + βϕe . Tables 1 and 2 and Figures 2 and 3
present the k∗ and αϕ∗P

values as function of n for each model. As can be seen, both values
have a decreasing trend when the sample size increases. In the case of the cutoff value for
the evidence, it is possible to notice the differences in the results when the dimensionality
of the parameter space change. Then, the k∗ value depends not only on the sample size but
also on the dimensionality of the parameter space, more specifically, it is greater when d is
higher. However, this does not occur with αϕ∗P

, which maintains almost the same values
even if d increases. On the other hand, Figures 4 and 5 illustrate that in all these models,
the optimal averaged error probabilities and their linear combination also decrease with
increasing sample size.

Table 1. Cutoff values k∗ for ev(H; y) as a function of n, with d = 2 and d = 3.

k∗

n d = 2 d = 3

10 0.32530 0.51220
50 0.12534 0.22442
100 0.11705 0.21081
150 0.10889 0.19735
200 0.10092 0.18416
250 0.09323 0.17132
300 0.08587 0.15894
350 0.07893 0.14713
400 0.07243 0.13598
450 0.06641 0.12560
500 0.06091 0.11606

1000 0.03035 0.06689
1500 0.02223 0.07086
2000 0.01892 0.07173
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(a) yi = θ1 + ε i , H : θ1 = 0, (b) yi = θ1 + θ2 xi1 + ε i , H : θ2 = 0,

m0 = 0, V0 = 1, a0 = 2.01, b0 = 1.01, m0 = [0, 0]> , V0 = I2, a0 = 2.01, b0 = 1.01,

d = 2. d = 3.

Figure 1. Averaged error probabilities (αϕe , βϕe and αϕe + βϕe ) as function of k. Sample size n = 100.

Figure 2. Cutoff values k∗ for ev(H; y) as a function of n, with d = 2 and d = 3.

Table 2. Optimal averaged type-I error probability (αϕ∗ ) as a function of n, with d = 2 and d = 3.

αϕ∗

n d = 2 d = 3

10 0.12400 0.09200
50 0.04515 0.04327

100 0.03899 0.03775
150 0.03327 0.03252
200 0.02817 0.02772
250 0.02380 0.02341
300 0.02018 0.01963
350 0.01732 0.01642
400 0.01513 0.01376
450 0.01353 0.01163
500 0.01241 0.01002
1000 0.00941 0.00683
1500 0.00827 0.00398
2000 0.00681 0.00524
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Figure 3. Optimal averaged type-I error probability (αϕ∗ ) as a function of n, with d = 2 and d = 3.

(a) yi = θ1 + ε i , H : θ1 = 0, (b) yi = θ1 + θ2 xi1 + ε i , H : θ2 = 0,

m0 = 0, V0 = 1, a0 = 2.01, b0 = 1.01, m0 = [0, 0]> , V0 = I2, a0 = 2.01, b0 = 1.01,

d = 2. d = 3.

Figure 4. Unknown-variance model optimal averaged error probabilities (α∗ϕ∗e , β∗ϕ∗e and α∗ϕ∗e + β∗ϕ∗e ) as
functions of n.

(a) yi = θ1 + ε i , H : θ1 = 0, (b) yi = θ1 + θ2 xi1 + ε i , H : θ2 = 0,

m0 = 0, V0 = 1, a0 = 2.01, b0 = 1.01, m0 = [0, 0]> , V0 = I2, a0 = 2.01, b0 = 1.01,

d = 2. d = 3.

Figure 5. Optimal averaged error probabilities (αϕ∗ , βϕ∗ and αϕ∗ + βϕ∗ ) as functions of n.

We choose a single random sample y0 to calculate the e-value and P-value for the
models. Table 3 displays the results: the cases where H is rejected being represented by the
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cells in boldface. It can be observed that the decision remains the same regardless of the
index used.

Table 3. Cutoff values k∗, ev(H; y0) and P-value (y0) as function of n, with d = 2 and d = 3.

d = 2 d = 3

n k∗ ev αϕ∗
P

Pv k∗ ev αϕ∗
P

Pv

10 0.3253 0.9838 0.1240 0.7510 0.5122 0.9696 0.0920 0.4850
50 0.1253 0.0820 0.0451 0.0190 0.2244 0.9261 0.0433 0.3570

100 0.1171 0.0000 0.0390 0.0000 0.2108 0.4176 0.0377 0.0650
150 0.1089 0.0973 0.0333 0.0200 0.1974 0.2965 0.0325 0.0510
200 0.1009 0.0036 0.0282 0.0000 0.1842 0.0466 0.0277 0.0040
250 0.0932 0.0001 0.0238 0.0000 0.1713 0.0620 0.0234 0.0050
300 0.0859 0.0000 0.0202 0.0000 0.1589 0.0119 0.0196 0.0010
350 0.0789 0.0000 0.0173 0.0000 0.1471 0.0282 0.0164 0.0030
400 0.0724 0.0000 0.0151 0.0000 0.1360 0.0347 0.0138 0.0020
450 0.0664 0.0000 0.0135 0.0000 0.1256 0.0628 0.0116 0.0040
500 0.0609 0.0000 0.0124 0.0000 0.1161 0.0181 0.0100 0.0010
1000 0.0303 0.0000 0.0094 0.0000 0.0669 0.0000 0.0068 0.0010
1500 0.0222 0.0000 0.0083 0.0000 0.0709 0.0000 0.0040 0.0010
2000 0.0189 0.0000 0.0068 0.0000 0.0717 0.0000 0.0052 0.0010

As the second stage in our simulation study, we set two sample sizes n = 60 and
n = 120 to perform the tests for model (12), increasing the dimensionality of the parameter
space. In that scenario, the vector of coefficients was such that θ = (θ>1 , θ2)

> and the
hypotheses to be tested were

H : θ2 = 0

A : θ2 6= 0.

So, by varying the dimension of vector θ1, the different models considered for each
test were obtained. Tables 4 and 5 and Figures 6 and 7 show the k∗ and αϕ∗P

values as
functions of d. For d = 2, the values correspond to model (11). We can say that, for a fixed
hypothesis, the larger the dimensionality of the parameter space, the greater the value of
k∗. In the case of the αϕ∗P

value, it does not change significantly when the dimensionality
of the parameter space increases, except when the number of parameters is very large in
relation to the sample size.

Table 4. Unknown-variance model cutoff values k∗ for ev(H; y) as a function of d, with n = 60 and
n = 120.

k∗

d n = 60 n = 120

2 0.18500 0.08560
3 0.20420 0.19480
4 0.31510 0.39630
5 0.47790 0.49500
6 0.57670 0.53040
7 0.79970 0.67400
8 0.82970 0.70490
9 0.91250 0.80310
10 0.94540 0.92770
11 0.97300 0.92940
21 0.99990 0.99960
31 0.99990 0.99970
41 0.99990 0.99990
51 0.99990 0.99990
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Figure 6. Unknown-variance model cutoff values k∗ for ev(H; y) as a function of d, with n = 60 and
n = 120.

Table 5. Optimal averaged type-I error probability (αϕ∗ ) as a function of d, with n = 60 and n = 120.

αϕ∗

d n = 60 n = 120

2 0.03700 0.02100
3 0.03300 0.03800
4 0.03700 0.03600
5 0.04100 0.03800
6 0.04800 0.03300
7 0.04400 0.03500
8 0.04600 0.03100
9 0.05000 0.03600
10 0.04500 0.03900
11 0.04600 0.04000
21 0.05100 0.03700
31 0.05300 0.03700
41 0.07200 0.03600
51 0.12600 0.04100

Figure 7. Optimal averaged type-I error probability (αϕ∗ ) as a function of d, with n = 60 and n = 120.

Table 6 presents the e-value and P-value calculated for a single random sample y0.
Here, with the e-value the null hypothesis is less easily rejected. This may be related to two
things: it may be due to approximation error as a result of the simulation process or due to
the fact that the evidence apparently converges to 1 as the dimensionality of the parameter
space increases, in which case a more detailed study is required.
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Table 6. Cutoff values k∗, ev(H; y0) and P-value (y0) as functions of d, with n = 60 and n = 120.

n = 60 n = 120

d k∗ ev αϕ∗
P

Pv k∗ ev αϕ∗
P

Pv

2 0.1850 0.6865 0.0370 0.3660 0.0856 0.0082 0.0210 0.0010
3 0.2042 0.5849 0.0330 0.1360 0.1948 0.7199 0.0380 0.1760
4 0.3151 0.8119 0.0370 0.1820 0.3963 0.9230 0.0360 0.2470
5 0.4779 0.0000 0.0410 0.0000 0.4950 0.0000 0.0380 0.0010
6 0.5767 0.5672 0.0480 0.0290 0.5304 0.7002 0.0330 0.0360
7 0.7997 0.8854 0.0440 0.0820 0.6740 0.9992 0.0350 0.2860
8 0.8297 0.3267 0.0460 0.0050 0.7049 0.7858 0.0310 0.0260
9 0.9125 0.1919 0.0500 0.0020 0.8031 0.0009 0.0360 0.0010
10 0.9454 0.0006 0.0450 0.0010 0.9277 0.0001 0.0390 0.0010
11 0.9730 0.0000 0.0460 0.0000 0.9294 0.0000 0.0400 0.0000
21 0.9999 0.0000 0.0510 0.0000 0.9996 0.0000 0.0370 0.0000
31 0.9999 1.0000 0.0530 0.0240 0.9997 0.0495 0.0370 0.0010
41 0.9999 0.9998 0.0720 0.0010 0.9999 0.0004 0.0360 0.0010
51 0.9999 1.0000 0.1260 0.0000 0.9999 0.0000 0.0410 0.0000

5. Numerical Examples

In this section, we present two applications with real datasets. We choose a0 = 3 and
b0 = 2 as parameters of the inverse gamma prior distribution for σ2. Additionally, in the
normal prior for θ given σ2, m0 = 0p×1 and V0 = Ip are taken as parameters. The Monte
Carlo approximations were made generating samples of size M =10,000.

5.1. Budget Shares of British Households Dataset

We select a dataset that draws 1519 observations from the 1980–1982 British Family
Expenditure Surveys (FES) ([25]). In our application, we want to fit the model

yi = θ1 + θ2 xi1 + θ3 xi2 + θ4 xi3 + θ5 xi4 + εi, εi ∼ N(0, σ2). (13)

We consider as explanatory variables, respectively, the total net household income
(rounded to the nearest 10 UK pounds sterling) (x1), the budget share for alcohol expendi-
ture (x2), the budget share for fuel expenditure, and the age of household head (x3). We take
the budget share for food expenditure as the dependent variable (y). All the expenditures
and income are measured in pounds sterling per week.

Table 7 summarizes the results for the hypotheses H : θj = 0, j = 1 . . . 5, by performing
the test with the p-value at 0.05 significance level and also the e-value and the P-value with
their respective adaptive significance levels. The cases where H is rejected are represented
by the cells in boldface. θ̂Freq and θ̂Bayes are, respectively, the classical maximum likelihood
estimator and the Bayes estimator of θ. It can be seen that unlike the p-value, the e-value
and the P-value do not reject the hypothesis of nullity of the coefficient associated with the
age of household head variable.

Table 7. Budget shares of British households dataset hypothesis-testing summary.

Coefficients θ̂Freq α pv θ̂Bayes k∗ ev αϕ∗
P

Pv

Intercept 0.3758 0.0500 0.0000 0.3700 0.7078 0.0000 0.0382 0.0000
xi1 −0.0004 0.0500 0.0000 −0.0004 0.0113 0.0000 0.0001 0.0000
xi2 −0.1533 0.0500 0.0003 −0.1283 0.9410 0.1890 0.1278 0.0172
xi3 0.1717 0.0500 0.0007 0.1487 0.9520 0.1957 0.1468 0.0143
xi4 0.0009 0.0500 0.0119 0.0010 0.0764 0.3048 0.0004 0.0666

Table 8 exposes the optimal averaged error probabilities using the e-value and the
P-value. It can be noted that the values are very similar with both methodologies.



Entropy 2023, 25, 19 14 of 20

Table 8. Budget shares of British households dataset optimal averaged error probabilities.

Coefficients α∗
ϕ∗

e
αϕ∗

P
β∗

ϕ∗
e

βϕ∗
P

Intercept 0.0466 0.0382 0.2157 0.2193
xi1 0.0000 0.0001 0.0006 0.0006
xi2 0.1521 0.1278 0.4146 0.4145
xi3 0.1508 0.1468 0.4679 0.4410
xi4 0.0004 0.0004 0.0080 0.0083

5.2. Boston Housing Dataset

We also take a dataset that contains information about housing values obtained from
census tracts in the Boston Standard Metropolitan Statistical Area (SMSA) in 1970 ([26]).
These data are composed of 506 samples and 14 variables. The regression model we use is

yi = θ1 +θ2 xi1 +θ3 xi2 +θ4 xi3 +θ5 xi4 +θ6 xi5 +θ7 xi6 +θ8 xi7 +θ9 xi8 +θ10 xi9 + εi, (14)

εi ∼ N(0, σ2).

We choose the following explanatory variables to fit our model: per capita crime rate
by town (x1), the proportion of residential land zoned for lots over 25.000 sq. ft (x2), the
proportion of non-retail business acres per town (x3), the proportion of non-retail business
acres per town (x4), the average number of rooms per dwelling (x5), the proportion of
owner-occupied units built prior to 1940 (x6), the weighted mean of distances to five Boston
employment centers (x7), the full-value property tax rate per 10.000 (x8), the pupil–teacher
ratio by town, and 1000(Bk− 0.63)2, where Bk is the proportion of black people by town
(x9). The dependent variable is the median value of the owner-occupied homes (in 1000 s)
in the census tract (y).

The results for the hypotheses H : θj = 0, j = 1 . . . 10 by performing the test with
the p-value, the e-value and the P-value, are summarized in Table 9. In this case, with the
e-value the null hypotheses are less rejected. The e-value does not reject the hypotheses
of nullity of the coefficients associated with the proportion of residential land zoned for
lots over 25.000 sq. ft and proportion of non-retail business acres per town variables, while
the p-value does. On the other hand, the P-value, unlike the p-value, does not reject the
hypothesis for the proportion of residential land zoned for lots over 25.000 sq. ft variable,
but it does for the Intercept. As can be observed in Table 10, for these data, the optimal
averaged error probabilities values are also very close.

Table 9. Boston housing dataset hypothesis-testing summary.

Coefficients θ̂Freq α pv θ̂Bayes k∗ ev αϕ∗
P

Pv

Intercept 1.7035 0.0500 0.6958 1.2035 0.9998 1.0000 0.1916 0.0085
xi1 −0.1244 0.0500 0.0006 −0.1244 0.5780 0.3365 0.0010 0.0001
xi2 0.0359 0.0500 0.0224 0.0362 0.4089 0.9012 0.0004 0.0025
xi3 −0.1489 0.0500 0.0235 −0.1473 0.6390 0.9114 0.0025 0.0023
xi4 6.7165 0.0500 0.0000 6.7336 0.9296 0.0000 0.0143 0.0000
xi5 −0.0655 0.0500 0.0000 −0.0648 0.3275 0.0141 0.0001 0.0000
xi6 −1.3198 0.0500 0.0000 −1.3091 0.8146 0.0001 0.0095 0.0000
xi7 −0.0030 0.0500 0.2324 −0.0030 0.0124 0.9996 0.0002 0.0198
xi8 −0.7652 0.0500 0.0000 −0.7528 0.8223 0.0003 0.0053 0.0000
xi9 0.0145 0.0500 0.0000 0.0147 0.0297 0.0113 0.0001 0.0000
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Table 10. Boston housing dataset optimal averaged error probabilities.

Coefficients α∗
ϕ∗

e
αϕ∗

P
β∗

ϕ∗
e

βϕ∗
P

Intercept 0.1321 0.1916 0.6494 0.4946
xi1 0.0018 0.0010 0.0165 0.0173
xi2 0.0006 0.0004 0.0075 0.0079
xi3 0.0030 0.0025 0.0286 0.0292
xi4 0.0222 0.0143 0.1123 0.1181
xi5 0.0000 0.0001 0.0068 0.0068
xi6 0.0091 0.0095 0.0825 0.0808
xi7 0.0000 0.0002 0.0016 0.0015
xi8 0.0081 0.0053 0.0494 0.0521
xi9 0.0000 0.0001 0.0019 0.0017

6. Conclusions

In this work, we present a method to find a cutoff value k∗ for the Bayesian evidence
in the FBST by minimizing the linear combination of the averaged type-I and type-II
error probabilities for a given sample size n and also for a given dimensionality d of the
parameter space in the context of linear regression models with unknown variance under
the Bayesian perspective. In that sense, we provide a solution to the existing problem in
the usual approach of hypothesis-testing procedures based on fixed cutoffs for measures
of evidence: the increase of the sample size leads to the rejection of the null hypothesis.
Furthermore, we compare our results with those obtained by using the test proposed by the
authors of [13,14]. With our suggestion of cutoff value for the evidence in the FBST and also
with the procedure proposed by the authors of [13,14], increasing the sample size implies
that the probabilities of both kinds of optimal averaged errors and their linear combination
decrease, unlike most cases, where, by setting a single level of significance independent of
sample size, only type-II error probability decreases.

A detailed study is still needed for more complex models, so the methodology we
propose to determine the adaptive cutoff value for evidence in the FBST could be extended
to models with different prior specifications, which would involve, among other things,
using approximate methods to find the prior predictive densities under the null and
alternative hypotheses.
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Appendix A

As stated in Section 2, the normal linear regression model in (1) shows that the
conditional distribution of y given parameters (θ, σ2) is the multivariate normal distribution
Nn(Xθ, σ2In). Therefore, the likelihood becomes

f (y|θ, σ2) = (2πσ2)−n/2 exp
{
− 1

2σ2 (y− Xθ)>(y− Xθ)

}
. (A1)



Entropy 2023, 25, 19 16 of 20

The natural conjugate prior distribution of (θ, σ2) is a p-variate normal-inverse
gamma distribution with hyperparameters m0, V0, a0, and b0, denoted by (θ, σ2) ∼
Np IG(m0, V0, a0, b0) ([20–22]):

g(θ, σ2) =
(b0)

a0

(2π)p/2 |V0|1/2 Γ(a0)
(σ2)

−
(

a0+
p
2 +1

)
exp

{
− 1

2σ2

[
(θ−m0)

> V0
−1 (θ−m0) + 2b0

]}
, (A2)

such that the conditional prior distributions of θ given σ2 is

g(θ|σ2) = (2π)−p/2 |V0|−1/2 (σ2)−p/2 exp
{
− 1

2σ2

[
(θ−m0)

> V0
−1 (θ−m0)

]}
, (A3)

and the prior marginal distribution of σ2 is

g(σ2) =
(b0)

a0

Γ(a0)
(σ2)−(a0+1) exp

{
− b0

σ2

}
, (A4)

denoted, respectively, by

θ|σ2 ∼ Np(m0, σ2V0), σ2 ∼ IG(a0, b0). (A5)

Both distributions are equivalent to the following new pair of distributions

g(σ2|θ) =

(
b0 +

(θ−m0)
> V0

−1(θ−m0)
2

)(a0+
p
2

)

Γ
(
a0 +

p
2
) (σ2)

−
(

a0+
p
2 +1

)
×

exp
{
− 1

2σ2

[
(θ−m0)

>V0
−1 (θ−m0) + 2b0

]}
, (A6)

and

g(θ) =
(2b0)

a0 Γ
(
a0 +

p
2
)

πp/2 |V0|1/2 Γ(a0)

{
(θ−m0)

>V0
−1 (θ−m0) + 2b0

}−(a0+
p
2

)

∝
{

1 + (θ−m0)
> (2b0V0)

−1 (θ−m0)
}−(a0+

p
2

)
. (A7)

The density in (A7) is a p-variate t distribution with 2a0 degrees of freedom and hy-
perparameters m0 and (b0/a0)V0. Then, the distributions in (A6) and (A7) are denoted by

σ2|θ ∼ IG

(
a0 +

p
2

, b0 +
(θ−m0)>V0

−1(θ−m0)

2

)
, θ ∼ tp

(
2a0; m0,

b0

a0
V0

)
. (A8)

Now suppose that the Np IG(m0, V0, a0, b0) distribution (A2) is adopted as the prior
distribution for (θ, σ2). Combining it with the likelihood (A1) gives the posterior distribu-
tion ([20–22]):

f (θ, σ2|y) ∝ (σ2)
−
(

a0+
n
2 +

p
2 +1

)
exp

{
− 1

2σ2

[
(θ−m∗)> V∗−1 (θ−m∗) + 2b1

]}
, (A9)

where
V∗ =

(
V0
−1 + X>X

)−1
, m∗ = V∗

(
V0
−1m0 + X>y

)
,

a1 = a0 +
n
2

, b1 = b0 +
m0
>V0

−1m0 + y>y−m∗>V∗−1m∗

2
.
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If X>X is non-singular, we can write

m∗ = V∗
(

V0
−1m0 + X>Xθ̂

)
,

where θ̂ = (X>X)−1X>y is the classical maximum likelihood or least squares estimator of
θ. Therefore, the posterior distribution of (θ, σ2) is

(θ, σ2)|y ∼ Np IG(m∗, V∗, a1, b1).

Consequently,

θ|σ2, y ∼ Np(m∗, σ2V∗), σ2|y ∼ IG(a1, b1), (A10)

and this is equivalent to,

σ2|θ, y ∼ IG

(
a1 +

p
2

, b1 +
(θ−m∗)>V∗−1(θ−m∗)

2

)
, (A11)

θ|y ∼ tp

(
2a1; m∗,

b1

a1
V∗
)

. (A12)

Consider now conditional distributions given partial specification of θ. First let
θ> = (θ>1 , θ>2 ), and consider distributions conditional on θ2. Suppose that (θ, σ2) ∼
Np IG(m0, V0, a0, b0). Corresponding distributions result if we change a0 to a1, b0 to b1, m0
to m∗ and V0 to V∗. If θ1 has s elements and θ2 has r elements, write

m0 =

[
m01
m02

]
, V0 =

[
V011 V012
V021 V022

]
,

where m01 is s × 1, V011 is s × s, m02 is r × 1, V022 is r × r, with r = p − s. Now since
θ given σ2 is distributed as Np(m0, σ2V0), using general results on multivariate normal
distributions (see [30]), we have the following distributions:

θ2|σ2 ∼ Nr(m02, σ2V022), (A13)

(θ1|θ2, σ2) ∼ Ns(m01.2(θ2), σ2V011.2), (A14)

where m01.2(θ2) = m01 + V012V0
−1
22 (θ2 −m02) and V011.2 = V011 −V012V0

−1
22 V021.

From (A13) and the prior distribution of σ2 we have that

(θ2, σ2) ∼ Nr IG(m02, V022, a0, b0) (A15)

and hence

θ2 ∼ tr

(
2a0; m02,

b0

a0
V022

)
, (A16)

σ2|θ2 ∼ IG

(
a0 +

r
2

, b0 +
(θ2 −m02)

>V0
−1
22 (θ2 −m02)

2

)
, (A17)

Now (A14) and (A17) together give

(θ1, σ2|θ2) ∼ Ns IG

(
m01.2(θ2), V011.2, a0 +

r
2

, b0 +
(θ2 −m02)

>V0
−1
22 (θ2 −m02)

2

)
(A18)

and finally
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θ1|θ2 ∼ ts

(
2a0 + r; m01.2(θ2),

2b0 + (θ2 −m02)
>V0

−1
22 (θ2 −m02)

2a0 + r
V011.2

)
. (A19)

Appendix B

Let fH and fA be the Bayesian prior predictive densities under the respective hypothe-
ses H and A described in Section 3.1. Both are probability density functions over the sample
space Ω, and they are calculated as the following conditional expectations:

fH(y) = Eξ [ f (y|ξ)|H ]

=
∫

H
f (y|ξ) dPH(ξ)

=
∫

H
f (y|θ1, θ2, σ2) gH(θ1, θ2, σ2) dθ1 dθ2 dσ2,

where gH(θ1, θ2, σ2) is the prior density under H calculated as

gH(θ1, θ2, σ2) =
g(θ1, θ2, σ2))1(θ2 = 0)∮

H g(θ1, θ2, σ2) dθ1 dθ2 dσ2

=
g(θ1, θ2, σ2)1(θ2 = 0)∫

Rs×R+
g(θ1, θ2 = 0, σ2) dθ1 dσ2

= g(θ1, σ2|θ2 = 0).

Thus, fH(y) is given by

fH(y) =
∫

H
f (y|θ1, θ2, σ2) gH(θ1, θ2, σ2) dθ1 dθ2 dσ2

=
∫
Rs×R+

f (y|θ1, θ2 = 0, σ2) g(θ1, σ2|θ2 = 0) dθ1 dσ2

=
∫
Rs×R+

Nn(XCθ1, σ2In)×

Ns IG

(
m01.2(0), V011.2, a0 +

r
2

, b0 +
m0
>
2 (V022)

−1m02

2

)
dθ1 dσ2

= tn

2
(

a0 +
r
2

)
; XCm01.2(0),

b0 +
m0
>
2 (V022)

−1m02

2(
a0 +

r
2

) (
In + (XC)V011.2(XC)>

), (A20)

where C(s+r)×s = [Is, 0s×r]>.

The prior predictive density under A can be obtained as follows
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fA(y) = Eξ [ f (y|ξ)|A ]

=
∫

A
f (y|ξ) dPA(ξ)

=
∫

A
f (y|θ, σ2) gA(θ, σ2) dθ dσ2

=
∫

A
f (y|θ, σ2) g(θ, σ2) dθ dσ2

=
∫

A
Nn(Xθ, σ2In)× Np IG(m0, V0, a0, b0) dθ dσ2

= tn

(
2a0; Xm0,

b0

a0

(
In + XV0X>

))
. (A21)

where PH and PA are the prior probability measure of ξ restricted to the sets H and
A, respectively.
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